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SUMMARY In this paper, we propose and implement an automated
route planning framework for milk-run transport logistics by applying
model checking techniques. First, we develop a formal specification frame-
work for milk-run transport logistics. The framework adopts LTL (Linear
Temporal Logic), a language based on temporal logics, as a specification
language for users to be able to flexibly and formally specify complex de-
livery requirements for trucks. Then by applying the bounded semantics
of LTL, the framework then defines the notion of “optimal truck routes”,
which mean truck routes on a given route map that satisfy given delivery
requirements (specified by LTL) with the minimum cost. We implement
the framework as an automated route planner using the NuSMV model
checker, a state-of-the-art bounded model checker. The automated route
planner, given route map and delivery requirements, automatically finds
optimal trucks routes on the route map satisfying the given delivery re-
quirements. The feasibility of the implementation design is investigated
by analysing its computational complexity and by showing experimental
results.
key words: automated route planning, transport logistics, model checking

1. Introduction

Milk-run transport logistics, which refers to the means of
transportation where a single truck cycles around multiple
suppliers to collect or deliver freights, is one of the most
efficient and popular approaches to improve logistic oper-
ations. Recently, a variety of industries, e.g., food, auto-
mobile manufacturing, military, as well as the dairy indus-
try, have adopted the milk-run approach to make their logis-
tics operations more efficient. However, compared with the
existing (non-efficient) logistics, logistics operations with
milk-run logistics often tend to be complex, and it is one
of the main barriers preventing wider prevalence of the ap-
proach in industry.

To address the complexity aspect, Satoh in [1], [2] pro-
posed a novel framework for milk-run transport logistics.
Focusing on the complexity of truck routes which is a char-
acteristic of the logistics operations, the framework intro-
duces a formal specification language that can flexibly spec-
ify complex truck routes, by specifying complex order of
locations which trucks should visit. Further it provides a
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mechanism for selecting appropriate trucks according to the
specified truck routes. The framework is realized by ap-
plying theory and techniques of process algebra; the spec-
ification language is designed based on CCS (Calculus of
Communicating System) [3], and the mechanism for select-
ing appropriate trucks is realized by applying the notion of
bisimulation checking [3].

Inspired by [1], [2] we develop a framework for au-
tomated route planning for such milk-run logistics. The
framework, given delivery requirements and a route map,
deals with optimal truck routes on the route map that satisfy
the given delivery requirements. We apply a model checking
approach to realize this framework. The framework adopts
LTL (Linear Temporal Logic) [4], [5] as a specification lan-
guage for users to be able to flexibly specifying the delivery
requirements in milk-run logistics, which are often complex
w.r.t. the locations order of truck routing. Then by applying
the bounded semantics of LTL, the framework defines the
notion of “optimal truck routes”, which mean truck routes
on a given route map that satisfy given delivery require-
ments (specified by LTL) with the minimum cost.

We will also develop a prototype of the framework as
an automated route planner. We implement the prototype us-
ing the NuSMV model checker, which is one of the state-of-
the-art LTL bounded model checkers. In doing so, we will
explain several gaps lying between the framework and the
model checker, and techniques to bridge them. we evaluate
the feasibility of the implementation design by analysing its
computational complexity and showing experimental results
using NuSMV. In our previous paper [6], we tackled on de-
veloping a theoretical foundation of the framework, and this
paper focuses on implementation of the framework based on
the foundation and evaluating the framework and its imple-
mentation design.

We end this section with the outline of the paper: the
next section explains the background of the framework we
develop, Sect. 2 briefly reviews LTL, Sect. 3 explains the de-
tails of our framework, Sect. 4 explains our prototype imple-
mentation of the framework for automated route planning
using NuSMV, and the conclusion and discussion of future
work follow in the last section.

2. Background

2.1 Example Scenario

Consider a route map as a weighted and undirected graph;
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Table 1 Different truck routes (1) (2) and (3) to satisfy/violate the delivery requirements.

(1) a0 →4 b4 →2 e6 →2 b8 →3 d11 →2 h13 →1 i14 →2 o16 →3 n19 →2 q21 →2 t23 →3 p26 →2 l28 →1 k29 →1 l30 →1 m31 →1

j32 →1 g33 →2 d35 →2 a37 →2 c39

(2) a0 →4 b4 →3 d7 →2 h9 →2 o11 →3 n14 →3 m17 →1 n18 →1 q19 →2 t21 →2 p23 →3 l25 →2 k27 →1 e28 →5 b33 →4 a37 →4

c39 →3 i42

(3) a0 →2 d2 →2 h4 →3 o7 →3 h10 →2 d12 →2 b14 →2 e16 →3 f19 →1 m20 →1 l21 →1 k22 →1 l23 →2 p25 →2 t27 →3 q30 →2

n32 →2 g34 →2 d36 →2 c38

Fig. 1 An example of route map.

i.e., the nodes, the edges and the weights of the weighted
graphs express the locations, the routes, and the costs of a
truck moving on the route segment in the route map. Fig-
ure 1 shows an example of such a route map.

“Delivery requirements” mean conditions for delivery
regarding the truck routes; i.e., trucks have to satisfy these
conditions on their routes through route map. A main char-
acteristic of delivery requirements in milk-run logistics typi-
cally appears in the complex order of locations which trucks
need to visit. This is a consequence of an important feature
of milk-run logistics: trucks are shared by multiple users
(i.e., suppliers and customers). Trucks collect freights at
one or more source points and deliver them to one or more
destination points on their way, visiting the source points
before the destination points. Typical delivery requirements
in milk-run logistics are exemplified as follows:

i) A truck visits location b and then k, and after that visits
location a or i and then s.

ii) A truck visits location e and then i, but between them it
should not go through f and o.

iii) A truck visits location o and then t and p and then c,
while visiting from o to t it should not go through r.

Given such a route map and delivery requirements, we
discuss the truck routes on the route map that satisfy and
violate the given requirements. Further, we can discuss the
truck routes with the best efficiency, i.e., the truck routes
satisfying the requirements with the smallest cost, which we
call “optimal truck routes”.

Assume that a truck has sufficient carrying capacity,
and it starts at location a. Table 1 shows three trucks routes
on the route map that satisfy and violate the delivery require-
ments on different routes. Each truck route is represented
as a sequence of locations, where locations are connected

by →. The sequence of the locations is the order in which
the trucks visit the locations. The (natural) number attached
to each arrow expresses the cost for a truck moving from
previous to next location, and the number on each location
expresses the accumulated cost to reach the location on the
truck route, given the route map and sequence.

Observe that truck route (1) and (2) satisfy the above
delivery requirements (i)–(iii), and truck route (3) does not.
Also, we consider that truck route (1) is more efficient than
(2); (1) requires cost 39 on its route to satisfy the given re-
quirements while (2) requires 42. In fact, (1) is an optimal
truck route, which is a truck route on the route map that
satisfies the delivery requirements with the minimum cost.
Note that the cost of a truck route is the sum of the weights
on edges in its route, instead of the number of locations
which it goes through. Accordingly, though truck route (2)
visits less locations on its route than (1), (1) is considered to
be more efficient.

2.2 Requirements for the Framework

With this example scenario, we clarify the main require-
ments of the framework for automated route planning for
milk-run logistics. We distinguish general requirements for
milk-run logistics and specific ones for our framework of
automated route planning. We share general requirements
for milk-run logistics in common from [1], [2] as follows:

• Trucks may be shared by multiple suppliers and cus-
tomers, so that they collect products at one or more
source points and deliver the products at one or more
destination points on their way. The trucks need to
visit the source points before they visit the destination
points. The framework therefore needs to specify the
order in which trucks call at various points.
• The routes taken by trucks may also affect product

quality. For example, foods should be transported by
the shortest route possible to keep their freshness, and
perishable foodstuffs should be picked up later than
preservable foodstuffs and taken to a food processor
or consumer.
• Pallets or boxes that contain multiple products are con-

sidered as transport units in many current logistics sys-
tems, rather than as individual products. These types of
containers may have multiple destinations and the re-
ceivers may take only some of the products in the con-
tainer when it arrives at their point.

In additions to the general requirements for milk-run
logistics, we assume the following specific ones for our
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framework:

• The framework, given a route map and delivery re-
quirements, provides a mechanism to find optimal
truck routes, which are truck routes satisfying the given
delivery requirements with the minimum cost. Also,
the framework provides a mechanism, given a cost, to
find a truck route with that cost, and additionally to
check if there exists a truck route which satisfies the
given requirements with that cost.
• To keep generality, route maps are regarded as

weighted undirected graphs, following the precedent
of general routing problems such as [7]. Weights are
imposed on the edges, expressing a notion of cost, in-
terpreted as, e.g., time, money, and emission of CO2,
for trucks’ moving on the edges.
• Delivery requirements in milk-run logistics are com-

plex w.r.t. the order of locations which trucks visit.
Also, the requirements vary temporally, since users
have different requirements each year, each month, and
each week, depending on their use. To address these
aspects, the framework should take a language-based
approach for specifying delivery requirements; i.e., it
should provide a language with which users can flexi-
bly specify delivery requirements.

2.3 Basic Approach

Our aim is to develop a framework for milk-run logistics to
satisfy the above requirements. We realize the framework
applying model-checking techniques. Our basic approach is
to specify delivery requirements with LTL and route maps
with Kripke models, and apply model checking algorithms
to find truck routes that best satisfy the requirements. That
is, we interpret automated route planning as the following
model checking problem:

route map |= delivery requirements.

As the framework takes a language-based approach to
specify delivery requirements, we adopt LTL for the pur-
pose. LTL is a logical language that can specify complex
temporal properties by means of ordered events to happen.
And it makes an appropriate basis for specifying complex
and various delivery requirements in milk-run logistics. For
example, delivery requirement (i) (ii) and (iii) can be speci-
fied with LTL as;

i) F(b ∧ F(k ∧ F(a ∨ (i ∧ Fs))
ii) F(e ∧ ¬( f ∨ o)Ui)
iii) F(o ∧ (¬rUt) ∧ F(p ∧ Fc))

By applying the semantics of LTL, the framework preserves
formal accounts of the satisfaction or violation of truck
routes given complex delivery requirements. To realize the
framework for automated route planning, we apply bounded
semantics and bounded model checking (BMC) proposed by
[4], [5]. Due to this approach, the framework can impose
a cost bound into the analysis of a truck route satisfying or

violating delivery requirements. Consequently, the frame-
work can formally define “optimal truck routes”, which are
truck routes that satisfy the delivery requirements with the
minimum cost. Further, we implement the framework using
NuSMV, an off-the-shelf BMC model checker.

We adopt LTL in this paper instead of CTL, which is
the other of the two major basic temporal logics, though we
consider that a similar discussion with LTL in this paper can
be porting to that with CTL basically. This is because we
consider LTL is relatively more suitable than CTL for our
purpose. Its reason is the following two fold.

The first reason is due to that the semantics design of
LTL is more naturally fit for specifying truck routes in our
setting. Roughly speaking, the LTL semantics, which is a
linear temporal logic, interprets a temporal formula on each
fixed single path, which is a sequence of states on a Kripke
model (or generally, a graph). On the other hand, the CTL
semantics, which is a branching temporal logic, interprets a
temporal formula on a tree, which can be regarded as a set of
all possible paths. Hence, CTL is equipped with the univer-
sal existential path quantifier (the ∀ and ∃ operator), which
respectively expresses all possible branches and only one
branch, when facing branches on the tree. Interpretation of
satisfiability of a truck route to delivery requirements, as ex-
emplified above, more naturally fit the LTL semantics. Our
setting assumes that a truck route is a single path in a route
map like LTL, and do not assume to specify if a set of truck
routes can satisfy all branches in a route map, specified by
universal path quantifiers as in CTL.

The second reason, which is more practical, is due to
that the tool we use in this work is more advanced for LTL
model checking than CTL model checking. This work aims
not only to develop a formal framework for milk-run lo-
gistics but also to evaluate feasibility by implementing the
framework. For the implementation, we use the NuSMV
model checker instead of implementing a model checker
from scratch. NuSMV is one of the state-of-the-art model
checking tools, and its semantic design is based on the
Kripke model which the framework we develop is based on
and hence is appropriate. And the model checking tool is
deviced with more advanced features for LTL model check-
ing, with more varieties of functions. In implementing the
framework, we use these advanced features of LTL model
checking in order to bridge gaps lying when applying a soft-
ware verification tool to automated route planner. We will
explain the details in Sect. 5.

3. Bounded LTL Model Checking

Bounded Semantics of LTL [4], [5], [8], [9]

Let AP be a set of atomic propositions., ranged over by
p, q, · · ·. Then LTL formulas over AP are defined recursively
as follows: atomic propositions are LTL formulas; and if φ1

and φ2 are LTL formulas so are Xφ (neXt), φ1Uφ2 (φ1 Un-
til φ2), φ1 ∨ φ2 and ¬φ1. A Kripke model M over AP is a
quadruple M = (S , I,T, L) where S is a finite set of states,
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Table 2 Bounded LTL semantics without a loop.

π |=i
k p iff p ∈ L(π(i))

π |=i
k ¬p iff p � L(π(i))

π |=i
k φ1 ∧ φ2 iff π |=i

k φ1 ∧ π |=i
k φ2

π |=i
k φ1 ∨ φ2 iff π |=i

k φ1 ∨ π |=i
k φ2

π |=i
k Xφ iff i < k ∧ π1 |=i+1

k φ

π |=i
k Fφ iff ∃ j, i ≤ j ≤ k.π |= j

k φ

π |=i
k Gφ is always false.

π |=i
k φ1Uφ2 iff ∃ j.i ≤ j ≤ k.π |= j

k φ2∧
∀h, i ≤ h < j.πi |=h

k φ1

π |=i
k φ1Rφ2 iff ∃ j.i ≤ j ≤ k.π |= j

k φ1∧
∀h, i ≤ h < j.πi |=h

k φ2

I ⊆ S is a finite set of initial states, T ⊆ S×S is the transition
relation and L : S → 2AP is the labeling function.

The LTL semantics is defined by way of paths of a
Kripke model M. Besides, in bounded semantics, paths with
loop-back and without loop-back are considered separately.
Here, we only review the case for paths without loop-back
since it is of the only situation necessary in our framework.
A path π in M is a sequence π = (s0, s1, . . .) of states, given
in an order that respects the transition relation of M. For
i < |π|, π(i) denotes the i-th state si in the sequence, and
πi = (si, si+1, · · ·) denotes the suffix of π starting with state
si. For k ≥ 0, let π be a path without loop-back, and φ be
a LTL formula. Then π satisfies φ with bound k (written as
π |=k φ) iff π |=0

k φ where π |=i
k φ is defined in Table 2.

It is defined that a Kripke model M satisfies a LTL for-
mula φ, written M |= φ, if π |= φ for all paths π of M; i.e.,
M |= φ if ∀π ∈ M.π |= φ.

Bounded Model Checking Using SAT

One advantage of BMC is that we can discuss the seman-
tics taking the length of paths into account. As an applica-
tion, we can discuss paths that satisfy/violate an LTL for-
mula with the shortest length. BMC problems are typically
solved by reducing SAT problems, therefore the complexity
of BMC of this approach is determined using the number
of propositional variables to appear in formula by SAT en-
coding [8], [9]. The translation results in O(k · | log(S )| +
(k + 1)2 · |φ|) variables, where S is the number of states in
model M, k is the bound, and |φ| is the length of φ.

4. An Automated Route Planning Framework for
Milk-Run Logistics

In this section, we explain our framework for an automated
route planning framework for milk-run logistics.

4.1 Semantics of Delivery Requirements w.r.t. Route
Maps

First, we formally define what it means for a truck route in a
route map to satisfy given delivery requirements, by provid-
ing a formal semantics of delivery requirements (specified

Table 3 Bounded LTL semantics for a route map.

1̇ : π |=i
k l iff π(i) = l

2̇ : π |=i
k ¬l iff π(i) � l

3̇ : π |=i
k φ1 ∧ φ2 iff π |=i

k φ1 ∧ π |=i
k φ2

4̇ : π |=i
k φ1 ∨ φ2 iff π |=i

k φ1 ∨ π |=i
k φ2

5̇ : π |=i
k Xφ iff i < k ∧ π1 |=i+1

k φ

6̇ : π |=i
k Fφ iff ∃ j, i ≤ j ≤ k.π |= j

k φ

7̇ : π |=i
k Gφ iff ∀ j, i ≤ j ≤ k.π |= j

k φ

8̇ : π |=i
k φ1Uφ2 iff ∃ j.i ≤ j ≤ k.π |= j

k φ2∧
∀h, i ≤ h < j.πi |=h

k φ1

9̇ : π |=i
k φ1Rφ2 iff ∃ j.i ≤ j ≤ k. pi |= j

k φ1∧
∀h, i ≤ h < j.πi |=h

k φ2

by LTL) w.r.t. route maps. Though the semantics is designed
based on bounded LTL semantics w.r.t. Kripke models, its
significance is emphasised to accurately explain the frame-
work. Also, a prototype implementation for the framework
explained in later sections is developed based on the formal
foundation. We start by defining route maps:

Definition 1 (route map): A route map M is a pair M =

(L,R), where L is a finite set of locations and R(⊆ (L × L) ×
N+) is a finite set of routes where N+ is the set of positive
integers, satisfying the conditions: (1) If ((a, b), n) ∈ R and
((a, b), n′) ∈ R then n = n′, and (2) If ((a, b), n) ∈ R then
((b, a), n) ∈ R.

Like LTL semantics w.r.t. Kripke models, LTL seman-
tics w.r.t. route maps are given in two steps; i.e., first seman-
tics w.r.t. a path of a route map is given, then based on that,
semantics w.r.t. route maps is given. To this end, the notion
of truck routes, which we also call paths, on route maps is
defined.

Definition 2 (Paths of a route map): A path π of a route
map M is a sequence of pairs of a location and a natural
number; i.e., π = ((a1, k1), (a2, k2), (a3, k3), · · ·), where the
natural number expresses the accumulated cost to reach the
associated location, given in an order that aligns with the
route map M. π(k) denotes the location name paired with
cost k in the path. Note that π(k) may not be defined for all
costs k. Thus, we consider π as a partial function, which,
given a cost, returns a location name. πl(i) and πk(i) denote
the location and the accumulated cost at the i-th pair in path
π, respectively. For a brief notation, we may also write a
path as “πl(1)πk(1) →n1 πl(2)πk(2) →n2 πl(3)πk(3) · · ·”, where
ni = πk(i + 1) − πk(i).

The path representations in Table 1 follow this definition
using the brief notion.

Next the semantics of delivery requirements w.r.t. paths
of a route map is defined. It is designed as a bounded se-
mantics: i.e., it introduces a natural number to express a
cost bound, and defines a path that satisfies delivery require-
ments taking the cost bound into account.

Definition 3: (Bounded semantics w.r.t. paths of route
maps): Assume M is a route map, π a path of M, and φ



KITAMURA and OKAMOTO: AUTOMATED ROUTE PLANNING FOR MILK-RUN TRANSPORT LOGISTICS
2559

an LTL formula. For a cost bound k such that k ≥ 0, we
define that π satisfies φ with bound k, denoted by π |=k φ, if
π |=0

k φ, where π |=i
k φ is defined as Table 3.

The rules given in Table 3 are same except for the G op-
erator. For the G operator, due to this leap from the original
bounded semantics of LTL w.r.t. Kripke models, we acquire
duality between G and F, i.e., ¬Fφ ≡ G¬φ, in the context
of the bounded semantics. We will use this property of the
semantics in our implementation explained in Sect. 4.

Thus, the semantics of LTL w.r.t. route map M is de-
fined. Since our interest is to find some truck-routes to sat-
isfy the given delivery requirements, we define that if some
path of the route map satisfies the delivery requirements,
then the satisfaction relation holds.

Definition 4 (Semantics w.r.t. a route map): Let M be a
route map and φ a LTL formula. We say a routemap M
satisfy a LTL formula φ, written M |=∃k φ, iff π |=∃k φ for
some paths π of M,

The LTL semantics, in general, can be classified from
the existential and universal viewpoint; i.e., determining
whether an LTL formula φ is existentially/universally valid
in a given model is called existential/universal model check-
ing (EMC/UMC), respectively. For clarity, we use the nota-
tional convention of quantifier symbols M |=∃ φ and M |=∀ φ
to denote them.

4.2 Examples of Specification Framework

This sub-section demonstrates how the semantics given in
the previous sub-section interprets delivery requirements
specified as LTL formula. First, we demonstrate the pro-
cess of the semantics interprets a delivery requirement (φ)
w.r.t. a path of route map (π); i.e., π |=∃k φ. The semantics,
in other words, evaluates a given satisfaction relation of a
path to delivery requirements to True or to False, which re-
spectively means the path satisfies the delivery requirement
or fails to satisfy it. So we show the process to evaluate the
satisfaction relation to True or to False, which we may also
call “satisfiability checking”.

To demonstrate it, we only show that truck route π(1),
which is truck route (1) in Table 1, satisfies delivery re-
quirements (iii) with the cost of 39 for lack of space (i.e.,
π(1) |=39 (iii)), instead of delivery requirements (i), (ii), and
(iii) (i.e., π(1) |=39 (i) ∧ (ii) ∧ (iii)). But the satisfiability
checking of π(1) |=39 (iii) can be easily extended to that of
π(1) |=39 (i) ∧ (ii) ∧ (iii). The process of satisfiability check-
ing for π(1) |=39 (iii) is shown in Table 4, and is briefly ex-
plained below. (The satisfiability checking can be under-
stood in a similar way as the standard discussion of that for
model checking, found such as in [14], [16].)

The process proceeds from the top to the bottom, where
the proposition, represented as a satisfaction relation, on the
top expresses the target that we want to check for its satis-
fiability. The process goes down step by step from the top,
where either one of the rules in Table 3 or a logical equiv-
alence rule is applied to each step for going down. In the

Table 4 The process for satisfiability checking π(1) |=39 F(o ∧ (¬rUt) ∧
F(p ∧ Fc)).

π(1) |=0
39 F(o ∧ (¬rUt) ∧ F(p ∧ Fc))

iff π(1) |=16
39 o ∧ ¬rUt ∧ F(p ∧ Fc) (by 6̇)

iff π(1) |=16
39 o ∧ π(1) |=16

39 ¬rUt ∧ F(p ∧ Fc) (by 3̇)

iff True ∧ π(1) |=16
39 ¬rUt ∧ F(p ∧ Fc) (by 1̇)

⇔ π(1) |=16
39 ¬rUt ∧ π(1) |=16

39 F(p ∧ Fc)

iff (∀n.17 ≤ n ≤ 22 ∧ π(1) |=n
39 ¬r)∧

π(1) |=23
39 t ∧ π(1) |=16

39 F(p ∧ Fc) (by 8̇)

⇔ (π(1) |=17
39 ¬r) ∧ (π(1) |=18

39 ¬r) ∧ · · · (π(1) |=22
39 ¬r)

∧ π(1) |=23
39 t ∧ π(1) |=16

39 F(p ∧ Fc)

iff True ∧ True ∧ · · ·True
∧ True ∧ π(1) |=16

39 F(p ∧ Fc)
⇔ π(1) |=26

39 p ∧ Fc

iff π(1) |=26
39 p ∧ π(1) |=26

39 Fc (by 3̇)

iff True ∧ π(1) |=26
39 Fc (by 1̇)

⇔ π(1) |=26
39 Fc

iff π(1) |=39
39 c (by 6̇)

iff True (by 1̇)

process in Table 4, when a rule in Table 3 is applied for a
step, the name of the rule together with the symbol is noted
to clarify the rule used in the step. Also, the symbol for
logical equivalence (⇔) is used when such a rule is applied
for a step. The process goes step by step by iteratively ap-
plying these rules, and such a process will lead a legitimate
satisfaction relation to either of True or False.

For satisfiability checking of π(1) |= (iii), the proposi-
tion represented by the satisfaction relation is on the top and
is the starting point of the process in Table 4.

For the first step, we apply rule 6̇ in Table 3 to the
proposition, and obtain second line of the process. The
rule is defined for the propositions in the form π |=i

k Fφ.
The rule can be applied, since the proposition on the top
is in this form. (To clarify the application of this rule in
this step, 6̇ is noted on the right of the second line of the
process.) The rule 6̇ states that propositions in the form
π |=i

k Fφ holds, iff there exists some j between the current

position (i) and the given cost bound (k) such that π |= j
k φ

holds. This application renders the substitution of i = 0,
k = 39, and φ = o ∧ (¬rUt) ∧ F(p ∧ Fc). Accordingly,
we need to find some j such that 0 ≤ j ≤ 39 and that
π(1) |= j

39 o ∧ ¬rUt ∧ F(p ∧ Fc). For the only possible in-
terpretation for this, j = 16 is assumed since truck route (1)
visits location o only at the cost of 16 on its route.

In the second step to proceed from the second to the
third line of the process, we apply rule 3̇ in Table 3. The
rule is defined for the propositions in the form π |=i

k φ1 ∧
φ2. This rule is applicable here, since the proposition in the
second line is in this form. This application renders the two
propositions of π(1) |=16

39 o and π(1) |=16
39 ¬rUt ∧ F(p ∧ Fc).

In the third step, the process proceeds from the third
to the fourth line by applying rule 1̇ in Table 3 to a sub-
proposition π(1) |=16

39 in the third line. The rule is defined for
the propositions in the form π |=i

k l. And it is applicable
here, since the sub-proposition π(1) |=16

39 o is in this form.
This application renders True since π(1)(16) = o; hence the



2560
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.12 DECEMBER 2013

fourth line is obtained in the process.
Next, the process proceeds from forth to fifth line just

as a consequence of applying the logical equivalence rule
of “True ∧ p ⇔ p, where p stands for any propositional
formula. Note that in the process in Table 4, the application
of a logical equivalence rule is clarified using the symbol
⇔, to explicitly distinguish it from the application of one of
the rules in Table 3 when such a logical equivalence rule is
applied.

The process further proceeds in a similar way by iter-
atively applying either one of the rules in Table 3 or a logi-
cal equivalence rule. And as it is shown, the process in the
end lands in True, which means satisfiability checking of
π(1) |= (i) is evaluated as True. This concludes truck route
π(1) satisfies delivery requirement (i) with the cost of 39.

Though in above it is only shown that truck route π(1)

satisfies delivery requirement (i) within the cost bound of 39
by satisfiability checking of π(1) |= (i), it can be also shown
that π(1) satisfies all of the delivery requirements (i), (ii) and
(iii) with the cost of 39; i.e., π(1) |=39 (i) ∧ (ii) ∧ (iii). On the
other hand, truck route (2) fails to satisfy all of the delivery
requirements (i), (ii) and (iii) within the cost bound of 39;
i.e., π(2) �|=39 (i)∧ (ii)∧ (iii) where π(2) denote truck route (2).
But also, if the allowed cost is extended, for example 42, the
π(2) is able to satisfy the all of the delivery requirements (i),
(ii) and (iii); i.e., that means π(2) |=42 (i) ∧ (ii) ∧ (iii).

Secondly, the semantics w.r.t. a route map, defined in
Definition 4, is demonstrated. The semantics w.r.t. defines
the interpretation of a delivery requirement (φ) w.r.t. a route
map (M) and given cost bound (k). The interpretation is
made by evaluating a satisfaction relation of a route map to a
delivery requirement within a cost bound to True (written as
M |=k φ) or to False (written as M �|=k φ), which respectively
means the route map M satisfies the delivery requirement φ
or fails to satisfy it within a given cost bound k. According
to Definition 4, the route map (M1) in Fig. 1 satisfies the
delivery requirement (i), (ii) and (iii) with a cost bound of
39, i.e., M1 |=39 (i)∧ (ii)∧ (iii), since a truck route (1) of the
route map satisfies the requirement within the cost bound.
On the other hand, M1 fails to satisfy it, since there is no
truck route of the route map satisfies the requirement within
the cost bound.

4.3 Optimal Truck Routes

Optimal truck routes, which are paths satisfying given de-
livery requirements with the minimum cost, are defined as:

Definition 5 (Optimal truck routes): A path π of a route
map M is an optimal path that satisfies a delivery require-
ment φ if it satisfies the following conditions:

1. π |=i φ for some i, and
2. if π′ |= j φ for all π′ in M and for some j then i ≤ j.

Example 1 (Optimal truck routes): Take the example in
Sect. 2. As already mentioned, there are several truck routes
of the route map that satisfy the given delivery requirements

such as (i) and (ii). And among them truck routes (1) is an
optimal path in terms of Definition 5.

5. Implementing an Automated Route Planner for the
Milk-Run Logistics Framework Using the NuSMV
Model Checker

This section explains a prototype system, which we have im-
plemented, of the milk-run logistics framework given in the
previous sections. The system, given a route map and de-
livery requirements (specified by LTL), automatically finds
an optimal truck route that satisfies the requirements based
on the framework. We use the NuSMV model checker [10],
[11] to realize such a system. Several gaps to realize the
system by NuSMV, and techniques to bridge them are ex-
plained. Also we show experimental results of the imple-
mentation as its evaluation.

5.1 Encoding Route Maps into NuSMV Codes

In applying NuSMV to realize a system for the framework,
the route maps are encoded into NuSMV codes. In en-
coding route maps to NuSMV codes, one gap we need to
bridge is how to encode the weights of edges in route maps
in NuSMV codes so that the model checking algorithm of
NuSMV can find optimal paths.

We realize this by introducing extra nodes, which we
call dummy nodes, to express the weights. Consider, for
example, a route (i.e., edge) connecting two locations with
weight “3”. Figure 2 shows how the weight of each route in
the route map (on the left) is expressed in the NuSMV codes
using two dummy nodes of ef1 and ef2 (on the right). That
is, the weight of n of a route in the route map is expressed
by preparing n−1 dummy nodes between the two locations.
Table 5 shows actual NuSMV codes for the map shown in
Fig. 1.

Also, note that, due to this implementation design, the
neXt operator (Xφ) is excluded from the LTL language set,
which is used for specifying delivery requirements, in this
implementation.

5.2 Bridging Gaps between UMC and EMC

The second gap lies between EMC, which our framework
assumes, and UMC, which NuSMV is based on [10], [11].
In EMC, only one path of a model that satisfies a formula is
required to prove the satisfaction relation between the model
and the formula, which we may call the “witness”. In UMC,
which NuSMV assumes, it is required that all the paths of a
model satisfy a given formula, for the satisfaction relation of

Fig. 2 How to encode weights of route map in NuSMV codes.
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Table 5 NuSMV code for route map of Fig. 1.

1 Module main

2 VAR

3 node : {a, _ab3, _ab2, _ab1, b, _ac1, c, ..., _dummy};

4 ASSIGN

5 init(node) := a;

6 next(node) := case

7 node = a : {_ab3, _ac1, _ad1};

8 node = _ab3 : {a, _ab2};

9 node = _ab2 : {_ab3, _ab1};

10 node = _ab1 : {_ab2, b};

11 node = _ac1 : {a, c};

12 node = _ad1 : {a, d};

13 node = b : {_ab1, _be1, _bd2, _bf2, _bg2};

14 node = _be1 : {b, e};

15 node = _bd2 : {b, _bd1};

16 node = _bd1 : {_bd2, d};

17 node = c : {_ac1, _cd1, _ci2};

18 -- continue ...

19

the model to the formula to hold. That is, the existence of a
path that fails to satisfy the formula violates the satisfaction
relation, which is a so-called counter-example.

Here, an important observation for bridging the gap is
that due to the semantics design, which keeps duality in the
bounded semantics setting in Definition 3, finding a wit-
ness in EMC corresponds to finding a counter-example to
the negation form of the formula in UMC. Accordingly, to
build an automated route planner for the framework using
NuSMV, it suffices to apply the negation form of the LTL
formula to NuSMV, and in this way a generated counter-
example is a witness and hence is a truck route that satisfies
the delivery requirements.

5.3 Finding Optimal Paths Using NuSMV

The basic idea to find an optimal truck route using NuSMV
is to use the BMC function of NuSMV. BMC, which is
a model checking based on bounded semantics, can find
a counter-example that violates a given formula, with the
shortest length due to the breadth-first nature of SAT search
procedures. Also Definition 5 defines the optimal truck
routes as the ones which satisfy a given delivery require-
ments with the minimum weights. Together with the tech-
nique to bridge UMC and EMC discussed previously, we
can find an optimal truck route that satisfies given delivery
requirements.

In realizing this idea using NuSMV, instead of
the simple and standard command “bmc”, we use the
“check ltlspec bmc onepb” command with providing nat-
ural numbers k to the command to specify the length of
counter-examples (hence the length of truck route), and “X”
for the option “l” to obtain paths with “no loop-back”. The
actual procedure of finding an optimal using NuSMV and
its response from NuSMV is demonstrated in Fig. 3.

This elaborated procedures, instead of the simple
“bmc” command, is required in order to avoid that NuSMV
finds a truck route which does not comply with the notion

Fig. 3 A screen dump for finding a truck route with cost 39 w.r.t. the
route map in Fig. 1 and delivery requirements (i) ∧ (ii) ∧ (iii) using
NuSMV.

Fig. 4 A minimal example for the loop-back option in NuSMV.

of “optimal truck route” in Definition 5. Specifically, for ex-
ample, consider the route map in Fig. 4 where a truck is on
location b currently, and that the following delivery require-
ments are given:

• Truck visits location d, and then a, and then c; for-
mally,

F(d ∧ F(a ∧ Fc))

According to the notion of optimal truck routes defined in
Definition 5, an optimal route is as follows:

b0 →2 c2 →2 d4 →3 a7 →1 e8 →1 c9
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But if we apply the simple procedure using the “bmc” com-
mand of NuSMV, NuSMV returns the result in finding the
following truck route:

b0 →2 c2 →2 d4 →3 a7 →1 b8

What kinds of result does NuSMV answer? It is a truck
route containing “loop-back” (i.e., the first location and the
last location b in the path is same), which satisfies the (nega-
tion of) delivery requirements. This truck route satisfies the
delivery requirements if we consider it as a “cycle truck
route”, since it can be seen that after visiting location d and
then a as required, the truck in the route will visit location
c. This truck route can be regarded as one notion of a truck
routes satisfying the delivery requirements, but not the one
complying with the notion in Definition 5.

5.4 Computational Complexity of the Implementation De-
sign

We analyze computational complexity of this implementa-
tion design for the framework. As mentioned in Sect. 3, the
complexity of BMC using SAT is analyzed via the num-
ber of propositional variables to appear by SAT encoding,
represented as O(k · | log(S )| + (k + 1)2 · |φ|), where S is
the number of states in model M, k is the bound, and |φ|
is the length of φ. Since the implementation encodes route
maps into Kripke models, here we need to analyze the num-
ber of states accompanied by the encoding. In encoding,
dummy locations to express the weights of a route map
as well as locations are encoded to the states of Kripke
model. Hence the number of states of a Kripke model en-
coded from route map M, which we consider as the size of
route map M and denote as size(M), is given as the sum
of the number of locations (S ) and dummy locations; i.e.,
size(M) = |Loc| + ∑{n − 1 | ((a, b), n) ∈ R}. That is,
the number of states in the Kripke models due to the en-
coding increases in a linear manner; hence the number of
propositional variables to appear in the encoded formula is
O(k · | log(size(M))| + (k + 1)2 · |φ|).

5.5 Experimental Results

As an experiment to demonstrate the feasibility of the im-
plementation design, we show benchmark results based on
the analysis of computational complexity above. From the
complexity analysis, it is known that cost bounds (i.e., the
length of paths) and the length of the LTL formula are the
main contributors to the computational cost. Hence the ex-
periment is designed based on interactions of these two fac-
tors where the size of route map is fixed at 200. Also, due
to the advantageous property of the breadth-first search in
BMC, we can apply model checking for each different cost
bound on a different computing node in parallel. Thus, for
cost bounds, we show results obtained by applying model
checking with the exact cost bound k instead of all the cost
bounds from 1 to k. Table 6 shows the experimental re-
sults, where each result shows the average execution times

Table 6 Experimental results for finding optimal truck routing.

The length of formula φ length(φ)
cost bound 20 30 40 50 60 70

k = 20 4s 3s 4s 3s 4s 4s
k = 30 6s 14s 68s 66s 2m40s 2m39s
k = 40 5s 16s 2m52s 21m49s 122m0s 277m58s
k = 50 9s 72s 3m34s 5m22s 80m0s 136m23s
k = 60 11s 47s 4m26s 6m38s 18m54s 128m18s

# The experiments were conducted on a machine with an AMD Dual-Core
Opteron 2220 CPU @2.8GHz, 33GB of RAM and Debian Linux 5.0.10.

over five trials. We distinguish the executions that result in
finding a path that satisfies a given requirement with a gray-
coloured cell from those that result in failing with a white-
coloured cell. We can observe that the experimental results
almost conform to the complexity analysis; i.e., the comput-
ing cost w.r.t. the length of the formula and cost bound k
increases in an exponential manner. Also, it is interesting to
observe that the cost w.r.t. the bound k decreases after find-
ing a path; this reflects the property of “phase transition”,
which is a characteristic to SAT problem well-investigated
in [12], [13].

6. Evaluation

This section is devoted to evaluate our framework and its
prototype for milk-run transport logistics. The evaluation is
conducted, from practical viewpoints, on the two main con-
tributions of the paper. One is on the specification language
for expressing delivery requirements for milk-run logistics
operations deviced in the framework. And the other is on
the efficiency aspect of the prototype of the framework we
have implemented in Sect. 5.

6.1 Evaluation of the Specification Language

Our framework adopts LTL as a specification language to
express delivery requirements (and hence, truck routes), for
milk-run logistics operations. We evaluate this approach by
way of the framework developed by Satoh in [1], [2], which
is in real use in logistics industries, deviced also with a spec-
ification language for expressing truck routes for the milk-
run logistics operations.

“Satoh’s language” in [1], [2] is developed in the con-
text of his development of a foundational framework for
“a truck selection system” for milk-run logistics operations.
The language is designed based on CCS which is a process
calculus, in order to flexibly expressing various complex or-
ders of locations, assuming milk-run operations. The lan-
guage design is so simple, since it abstracts various other as-
pects of the logistics away, aiming to develop a foundational
framework. But the language is shown to be practically
expressive for a real use in some logistics industries; the
language reduces complexity of managing complex truck
routes in milk-run logistics operations.

To claim practicality of adopting LTL as a specifica-
tion language for milk-run logistics operations by way of
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Satoh’s language, we argue the expressive aspect of LTL
w.r.t. Satoh’s language. That is, we argue what Satoh’s lan-
guage can express and what LTL can express. Theoretically,
Satoh’s language is more expressive than LTL, by using the
following known facts:

• Satoh’s language is an extension of CCS [1], [2],
• CCS is as expressive as modal μ-calculus [14],
• modal μ-calculus is more expressive than CTL* [15]
• CTL* is more expressive than LTL, [16]

Especially what makes Satoh’s language, characterized as
modal μ-calculus, more expressive than LTL is mainly some
CTL formulas, which embed the path quantifiers (∀φ) and
hence cannot expressed, according to the following theorem
in [16] (p.335):

Theorem 6.18 (p.335 in [16]) : [Criterion for Trans-
forming CTL Formulae into Equivalent LTL Formulae]
Let Φ be a CTL formula, and φ the LTL formula that is ob-
tained by eliminating all path quantifiers in Φ. Then: Φ ≡ φ
or there does not exist any LTL formula that is equivalent to
Φ.

But the absence of embedded path quantifiers in CTL
formulas, which express all/some branches on a tree, does
not spoil practicality of using LTL as a specification lan-
guage to express truck route, especially for the purpose of
route planning for milk-run logistics operations. This is be-
cause, as explained in Sect. 2.3, in our framework of route
planing, we assume a truck route is a single path of route
map and delivery requirements are interpreted in a single
path like LTL, but not on a tree like CTL.

Also note that this paper focuses on and is confined to
developing a framework of route planning in the context of
milk-run logistics operations by applying model checking
techniques. We leave more direct and thorough evaluation
of practicality of the framework adopting LTL in real world
logistics industries to our future work.

6.2 Evaluation of the Efficiency of the Implemented Auto-
mated Route Planner

Today, milk-run operations in transport logistics are used in
various industries such as food, automobile manufacturing,
military, as well as the dairy industry. Also operation meth-
ods also differ depending on their purposes, including the
following examples:

• Small route maps are used in some operations, but large
ones need to be used in others.
• The number of locations which a truck visit is large in

some operations, but not so in the other operations.
• The computing time for finding truck routes is strict in

some operations but is not so in the others.

According to the experimental results shown in
Sect. 5.5, obviously the prototype implementation does not
suit such operations with large route maps, strict comput-
ing time, and complex delivery requirements from the view

point of efficiency.
But still, there are some settings in logistics industries,

which the current implementation of the prototype with this
efficiency can be applied to. One of such settings is in dairy
industry. Generally, in dairy industry where milk-run lo-
gistics operations are often used, a truck with dairy goods
can not travel for long time, to avoid affecting their quality.
Therefore, in such settings, both of route maps dealt with
and the number of locations which a truck visits should not
be large. More specifically, according to an expert on this
logistics domain, in such settings the number of locations
that a truck should visit in such settings is 5 to 10 locations
at most, which approximately corresponds to 15 to 30 in the
length of the formula respectively. The current prototype of
the efficiency as shown in Table 6 is applicable in such a set-
ting, since it works better way than hand-made planning as
we can automatically obtain truck routes which accurately
satisfy complex delivery requirements in a faster way.

Also, note the main focus of this paper is to develop a
foundational framework for route planning, where complex
delivery requirements are flexibly specified and a mecha-
nism for finding truck routes to satisfy such complex deliv-
ery requirements is deviced, and to implement a prototype
of the framework. The efficiency aspect will be tackled on
in our future work, by improving the algorithms for route
planning in our setting of milk-run logistics operations.

7. Related Work

As mentioned, this work is inspired by [1], [2] to provide a
formal framework for milk-run transport logistics which re-
duces its complexity. But our work differs from those in its
purpose; i.e., the purpose of our work is to develop a for-
mal framework for automated route planning, while that of
[1], [2] is to develop a framework for a mechanism for truck
selection. This makes differences in the technologies used
in the frameworks. Our framework uses model checking
techniques, while [1], [2] uses bisimulation checking tech-
niques. Also, this work is the first to apply model checking
technologies, originally for automated verification, to auto-
mated route planning for milk-run transport logistics.

Various shortest-path problems and their algorithms in
graph theory, such as “single-source shortest path problems”
(and Dijkstra’s algorithm), “all-pairs shortest path prob-
lems”, “travelling salesman problems”, “widest path prob-
lems”, etc., share a common link with our framework in
finding optimal paths provided weighted graphs. Note that
these graph algorithms are designed to solve their own spe-
cific and fixed problems; e.g., Dijkstra’s algorithm is de-
signed specifically for a “single-source shortest path prob-
lem”. On the other hand, this work proposes a general
framework; i.e., it provides a way to flexibly specify various
problems as “delivery requirements” by LTL, and a mecha-
nism to solve these problems by automatically finding short-
est paths for the given problems in a unified way.
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8. Conclusion and Future Work

Conclusion

In this paper, we have developed an automated route plan-
ning framework for milk-run transport logistics, which
given a route map and delivery requirements finds opti-
mal truck routes that satisfy requirements with the low-
est cost. The framework is realized by applying model-
checking techniques. It uses LTL as a specification language
for specifying delivery requirements in milk-run logistics,
which are complex w.r.t. the order of locations which trucks
should visit. We have discussed the framework formally,
including the notion of “optimal truck routes”, by applying
bounded semantics. Further based on the formal foundation
we implemented the framework by applying the NuSMV
model checker. As the milk-run logistics is used in vari-
ous ways in various industries, we have shown the computa-
tional complexity and experimental results as the feasibility
of the implementation.

Future Work

This paper focuses on developing the framework and on
demonstrating its feasibility, by implementing the system
for the framework in a simple manner as an early trial; i.e.,
we leave the aspect of efficiency and correctness of the sys-
tem design and implementation to our future papers. An-
other important research direction is to develop a Domain
Specific Language (DSL) for specifying delivery require-
ments in milk-run logistics. In this paper, LTL is used for
that purpose in order to show the applicability of model
checking to a route planning problem in milk-run logistics.
However more suitable languages can be designed to more
effectively express delivery requirements in milk-run logis-
tics in practice.
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