
Priority Integration
for Weighted Combinatorial Testing

Eun-Hye Choi, Takashi Kitamura, Cyrille Artho, Akihisa Yamada, and Yutaka Oiwa
National Institute of Advanced Industrial Science and Technology (AIST), Japan

Email: {e.choi, t.kitamura, c.artho, akihisa.yamada, y.oiwa}@aist.go.jp

Abstract—Priorities (weights) for parameter values can im-
prove the effectiveness of combinatorial testing. Previous ap-
proaches have employed weights to derive high-priority test
cases either earlier or more frequently. Our approach integrates
these order-focused and frequency-focused prioritizations. We
show that our priority integration realizes a small test suite
providing high-priority test cases early and frequently in a good
balance. We also propose two algorithms that apply our priority
integration to existing combinatorial test generation algorithms.
Experimental results using numerous test models show that our
approach improves the existing approaches w. r. t. order-focused
and frequency-focused metrics, while overheads in the size and
generation time of test suites are small.

Index Terms—Combinatorial testing; Pairwise testing; Priori-
tized Testing; Priority weight; Weight coverage; KL divergence.

I. INTRODUCTION

Combinatorial testing (CT) [8] effectively detects system
interaction failures in software. Pairwise testing (generally, t-
wise testing) is a widely used CT technique, which stipulates
to test all interactions between two parameters in a system
under test (SUT) at least once. So far, various algorithms [8]
have been proposed to generate pairwise test suites (i. e., lists
of test cases) given an SUT model that comprises a list of
parameters with their values and constraints over them. Com-
binatorial test generation algorithms are normally evaluated by
their computation time and the following criterion:

CS: The size of a test suite should be as small as possible.
This criterion determines the cost of test execution.

Recent papers [1], [4], [6], [7], [9] have investigated prior-
itized pairwise test generation, which takes a priority notion
into account in order to increase the quality of test suites.
A prioritized test generation algorithm takes as input SUT
models with priority weights assigned to parameter-values and
generates test suites that consider such weights.

To our knowledge, every such algorithm proposed so far
falls into one of the following two categories of priority
criteria, depending on how weights are reflected in test suites:

CO: High-priority test cases should appear earlier [1], [7].
CF: High-priority parameter-values should appear more

frequently [4], [6], [9].
For CO, weights are used to order test cases, presuming
resources for test execution are limited in practice. For CF,
weights are used to balance the frequency of appearance of
certain values in test cases. Each of the two priority criteria in
isolation increases the quality of a pairwise test suite. However,

TABLE I: An example (weighted) SUT model.

Parameter Value(Weight)
OS Win(1), Unix(1), Mac(2)
CPU Intel(1), AMD(3)
Browser IE(1), Firefox(1), Safari(1), Opera(1)
Net Wifi(2), LAN(2), 3G(2)

in practice one may want to integrate both to further improve
the quality of test suites of limited size.

In earlier work [2], we proposed a novel idea for prioritized
test suite generation that integrates all the three criteria: CO,
CF, and CS. Our priority integration allows balancing the three
criteria, obtaining a small test suite where important parameter
values appear early and frequently. We also presented a basic
algorithm that realizes priority integration as a global search,
which is applicable only to small SUT models.

In this paper, we investigate the effectiveness of priority
integration through analyzing experimental results for various
priority orders. We also present two algorithms that realize
practical test generation by applying our priority integration to
existing practical algorithms, PICT [4] and the density algo-
rithm [1]. We compare our priority integration algorithms with
existing prioritization approaches, using metrics that measure
CO and CF. Experimental results using numerous SUT models
including ones based on large empirical benchmarks [3] and
an actual system [5] show that our algorithms outperform the
existing approaches w. r. t. the CO and CF.

This paper is organized as follows: Sections II and III
describe preliminaries and state-of-the-art prioritized CT gen-
eration techniques, respectively. Sections IV and V present
our priority integration algorithms and experimental results.
Section VI concludes and proposes future work.

II. PRELIMINARIES

A. Combinatorial Pairwise Testing

An SUT for CT is generally modeled from parame-
ters, their values from a finite set, and constraints between
parameter-values. In this paper, we do not consider con-
straints in SUT models for simplicity. An SUT is denoted as
S(m; |V1| . . . |Vm|), where m is the number of parameters, and
for 1 ≤ i ≤ m, Vi denotes the value domain of parameter pi.
We assume that V1, . . . , Vm are pairwise disjoint, and denote
their disjoint union by V .

The SUT model in Table I has four parameters. Parameter
“Browser” has four possible values, while both “OS” and

TABLE II: Example pairwise test suites by previous and
proposed algorithms for the SUT model in Table I.

(a) Density Algorithm [1]
O CB N N W WC (%) DKL

1 MA I W 6 24 14.81 3.466
2 MAF L 5 19 26.54 2.079
3 MAS G 5 19 38.27 1.269
4 WAOW 5 16 48.15 0.651
5 U I O L 6 15 57.41 0.125
6 U I I G 5 13 65.43 0.102
7 W I F G 5 12 72.84 0.140
8 U I SW 5 13 80.86 0.204
9 M I OG 3 9 86.42 0.284
10 W I I L 3 8 91.36 0.324
11 UAFW 3 9 96.91 0.264
12 W I S L 2 5 100.00 0.306

(b) PIDens (CO.CF)
O CB N N W WC (%) DKL

1 MA I W 6 24 14.81 3.466
2 MAF L 5 19 26.54 2.079
3 MAS G 5 19 38.27 1.269
4 WAOW 5 16 48.15 0.651
5 U I O L 6 15 57.41 0.125
6 U I I G 5 13 65.43 0.102
7 W I F G 5 12 72.84 0.140
8 U I SW 5 13 80.86 0.204
9 M I OG 3 9 86.42 0.284

10 WA I L 3 8 91.36 0.194
11 UAFW 3 9 96.91 0.164
12 WAS L 2 5 100.00 0.123

(c) PICT Algorithm [4]
O CB N N W WC (%) DKL

1 W I I W 6 15 9.26 5.257
2 UA I L 6 21 22.22 2.629
3 M I I G 5 16 32.10 1.827
4 MAFW 6 24 46.91 1.027
5 U I F L 5 12 54.32 1.085
6 WAF G 5 17 64.81 0.894
7 U I SW 4 10 70.99 0.743
8 WAS L 4 12 78.40 0.595
9 U I S G 2 6 82.10 0.670
10 W I OW 3 7 86.42 0.549
11 UAO L 3 9 91.98 0.444
12 M I S L 2 7 96.30 0.434
13 M I OG 2 6 100.00 0.392

(d) PIPICT (CS.CO.CF)
O CB N N W WC (%) DKL

1 MA I W 6 24 14.81 3.466
2 W I I L 6 15 24.07 2.282
3 UA I G 5 17 34.57 1.460
4 U I FW 6 15 43.83 1.200
5 WAF L 5 18 54.94 1.004
6 M I F G 5 16 64.81 0.894
7 WASW 4 12 72.22 0.587
8 M I S L 4 12 79.63 0.509
9 WAS G 2 6 83.33 0.471

10 MAOW 3 10 89.51 0.190
11 W I O L 3 7 93.83 0.218
12 UAS L 2 5 96.91 0.193
13 UAOG 2 5 100.00 0.138

N : Number of newly covered parameter-value pairs. WC : Weight coverage.
W : Weight of newly covered parameter-value pairs. DKL: KL divergence.

“Net” have three, and “CPU” has two possibilities. This SUT
model (ignoring weights) is denoted by S(4; 213241).

A test case for an SUT model S(m; |V1| . . . |Vm|) assigns
for each parameter pi a value vi ∈ Vi, and is expressed as
an m-tuple (v1, . . . , vm). For example, a 4-tuple (Win, Intel,
IE, Wifi) in Table II-(c) is the first test case generated by
PICT algorithm [4] for the example SUT in Table I. We call
a sequence of test cases a test suite.

A pairwise test suite is a test suite to cover all parameter-
value pairs in an SUT model at least once. Given SUT model
S(m; |V1| . . . |Vm|), it is defined as a k×m array, denoted by
T (k;m, |V1| . . . |Vm|), satisfying the following properties:
• For each element e in the j-th column with 1 ≤ j ≤ m,
e ∈ Vj .

• Each k × 2 sub-array covers all pairs of values from the
two columns at least once.

Each i-th row (1 ≤ i ≤ k) of T corresponds to the i-th
test case. Each element in the j-th column (1 ≤ j ≤ m)
corresponds to a value assignment for parameter pj .

For the SUT model in Table I, there exist 6 parameter pairs,
e. g. , (OS, CPU), . . . ,(Browser, Net), and totally 53 parameter-
value pairs, e. g., (Mac, Intel), . . . ,(Opera, 3G). Every test suite
in Table II is a pairwise test suite for the example SUT model,
since it covers all the parameter-value pairs.

B. Weighted Pairwise Testing

For prioritized CT, we assume that a positive integer weight
is assigned to each parameter-value in an SUT model. A

weight represents a relative importance in the aspect of test-
ing, e. g., occurrence probability, error probability, or risk of
parameter-values [7]. We can easily extend our algorithm for
the case where weights are probabilities.

Hereafter we call pairwise testing for a weighted SUT model
weighted pairwise testing. A weighted SUT model is an SUT
model with a weighting function w whose domain is V and
range is the set of positive integers. The weighting function
w is extended for parameter-value pairs as w(v, v′) = w(v)+
w(v′). We denote a weighted SUT by S(m; |V1| . . . |Vm|;w).

For example, in the weighted SUT model in Table I,
the weight of parameter-value Win is set to 1 and that of
parameter-value Mac is set to 2. This represents that Mac is
twice more important than Win in testing. For instance, the
weight of a parameter-value pair (Mac, Intel) is calculated by
w(Mac, Intel) = w(Mac) + w(Intel) = 2 + 1 = 3.

III. RELATED WORK

Several techniques to generate weighted pairwise test suites
have been proposed so far. They can be classified into those
using weights for ordering test cases [1], [7], and those using
weights for balancing the occurrence frequency of parameter-
values [4], [6], [9]. They all adopt a “one-test-at-a-time”
greedy style [8], which generates test cases one by one until
all parameter-value pairs are covered, and consider weights
when selecting each test case.

A. Order-focused (CO-based) Test Generation

The algorithms in the first category consider that high-
weighted test cases should appear early in a test suite. The
density algorithm [1] aims at covering parameter-value pairs
of higher weights as early as possible, and thus generates
test cases focusing on maximizing weights of newly cov-
ered parameter-value pairs. For our example SUT model,
the density algorithm generates 12 test cases in Table II-
(a). In contrast, CTE-XL [7] focuses on the weights of both
uncovered and already-covered pairs, and generates test cases
ordered according to their weights.

Both techniques share the advantage that important
parameter-value pairs appear early in a test suite. However,
they do not consider the test frequency aspect.

B. Frequency-focused (CF-based) Test Generation

The algorithms in the second category aim at testing highly
weighted parameter-values frequently. PICT [4] generates a
test case by choosing parameter-value pairs to maximize the
number of newly-covered parameter-value pairs, and considers
weights only when two choices of parameter-value pairs are
equivalent according to an informal description in [4]. We
observe that the frequency is reflected only mildly in PICT.

PictMaster [9] and Fujimoto et al. [6] aim at reflecting fre-
quency more precisely; ideally, the number of occurrences of a
parameter-value is proportional to its weight. In our example,
for parameter OS, value Mac with weight 2 should appear
twice as frequently as value Win with weight 1. PictMaster
transforms a weighted SUT to a unweighted SUT by adding

2

redundant parameter-values according to their weights before
passing it to PICT, and thus results in a larger test suite.
For our example SUT, the PICT algorithm1 generates 13 test
cases in Table II-(c) while PictMaster generates 23 test cases.
Fujimoto et al. developed another approach to add a given
number of test cases to an existing test suite, in order to more
accurately reflect given weights for value frequency.

The strength of these approaches is that more important
values appear more frequently. On the other hand, they do not
consider the order of important test cases, and often require
large test suites.

C. Evaluation Metrics

The following metrics have been used to evaluate test suites:
• Size, i. e. number of test cases (denoted by |T |) for CS,
• Weight coverage (denoted by WC) for CO, and
• KL divergence (denoted by DKL) for CF.
To evaluate test suites w. r. t. CO, Bryce and Colbourn [1]

and CTE-XL [7] use weight coverage, which is defined as

WC =
Sum of weights of covered parameter-value pairs

Sum of weights of all parameter-value pairs
.

For example, consider the first two test cases in Table II-(a).
Since the sum of weights of covered parameter-value pairs is
24 + 19 and that of all pairs is 162, WC is 26.54%.

To evaluate test suites w. r. t. CF, Fujimoto et al. [6] use
KL divergence, which measures the difference between two
probability distributions. KL divergence is defined as

DKL(P ||Q) =
∑
v∈V P (v) log(P (v)/Q(v)),

where P (v) and Q(v) respectively denote the current and the
ideal occurrence frequencies for parameter-value v. In the ideal
situation, the number of occurrences of each v is proportional
to its weight. By definition, DKL equals zero when P = Q,
and it grows when the difference between P and Q is larger.

For example, in the test suite in Table II-(a), Win, Unix, and
Mac appear four times, and thus the current distribution P (i)
is 4/12 for each value i. The weight for each value is 1, 1, and
2, and thus the ideal distribution Q(i) is 1/4, 1/4. and 2/4
for each value i. By definition, DKL is calculated as 0.306.

The sizes of generated test suites differ depending on
algorithms. Let |T |min denote the minimum size of such test
suites. To evaluate CO and CF for the different-sized test suites
generated by different algorithms, we consider WC and DKL

with the first |T |min test cases. For example, the four test
suites in Table II have different sizes and |T |min is 12. Thus,
we compare WC and DKL of their first 12 test cases.

IV. PROPOSED WEIGHTED PAIRWISE TESTING

Our goal is to obtain a small test suite where important
test cases appear early and frequently. In earlier work [2],
we have proposed our basic idea of priority integration for
weighted combinatorial testing, which integrates the three

1Note that the PICT tool by Microsoft generates different 13 test cases for
the same SUT. In this paper, we use our own implementation of the PICT
algorithm [4] to compare it with our priority integration on it.

Algorithm 1: PICT-based Priority Integration (PIPICT).
Input: Weighted SUT model S, Priority order
Output: Pairwise test suite T

1 UC = { All pairs of parameter-values in S };
2 while UC 6= ∅ do
3 Choose the parameter pair with the most pairs in UC , and

assign its first pair to a new test case t;
4 Remove the assigned pair from UC ;
5 while unassigned parameter exists in t do
6 Ci ← the first priority criterion;
7 finished ← false;
8 while finished is false do
9 List the best pairs in UC w. r. t. Ci Ci ;

10 if there is one candidate pair or no priority
criterion lower than Ci then

11 Assign one p of the best pairs to t;
12 Remove the pairs covered by the assignment

of p from UC ;
13 finished ← true;

14 else
15 Ci ← the next priority criterion;

16 Add t to T ;

Algorithm 2: Density-based Priority Integration (PIDens).
Input: Weighted SUT model S, Priority order CO.CF

1 while unassigned parameter exists in t do
2 Choose a parameter p with the maximum parameter

interaction weight, and list the best values of p that
maximize weighted density CO ;

3 if there is one candidate value then Assign it to p;
4 else Assign any of the candidate values that minimizes

DKL CF ;
5 Remove the pairs covered by the assignment from UC ;

criteria of CS, CO, and CF. We assume that a priority order
for combining the three criteria CS, CO, and CF is given, and
we construct an algorithm for test generation according to the
given prioritization order.

There are a lot of previous works on generating pairwise
test suites focusing on CS and several works focusing on either
CO or CF introduced in Section III. Our priority integration
can exploit existing algorithms, and achieve better CO and
CF at the same time. Here we present our weighted test
generation algorithms applying priority integration to two
existing algorithms, PICT [4] and the density algorithm [1].

Algorithm 1, called PIPICT, shows the pseudo code of our
priority integration on PICT algorithm [4]. In the original
PICT algorithm, a parameter pair is assigned to cover the
most uncovered parameter-value pairs one by one until all
parameters of a new test case are assigned. To generate a
test case according to the given priority order, we consider
the criteria one by one in order, and select the best parameter-
value assignment w. r. t. each criterion (line 9) as follows: For
CS, as PICT does, we choose the parameter-value pair that
maximizes the number of newly covered pairs, denoted by

3

TABLE III: Experimental results by Algorithms PIPICT and PIDens with various priority orders (for all 60 models).

Test Suite Size (|T |) Generation Time (s) Weight Coverage (WC∗)(%) KL Divergence (D∗
KL)

Algorithm Priority Order g-µ g-σ # of wins g-µ g-σ # of wins g-µ g-σ # of wins g-µ g-σ # of wins

PIPICT

CS: PICT 31.295 6.478 18 0.016 0.409 19 81.396 0.350 0 5.748 2.338 0
CO 32.411 6.369 7 0.017 0.426 19 83.194 0.342 21 5.397 2.477 0
CF 44.075 6.724 0 0.132 1.456 8 73.151 0.378 0 2.428 1.180 8
CS.CO 31.288 6.376 20 0.017 0.434 19 82.413 0.341 3 5.070 2.357 0
CO.CS 31.342 6.399 13 0.017 0.434 19 82.556 0.346 4 5.828 2.495 0
CS.CF 31.564 6.388 16 0.069 0.972 9 81.595 0.351 0 2.605 1.284 3
CO.CF 32.530 6.390 8 0.070 0.959 9 83.247 0.342 22 2.194 1.256 23
CS.CO.CF 31.496 6.377 12 0.069 0.973 9 82.385 0.342 1 2.209 1.227 24
CO.CS.CF 31.643 6.397 13 0.068 0.956 9 82.586 0.346 3 2.464 1.258 3

PIDens
CO: Density 30.831 6.418 30 0.010 0.286 60 82.922 0.350 9 3.420 1.679 0
CO.CF 30.943 6.397 28 0.010 0.288 30 82.895 0.351 8 2.434 1.318 5

N . For CO, we choose the one that maximizes the weight of
newly covered pairs, denoted by W , to obtain the maximal
WC . For CF, we choose the one to minimize DKL.

For example, consider the SUT model in Table I again and
priority order CS>CO>CF, hereafter denoted by CS.CO.CF.
PIPICT generates the pairwise test suite in Table II-(d). For
the first test case, pair (IE, Win) is used (line 3), since the
parameter pair (Browser, Net) has the most parameter-value
pairs. Next, the following assignment is determined by the
given priority order. For CS, assignments of any parameter-
value pair for (OS, CPU) increase the same number of newly
covered pairs, N = 5 (line 9). Among them, for CO, the
assignment of (Mac, AMD) maximizes the weight increase of
newly covered pairs, W = 21 (line 10). Hence, (Mac, AMD)
is assigned next (line 11) for the first test case.

Algorithm 2, called PIDens, shows another example of prior-
ity integration with priority order CO.CF on the density algo-
rithm [1]. Lines 1–5 correspond to lines 3–15 of Algorithm 1.
Density algorithm generates a test case by assigning a value
to one parameter after another. It chooses a parameter-value to
maximize weighted density2 taking account of CO (line 2). We
can integrate CF by choosing a parameter-value minimizing
DKL when there are several candidate values for CO (line 4).

For the example SUT model and priority order CO.CF,
PIDens generates the pairwise test suite in Table II-(b). The first
nine test cases generated by the density algorithm (considering
only CO) and by PIDens considering CO.CF are the same.
However, for test cases 10–12, their WC are the same, but
DKL are different; We can see that PIDens considering CO.CF
improves Density w. r. t. CF.

Hereafter, we denote by PIPICT
O (resp. PIDens

O) the variant
of PIPICT (resp. PIDens) that considers priority order O.

V. EXPERIMENTS AND ANALYSIS

We set up experiments to investigate the effectiveness of
our priority integration on existing algorithms, by comparing
the PICT and density algorithms with our PIPICT and PIDens.
We implemented PIPICT and PIDens in C, and simulated the
PICT and density algorithms by PICS

PICT and PICO
Dens, since their

original implementation is not open.

2Due to space limitations, we elide detail of the density algorithm. Please
refer to related work [1] for details on weighted density.

We prepared 60 weighted SUT models; 35 of them are
collected from an existing benchmark set [3], 18 are from an
industrial case study [5], and the other seven are from related
work [1]. From these benchmarks, we removed the constraints
and assigned weights using random numbers following a
normal distribution with µ = 5.0 and σ = 1.0. The size of
an SUT model is expressed as gk11 g

k2
2 . . . gknn , which indicates

that for each i there are ki parameters that have gi values.
We evaluate the algorithms with test generation time and

the three metrics explained in Section III-C; test suite size
|T |, weight coverage WC , and KL divergence DKL. Since
the test suite size differs depending on the SUT model, we
use the normalized values of WC and DKL, denoted by WC ∗

and D∗
KL, respectively; i. e., WC ∗ and D∗

KL denote WC and
DKL per test case. We also measure the geometric mean and
geometric standard deviation (g-µ and g-σ) and the number
of times that the algorithm has obtained the best results (#
of wins).3 We highlight the best results in Tables III and IV.
Experiments were performed using a computer with Quad-
Core Intel Xeon E5 3.7G Hz, with 64 GB memory running
on Mac OS 10.9.4.

A. Effect of Priority Integration

In this section, we compare different priority orders using
nine variants; three single-priority approaches (CS, CO, and
CF), and six variants of priority integration (CS.CO, CO.CS,
CS.CF, CO.CF, CS.CO.CF, and CO.CS.CF). Table III summa-
rizes the results by PIPICT and PIDens for all 60 models.

The results show that algorithms using a single priority
(CS, CO, and CF) obtain good results for their metric (|T |,
WC ∗, and D∗

KL, respectively). However, they get poor results
for the other metrics. In particular, CF incurs quite large test
suites, long computation time, and also low weight coverage.
The reason is that CF disregards interaction coverage. For
similar reasons, CS achieves low weight coverage (with high
divergence), and CO also results in relatively high divergence.
From the same reason, priority integration without CO (resp.
CF) gives rise to high KL divergence (resp. low weight
coverage).

On the other hand, priority integration of both CO and CF,
such as CO.CF, CS.CO.CF, and CO.CS.CF, obtains a good bal-

3The geometric mean avoids favoring larger benchmarks over smaller ones,
which would be the case with the arithmetic mean.

4

TABLE IV: Comparison of existing algorithms PICT and Density, and our priority integration of CO.CF.

Test Suite Size (|T |) Generation Time (s) Weight Coverage (WC∗)(%) KL Divergence (D∗
KL)

PIPICT PIDens PIPICT PIDens PIPICT PIDens PIPICT PIDens
SUT model CS CO.CF CO CO.CF CS CO.CF CO CO.CF CS CO.CF CO CO.CF CS CO.CF CO CO.CF

1 21345 (spins) 21 24 21 21 0.001 0.004 0.001 0.001 77.941 78.592 78.951 78.915 2.253 1.294 1.495 1.348
2 24232411 (spinv) 32 32 32 31 0.014 0.091 0.008 0.008 85.410 86.467 86.412 86.440 6.327 2.359 3.624 2.610
3 2189310 (gcc) 21 22 19 19 0.355 2.489 0.166 0.166 86.186 88.009 88.032 88.034 12.431 9.903 11.951 10.790
4 215838445161 (apache) 33 37 32 33 0.273 1.767 0.129 0.130 89.752 91.039 90.982 90.976 14.088 5.592 9.004 6.258
5 2493142 (bugzilla) 18 20 18 19 0.008 0.044 0.005 0.005 82.861 85.332 85.318 85.316 4.282 2.825 3.473 3.166
6 28633415562 43 47 45 44 0.067 0.383 0.031 0.032 89.368 90.601 90.610 90.574 13.170 2.683 5.848 3.181
7 28633435161 31 36 31 32 0.049 0.290 0.023 0.024 88.205 90.084 89.960 89.950 8.845 3.249 5.135 3.773
8 22742 17 18 17 17 0.002 0.008 0.002 0.002 80.930 84.235 84.283 84.296 3.825 1.987 2.387 2.157
9 251344251 25 26 24 24 0.012 0.067 0.007 0.007 85.758 87.172 87.216 87.215 5.402 2.709 3.642 2.998

10 215537435564 52 55 52 53 0.376 2.186 0.164 0.169 91.639 92.583 92.463 92.456 23.419 3.960 10.499 4.730
11 2734361 26 29 27 27 0.025 0.152 0.013 0.014 87.352 89.254 88.737 88.736 6.856 3.134 4.445 3.718
12 22931 12 11 12 12 0.002 0.008 0.002 0.002 78.191 80.912 80.787 80.790 2.842 2.319 2.556 2.454
13 210932425363 45 46 45 43 0.116 0.635 0.051 0.052 90.278 91.317 91.292 91.306 13.932 3.231 6.644 3.764
14 25731415161 31 31 30 30 0.014 0.080 0.008 0.008 87.524 89.941 89.743 89.740 6.467 2.226 3.723 2.650
15 213036455264 48 51 49 48 0.219 1.313 0.100 0.102 90.927 91.940 91.772 91.771 18.526 3.710 8.650 4.290
16 28434425264 48 49 47 47 0.066 0.376 0.031 0.032 89.843 90.892 90.917 90.898 13.167 2.699 5.957 3.003
17 213634434163 44 46 41 41 0.192 1.158 0.086 0.087 90.863 92.145 92.151 92.151 15.151 3.785 8.425 4.605
18 212434415262 39 44 37 37 0.137 0.808 0.061 0.062 90.186 91.546 91.696 91.695 13.575 3.795 7.631 4.376
19 281354363 44 43 41 39 0.054 0.308 0.025 0.026 89.061 90.710 90.476 90.472 12.067 2.615 5.652 3.312
20 25034415261 34 34 32 32 0.014 0.076 0.008 0.008 86.734 88.463 88.098 88.099 7.016 2.161 3.640 2.607
21 281334261 26 30 26 26 0.036 0.217 0.018 0.018 87.408 89.227 89.105 89.105 8.094 3.645 5.118 4.161
22 212833425163 43 44 40 40 0.154 0.902 0.068 0.069 90.550 91.705 91.935 91.937 16.644 3.814 8.489 4.401
23 212732334662 46 50 47 47 0.198 1.132 0.087 0.089 90.664 91.755 91.698 91.693 17.044 3.658 7.938 4.218
24 217239495364 52 56 50 50 0.552 3.217 0.237 0.241 91.576 92.418 92.408 92.386 26.401 4.619 12.529 5.447
25 213834455467 58 61 58 60 0.331 1.855 0.141 0.145 91.411 92.008 92.004 92.004 24.935 3.540 10.858 4.169
26 27633425163 43 43 40 40 0.045 0.233 0.020 0.021 88.956 90.563 90.497 90.449 11.630 2.677 5.553 3.089
27 272344162 37 37 36 36 0.030 0.169 0.015 0.015 88.804 90.824 91.084 91.106 9.815 2.603 5.026 2.853
28 2253161 18 19 18 18 0.002 0.007 0.002 0.002 80.606 82.899 84.069 84.039 3.580 1.609 1.966 1.659
29 2110325364 49 52 49 50 0.112 0.653 0.051 0.052 90.951 92.098 91.910 91.926 14.911 2.782 7.195 3.432
30 211836425266 54 55 55 54 0.179 1.046 0.082 0.084 91.446 92.230 92.187 92.183 21.244 3.034 9.302 3.486
31 287314354 33 35 33 35 0.052 0.320 0.026 0.026 88.696 89.772 89.913 89.913 10.735 3.073 5.810 3.640
32 25532425162 37 38 38 37 0.017 0.094 0.009 0.010 87.464 89.584 89.508 89.502 7.723 2.037 3.676 2.340
33 2167316425366 56 58 53 54 0.522 3.054 0.234 0.238 91.909 92.625 92.606 92.596 27.883 4.519 11.961 5.444
34 21343753 32 31 29 28 0.153 0.990 0.073 0.074 88.913 90.489 90.350 90.347 10.532 5.082 7.441 5.701
35 2733343 21 24 20 20 0.026 0.167 0.013 0.013 85.036 87.003 87.012 87.008 6.010 3.758 4.836 4.296

: : : : : : : : : : : : : : : : : :
g-µ 31.295 32.530 30.831 30.943 0.016 0.070 0.010 0.010 81.396 83.247 82.922 82.895 5.748 2.194 3.420 2.434
g-σ 6.478 6.390 6.418 6.397 0.409 0.959 0.286 0.288 0.350 0.342 0.350 0.3501 2.338 1.256 1.679 1.318
of wins 18 8 30 28 19 9 60 30 0 22 9 8 0 23 0 5

ance of weight coverage and KL divergence. Among the three
priority orders, CO.CF achieves the highest improvement rates
over CS for WC ∗ and D∗

KL; 2.3% = (83.247−81.396)/81.396
for WC ∗ and 61.8% = (5.748−2.194)/5.748 for D∗

KL. Recall
that WC ∗ is the normalized weight coverage per test case, and
hence the total improvement can be large for big test suites.

We can also see that applying CO.CF integration improves
PICT, achieving better weight coverage than Density does. On
the other hand, w. r. t. test suite size, CS.CO.CF and CO.CS.CF
are better than CO.CF, and the difference in test suite size
(resp. generation time) with PICT is less than one (resp. 0.1
seconds) on average.

To summarize, compared to existing algorithms considering
a single priority, our priority integration considering both
CO and CF improves weight coverage and KL divergence
simultaneously on the same-sized test suites, with a small
overhead for test generation time.

B. Detailed Results for Priority Order CO.CF

In this section, we further investigate the results of our pri-
ority integration with CO.CF, which seems to be a promising
priority order from the result of Table III. Table IV compares
|T |, test generation time, WC ∗, and D∗

KL of PICT, Density,

and priority integration with CO.CF on them. Recall that
PICS

PICT and PICO
Dens respectively correspond PICT and Density

algorithms. Due to space limitation, we show the results for
35 benchmark models [3] among all 60 models we used.4

From the results, PICO.CF
PICT improves PICT on both weight

coverage and KL divergence for all models. The (geometric)
mean improvement rate for all 60 models is 2.3% and 61.8%
for WC ∗ and D∗

KL, respectively. On the other hand, PICO.CF
Dens

improves Density on KL divergence for all models. The
improvement rate of D∗

KL is 28.8% on average. Since Density
already considers CO, WC ∗ is almost the same after priority
integration. We confirmed that the difference of PICO.CF

PICT and
PICT for WC ∗ and D∗

KL is significant, while that of PICO.CF
Dens

and Density is significant for D∗
KL with p < 0.01, using the

Wilcoxon signed-rank test [10].

C. Detailed Results for Selected Benchmarks

In this section, we look into the change of weight coverage
and KL divergence on test cases by four algorithms, PICT,
Density, PICO.CF

PICT , and PICO.CF
Dens , for four large empirical models:

4See http://staff.aist.go.jp/e.choi/compsac2015/results.html for the entire
results and larger sized graphs.

5

Fig. 1: Weight coverage and KL divergence by PICT, Density, PICO.CF
PICT , and PICO.CF

Dens for 4 large empirical models.

spinv, gcc, apache, and bugzilla (models 2–5 in Table IV). The
results are shown in Fig. 1.4

The results show that PICO.CF
PICT obtains high weight cover-

age earlier than PICT. The final difference in coverage may
not appear significant. However, we can notice that CO.CF
integration by PIPICT improves weight coverage of PICT to
about the same level as Density with CO. For instance, PICT
requires 10 test cases to achieve 95% weight coverage for the
gcc model, but PICO.CF

PICT requires 8 test cases, the same number
that Density requires.

KL divergence shows astounding improvements by PICO.CF
PICT

and PICO.CF
Dens . We can see that the divergence by PICT and

Density becomes larger, i. e., more distant from the ideal state
of parameter-value frequency, when the number of test cases
grows. PICO.CF

PICT and PICO.CF
Dens bring the divergence close to the

ideal value, 0. For example, KL divergence of the test suites
with the minimum number (= 31) generated by PICT, PICO.CF

PICT ,
Density, and PICO.CF

Dens for the spinv model are 9.536, 0.162,
4.831, and 0.278, respectively. Hence, the improvement on
KL divergence by PICO.CF

PICT (resp. PICO.CF
Dens) reaches 98.3% (resp.

94.2%).

VI. CONCLUSION

In this paper, we propose algorithms that integrate order-
focused and frequency-focused prioritizations for weighted
pairwise testing. Experimental results show that we realize
a practical way of constructing a small pairwise test suite
achieving better weight coverage and also significantly better
divergence by applying our priority integration to existing one-
test-at-a-time test generation algorithms.

We consider several directions for the future. Even though
we consider pairwise testing in this paper, priority integration

for t-wise testing with a higher combinatorial strength t can
also be managed by enumerating parameter-value t-tuples
instead of pairs in our algorithms. In addition, for practical
SUTs, we need to avoid test cases violating constraints be-
tween parameter-values. We are also interested in investigating
an efficient way of extracting weights for SUT models, which
are important inputs to determine the test effectiveness of
weighted combinatorial testing.

Acknowledgments: The authors would like to thank anony-
mous referees for their helpful comments. This work is partly
supported by JST A-Step grant AS2524001H.

REFERENCES

[1] R. Bryce and C. Colbourn. Prioritized interaction testing for pair-
wise coverage with seeding and constraints. Information & Software
Technology, 48(10):960–970, 2006.

[2] E. Choi, T. Kitamura, C. Artho, and Y. Oiwa. Design of prioritized
N-wise testing. In Proc. of the 26th IFIP International Conference on
Testing Software and Systems (ICTSS), pages 186–191, 2014.

[3] M. B. Cohen, M. B. Dwyer, and J. Shi. Constructing interaction test
suites for highly-configurable systems in the presence of constraints: A
greedy approach. IEEE Trans. Software Eng., 34(5):633–650, 2008.

[4] J. Czerwonka. Pairwise testing in the real world: Practical extensions to
test case generators. Microsoft Corporation, Software Testing Technical
Articles, 2008.

[5] N. Do, T. Kitamura, N. Tang, G. Hatayama, S. Sakuragi, and H. Ohsaki.
Constructing test cases for N-wise testing from tree-based test models.
In Proc. of the fourth International Symposium on Information and
Communication Technology (SoICT), 2013.

[6] S. Fujimoto, H. Kojima, and T. Tsuchiya. A value weighting method for
pair-wise testing. In Proc. of the 20th Asia-Pacific Software Engineering
Conference (APSEC), pages 99–105, 2013.

[7] P. Kruse and M. Luniak. Automated test case generation using
classification trees. Software Quality Professional, pages 4–12, 2010.

[8] C. Nie and H. Leung. A survey of combinatorial testing. ACM
Computing Surveys, 43(2):11, 2011.

[9] PictMaster. http://sourceforge.jp/projects/pictmaster/.

6

[10] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics
Bulletin, 1(6):80–83, 1945.

7

