
Wave functions of correlated-electron state in the periodic Anderson model

Takashi Yanagisawa
Theory group, Electrotechnical Laboratory

1-1-4 Umezono, Tsukuba, Ibaraki 305-8568, Japan

(Received )

We investigate the periodic Anderson model by a variational Monte Carlo method. A new wave func-

tion is proposed based on the well-known Gutzwiller wave function. We calculate the physical properties

using the Monte Carlo algorithm to consider the strong correlation e�ects. The ground state energy is

improved considerably by taking into account electron-hole excitation e�ects.
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I. Introduction

Compounds containing rare earth elements belong to

the large category of heavy fermions. Heavy fermion ma-

terials exhibit many interesting features such as super-

conductivity, antiferromagnetic metal and paramagnetic

metal.1,2 Many of them are characterized by large spe-

ci�c heat and a huge Pauli susceptibility. These prop-

erties indicate a large e�ective mass of electrons. Some

compounds exhibit anomalous transport properties and

anomalous temperature dependence of the susceptibil-

ity and speci�c heat near the antiferromagnetic region

which are not understood within the normal Fermi liquid

theory.3{5

Heavy fermions are usually modeled by the periodic

Anderson model which contains the conduction electrons

and the correlated f electrons. The periodic Anderson

model is far from well understood at present. It is not

an easy task to calculate the physical quantities for the

periodic Anderson model because of the strong correla-

tions among the localized electrons. The periodic An-

derson model may include various ground states such as

the paramagnetic state, antiferromagnetic state, ferro-

magnetic state and superconducting state.

The periodic Anderson model has been studied inten-

sively using the quantum Monte Carlo method6{9 and

exact diagonalization.10{12 The periodic Anderson model

brings about a sign problem for the quantumMonte Carlo

method even in one dimension. In the diagonalization the

tractable system sizes are limited. Therefore we investi-

gate the periodic Anderson model based on a variational

Monte Carlo method (VMC).13 VMC is characterized

by a wide applicability from weak to strong correlation

region.14{18 The Gutzwiller function is a simplest and

standard wave function for strongly correlated electron

systems. Unfortunately, it is not easy to consider the

strong correlations even for the simple Gutzwiller func-

tion. We can overcome this di�culty by using the Monte

Carlo method to evaluate expectation values. Since it

seems that the Gutzwiller function fails to keep its valid-

ity in the Kondo region, it may be required to improve

the Gutzwiller function. Our purpose in this paper is to

consider o�-diagonal wave functions taking into account

the electron-hole excitation e�ects to describe the heavy

fermion state as a �rst step to improve the Gutzwiller

function. We show that the energy is lowered greatly due

to the electron-hole excitations.

The paper is organized as follows: In the second section

the Hamiltonian and wave functions are presented. The

method of calculations is also briey discussed. We show

our results in the subsequent section and the last section

is assigned to summary.

II. Hamiltonian and Wave Functions

A. Model and wave functions

The Hamiltonian is given by

H = �t
X

<ij>�

c
y

i�cj� + V
X

i�

(c
y

i�fi� + f
y

i�ci�)

+ Ef
X

i�

f
y

i�fi� + U
X

i

nfi"nfi#

= H0 + U
X

i

nfi"nfi#; (1)

where nfi� = f
y

i�fi�. ci� (c
y

i�) and fi� (f
y

i�) denote the

operators for the conduction electrons and the localized

electrons, respectively. V is the hybridization parame-

ter and U is the strength of the Coulomb repulsion. We

assume that U is very large compared to the other param-

eters in this paper. In this paper the energy is measured

in units of t. There are two kinds of electrons (c and f)

hybridized through the mixing term. If the level of f elec-

trons Ef lies near the Fermi level, we call this case the

valence-uctuation region. The case where the position

of Ef is far below the Fermi level is called the Kondo

region. In the Kondo region the number of f electrons is

close to 1 and the correlation e�ects are large.
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A simplest wave function for this model is the

Gutzwiller function given as13;19{23

 G =
Y

i

(1� (1 � g)nfi"nfi#) 0; (2)

where  0 is the wave function for non-interacting mixed

band:

 0 =
Y

k�

(1 + �kf
y

k�ck�) F : (3)

 F denotes the Fermi sea occupied by the conduction

electrons up to the Fermi level. The mixing e�ect is rep-

resented by �k which is written as

�0k =
2V

Ef � �k + [(�k � Ef )2 + 4V 2]1=2
(4)

for the non-interacting band. �k represents the dispersion

of the conduction-electron band. For the Gutzwiller func-

tion f�kg should be regarded as variational parameters.

However, it is a hard task to determine �k for each k so

that the energy has a minimum. We adopt the following

ansatz for �k:

�k =
2v

�f � �k + [(�k � �f)2 + 4v2]1=2
; (5)

where �f and v are variational parameters. It has been

shown that �k of this type is well �tted by a variational

theory using a linked cluster expansion.23,24

Although the Gutzwiller function appears to be very

simple, it is not easy to evaluate expectation values for

this function. Wemust employ a linked cluster expansion,

the Monte Carlo method or other reliable methods. We

use the Monte Carlo method in this paper since we can

access to large U using this method.

In the valence-uctuation region, the Gutzwiller func-

tion is expected to be a good function since the correla-

tions are rather weak. Instead in the Kondo region, the

Gutzwiller function turns out to be a poor function and

we must go beyond the Gutzwiller function. In this paper

we propose the following wave function:

 = exp(��H0) G: (6)

Since the energy gain due to the hybridization processes

is important in the Kondo region, we consider a simpli�ed

function of eq.(6),

 (1) = exp(��
X

i�

(c
y

i�fi� + f
y

i�ci�)) G

� exp(��Hmix) G; (7)

where � is a variational parameter. We have four vari-

ational parameters g, v, �f and �. The wave function

 (1) is called the o�-diagonal wave function in this pa-

per. This type of wave functions have been considered for

the Hubbard model25,26 and one can improve the func-

tion by a multiplicative operation of the Gutzwiller factor

PG and the o�-diagonal kinetic factor e��H0 .26,27

We discuss about the physical meaning of the factor

exp(��Hmix) briey. The operator exp(��Hmix) in-

duces electron-hole excitation processes which are con-

sidered to improve the Gutzwiller function greatly. In

the single impurity Kondo problem the corrections given

by the electron-hole excitations are essentially important

to discuss the magnetic property based on the Yosida's

theory.28 In order to see how the electron-hole pairs are

excited by exp(��Hmix), we examine  
(1) perturbatively

in the manner as

 (1) = (1� �Hmix + � � �)(1 + S + � � �) 0; (8)

where  G is written as  G = eS 0.
23 The term HmixS 0

produces the excitations above the Fermi level.

B. Monte Carlo method

One can employ the Monte Carlo algorithm by Ceper-

ley et al. to compute the expectation values of energy for

the Gutzwiller function. For the o�-diagonal functions,

the Monte Carlo method using the auxiliary �elds devel-

oped in the projector Monte Carlo computations is more

e�cient to evaluate the physical quantities.29,30

The Gutzwiller operator is written as a bilinear form

PG =
Y

i

(1� (1 � g)nfi"nfi#)

= exp(��
X

i

nfi"nfi#)

= (
1

2
)N
X

fsi=�1g

exp[2a
X

i

si(nfi" � nfi#)

�

�

2

X

i

(nfi" + nfi#)]; (9)

where si is the auxiliary �eld which takes the value of

�1 and N is the number of sites. The numbers a and �

are related to g as cosh(2a) = exp(�=2) = (1=g)1=2. The

norm h Gj Gi is calculated as

h Gj Gi = (
1

2
)2N

X

fuigfsig

Y

�

� h �0 jexp(h
�(u))exp(h�(s))j �0 i; (10)

where  �0 is the wave function for the non-interacting

mixed band with the spin � and the potential h�(u) is

given by

h�(u) = 2a�
X

i

uinfi� �
�

2

X

i

nfi�: (11)

Then the weight is written as the sum of determinants,31

h Gj Gi = const � (
1

2
)2N

X

fuigfsig

Y

�

� det(�y�exp(V
�(u))exp(V �(s))��):(12)

2



V �(s) is a diagonal 2N � 2N matrix corresponding to

h�(s), which is given as

V �(s) = diag(1; � � � ; 1; 2a�s1 � �=2; � � � ; 2a�sN �

�=2): (13)

The �rst N components show the conduction electron

part with no mutual interactions and the second N com-

ponents show the potential represented by the random

�elds fsig. �� is a 2N � N� matrix where N� is the

number of spin-� electrons. The elements of �� are given

by

(��)ij = exp(iri � kj)ukj (i = 1; � � � ; N ; j =

1; � � � ; N�); (14)

(��)i+N;j = exp(iri � kj)vkj (i = 1; � � � ; N ; j =

1; � � � ; N�); (15)

where ukj and vkj are weights of the conduction electrons

and the f electrons, respectively:

ukj = 1=(1+�2kj )
1=2; vkj = �kj=(1+�2kj)

1=2: (16)

In the real representation the elements of �� are cos(ri �

kj)ukj and sin(ri � kj)ukj for i = 1; � � � ; N ; and cos(ri �

kj)vkj and sin(ri � kj)vkj for i = N + 1; � � � ; 2N . The

use of the Monte Carlo procedure enables us to evaluate

the expectation values for  G. In order to include the

correction to  G given by exp(��Hmix), we consider the

determinants

h (1)j (1)
i = (

1

2
)2N

X

fuigfsig

Y

�

� det(�y�exp(V
�(u))exp(��K�

mix)exp(��K
�
mix)exp(V

�(s))��): (17)

K�
mix is a 2N � 2N matrix given as

(K�
mix)i;i+N = 1 (1 � i � N ); (18)

and other elements of K�
mix vanish. There are four vari-

ational parameters g, �, v and �f to be determined so

that the energy expectation value has a minimum in the

parameter space.

In order to calculate the expectation value the Monte

Carlo samples are generated by the importance sampling

with the weight function jwj = jw"w#j where

w� = det(�y�exp(V
�(u)exp(��K�

mix)exp(��K
�
mix)exp(V

�(s))��): (19)

Following the standard algorithm for QMC,29 the ratio

of jwj = jw"w#j is calculated to determine whether we

accept or reject a new con�guration when we update the

Ising variable from old si to the new s0i.
27

III. Physical Properties of O�-Diagonal Wave

Functions

A. Comparison with exact results

First let us check the validity of our method in small

clusters. In Table I we show the ground-state energy

obtained by our method and by the exact diagonalization

for N = 8. �E is de�ned by �E = E �E(V = 0) where

E is the ground-state energy and E(V = 0) is the energy

for V = 0. The Table I indicates that the energy obtained

by  (1) is close to the exact value. We obtain  (2) if

we improve  (1) further by multiplying the exponential

factors again:

 (2) = exp(��0Hmix)exp(��
0D)

� exp(��Hmix)exp(��D) 0; (20)

where D =
P

i
nfi"nfi# and �0, �0, � and � are varia-

tional parameters. Apparently  (2) is a nice function to

consider the ground-state energy. In this paper we con-

sider  (1) in order to reduce the number of variational

parameters.

In Table II we show the nearest neighbor spin corre-

lations as well as the energy to compare with the exact

diagonalization forN = 6. The spin correlation functions

are de�ned by

Sff(`) = h(nfi" � nfi#)(nfi+`" � nfi+`#)i; (21)

Sfc(`) = h(nfi" � nfi#)(nci+`" � nci+`#)i; (22)

where nci� = c
y

i�ci�. In Figs.1 and 2 we compare the spin

correlation functions with the exact results obtained by

the diagonalization for N = 6, where the spin structure

factor is de�ned by

Sff(q) =
1

N

X

ij

exp[iq(Ri�Rj)]h(nfi"�nfi#)(nfj"�

nfj#)i: (23)

The parameters are Ne = 10, V = 0:5, Ef = �2 and

U = 10 for Fig.1 and Ne = 12, V = 0:5, Ef = �2 and

U = 10 for Fig.2. Obviously  (1) well reproduces the

behaviors of spin correlation functions.
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TABLE I. Ground state energy for the periodic Anderson model with N = 8 and Ne = 12. The parameters are given by
V = 0:5, Ef = �3:0 and U = 10:0 for t = 1. The boundary condition is antiperiodic. The expected statistical error is the last

digit is in parentheses.

Energy �E g v �f � g0 �0

exact �31:93 �0:539

 G �31:69(1) �0:30 0.02 0.1 �1:8 � � �

 (1)
�31:88(1) �0:49 � 9� 10�5 0.082 �1:78 0.14 � �

 (2)
�31:91(1) �0:52 � 9� 10�5 0.056 �1:78 0.09 0.01 0.1

TABLE II. Ground state energy and nearest neighbor correlation functions for the periodic Anderson model. The parameters

are given by N = 6, V = 0:5, Ef = �2 and U = 10:0. The boundary condition is periodic.

Ne Energy �E Sff(` = 1) Sfc(` = 0) g v �f �

exact 10 �18:796 �0:796 0:0405 �0:1706 � � � �

 G 10 �18:50 �0:50 0:019 �0:22 0.272 0.2 �1:3 �

 (1) 10 �18:63 �0:63 0:024 �0:20 � 2� 10�4 0.12 �1:3 0.06

exact 12 �20:325 �0:325 �0:804 �0:040 � � � �

 G 12 �20:13 �0:13 �0:58 �0:090 0.023 0.17 �0:78 �

 (1) 12 �20:30 �0:30 �0:61 �0:034 � 10�4 0.07 �0:84 0.064

B. Results for the half-�lled case

In this section we consider the 1D half-�lled periodic

Anderson model. The parameters are given by V = 0:5,

Ef = �1:0 and U = 10 in units of t. First we show the

variational results for the Gutzwiller function. In order to

�nd the variational parameters for which the energy has

a minimum, we calculate the energy-expectation values

for various values of v, g and �f . In Figs.3(a)-3(c) the

energy-expectation values are shown as a function of �f
for �xed v and g for N = 40 and Ne = 80. In Fig.4 we

show the momentum distribution functions for the f and

conduction electrons de�ned as

nf (k) =
1

2

X

�

hf
y

k�
fk�i; (24)

ns(k) =
1

2

X

�

hc
y

k�ck�i; (25)

respectively. These quantities indicate that the ground

state is insulating. In Fig.5 the spin and charge correla-

tion functions are shown; the spin correlation function is

de�ned by eq.(23) and the charge correlation function is

de�ned as

Cff (q) =
1

N

X

ij

exp[iq(Ri � Rj)][h(nfi" +

nfi#)(nfj" + nfj#)i � hnfi" + nfi#ihnfj" + nfj#i];

(26)

for the f electrons. The spin and charge correlation func-

tions for the conduction electrons are similarly de�ned.

The �gure indicates a large antiferromagnetic correlation

for the f electrons showing a peak at q = �. We have

calculated correlation functions for N = 41 and Ne = 82

(for optimum parameters) since the periodic boundary

condition is favorable to estimate them.

Next we consider the o�-diagonal function  (1). We

show the energy expectation values in Figs.6(a)-6(d) to

obtain a minimum in the parameter space. We show the

energy as a function of g in Fig.7 where the energy ex-

pectation values are obtained after optimization for other

variational parameters. The energies are shown in Table

III for comparison with the Gutzwiller function. Obvi-

ously the energy is improved appreciably due to the o�-

diagonal correlation factor, which is suggestive of the im-

portance of the intersite correlation e�ect. It should be

noted that the optimum value of g is very small for  (1).

This is because we can get energy gain due to the expo-

nential correlation factor for small g suppressing the dou-

ble occupancy. The momentum distribution functions are

presented in Fig.8. The spin correlation function Sff(q)

shown in Fig.9 indicates that the antiferromagnetic spin

correlation is enhanced due to electron-hole excitation

corrections taken into account by the o�-diagonal fac-

tor. A comparison is made favorably with the results by

QMC for the spin correlation function and the hybridiza-

tion energy in Table III. The results are characterized by

the feature that in spite of a large energy gain due to the

multiplicative operation by exp(��Hmix) the correlation

functions are not so changed. The energy gain is mainly

due to the hybridization energy. These results and the

comparison with the exact diagonalization suggest that

 (1) is a reasonable wave function for the one-dimensional

periodic Anderson model.

C. Results for the non-half-�lled case

Let us turn to the non-half-�lled case. The parameters

are given by N = 40, Ne = 70, V = 0:5 and U = 10

for the periodic boundary condition. The position of f

electrons is set to be Ef = �1 and Ef = �3 in units of

t. The ground state is considered to be metallic for less

than half-�lling. First, the results for the Gutzwiller func-

tion are shown. Following the similar manner mentioned
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TABLE III. Ground state energy for 1D half-�lled case with N = 40 and Ne = 80. The parameters are given by V = 0:5,
Ef = �1:0 and U = 10:0. The boundary condition is chosen to be antiperiodic. rmix denotes rmix = Emix(U)=Emix(U = 0)

and Emix = Emix(U) = V
P

i�
hc
y

i�
fi� + h:c:i. Emix(U = 0) denotes the expectation value for U = 0. QMC results are for the

symmetric case in which t = 1, V = 1, U = 6 and N = 12 for Sff(` = 1)7 and t = 0:5, V = 0:375, U = 3 and N = 16 for rmix.
9

Energy �E Sff (` = 1) Sfc(` = 0) Emix rmix g v �f �

 G �92:55(0) �1:57 �0:51(1) �0:10(1) �5:50(0) 0.22 0.02 0.14 �0:3 �

 (1)
�93:36(1) �2:38 �0:54(1) �0:067(1) �6:19(0) 0.24 � 10�4 0.07 �0:2 0.07

QMC � �0:3 � 0:25

0.0

1.0

2.0

0.0 0.5 1.0

S
(q

)

q / π

U = 0

U=10

-0.4

0.0

0.4

0.8

0 1 2 3

S

Distance

z
z
(d

)

FIG. 1. f-electron spin correlation functions for N = 6,

V = 0:5, Ef = �2, U = 10:0 and Ne = 10 with the peri-
odic boundary condition. Sff (q) for (a) and Sff (`) for (b).

The open circles represent exact results, triangles represent

the data by the Gutzwiller function, and �lled circles repre-
sent the data by  (1). The diamonds show a non-interacting

behavior.

0.0

1.0

2.0

3.0

0.0 0.5 1.0

S
(q

)

q / π

-1 .0

-0.5

0.0

0.5

1.0

1.5

0 1 2 3

S

Distance

z
z

(d
)

FIG. 2. f-electron spin correlation functions for N = 6,

V = 0:5, Ef = �2, U = 10:0 and Ne = 12 (half-�lled case)

with the periodic boundary condition. The symbols are as in
Fig.1.
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−0.7 −0.5 −0.3 −0.1
ε

−2.32

−2.31

−2.30

−2.29

−2.28

E

(a)

v=0.12
v=0.13
v=0.14
v=0.15
v=0.16

−0.7 −0.5 −0.3 −0.1
ε

−2.32

−2.31

−2.30

−2.29

−2.28

E

(b)

v=0.12
v=0.13
v=0.14
v=0.15
v=0.16

−0.7 −0.5 −0.3 −0.1
ε

−2.32

−2.31

−2.30

−2.29

−2.28

E

(c)

v=0.12
v=0.13
v=0.14
v=0.15
v=0.16

FIG. 3. Energy expectation values as a function of � � �f for
the Gutzwiller function at half-�lling. g = 0:01 for (a), 0.02

for (b) and 0.03 for (c). The parameters in the Hamiltonian

are given by V = 0:5, Ef = �1 and U = 10.

0.0

0.5

1.0

0.0 0.5 1.0

n(k)

k / π

FIG. 4. The momentum distribution function for the f (cir-
cles) and conduction electrons (triangles) at half-�lling.

above the optimum variational parameters are found as

g = 0:03, �f = �0:8 and v = 0:24 for Ef = �1, as

is shown in Fig.10(a) where the energy is optimized for

�f and v. For Ef = �3 the energy in Fig.10(b) has a

broad minimum for small g. Our optimum parameters

are g = 0:0006, �f = �0:9 and v = 0:007. The en-

ergy gain compared to the case V = 0 is estimated to be

0.146/40=0.00365 per site which is very small compared

to V 2=Ef . This suggests that the Gutzwiller function

should be improved in the Kondo region. The momen-

tum distribution functions are presented in Figs.11(a)

0.0

1.0

2.0

3.0

0.0 0.5 1.0

S
(q

),
 C

(q
)

q /π

FIG. 5. The spin and charge structure functions for the f

(circles) and conduction electrons (triangles) at half-�lling.

Filled and open symbols correspond to the spin and charge
correlation functions, respectively.

and 11(b). The momentum distribution functions are

characterized by a metallic behavior as indicated by a

jump at the Fermi wave number and suggestive of the

importance of the correlation e�ect. The momentum dis-

tribution function for the conduction electrons also has

small non-zero distribution above the Fermi level ( for

jkj > kF ) for  (1). The spin correlation function shown

in Figs.12(a) and 12(b) has a peak away from q = � and

is highly enhanced for the f electrons. The structure of

spin correlation function is understood as a sum of two

contributions; one is the inter-band contribution and the

other is the intra-band contribution.13 In the Kondo re-

gion the correlation functions exhibit similar behaviors

to those for the Kondo lattice.22

Second, the o�-diagonal wave function is investigated

for Ef = �1 and �3. The energy is shown in Figs.13(a)

and 13(b) where the energy is optimized for �f and v.

The optimum parameters are shown in Table IV. A large

energy gain is obtained by our wave function even in the

Kondo region. The momentum distribution function are

shown in Figs.14(a) and 14(b). Although the 1D periodic

Anderson model may belong to the class of the Luttinger

liquid,32 we approximately analyze the correlation e�ect

following the standard Fermi liquid relations:13

�nf (kF ) = nf(kF � 0)� nf(kF + 0)

= (1 +
V 2

(�kF � �)2
�

@�(kF ; !)

@!
j!=0)

�1;

(27)

�ns(kF ) = ns(kF � 0) � ns(kF + 0)

=
V 2

(�kF � �)2
�nf (kF ); (28)

where �nf (kF ) and �ns(kF ) are jumps of nf(k) and

ns(k) at k = kF , respectively, and � is the chem-

ical potential. The many-body enhancement factor
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FIG. 6. Energy expectation values as a function of � � �f for

 (1) at half-�lling. g = 10�4 is �xed and � = 0:05 for (a),
0.06 for (b), 0.07 for (c) and 0.08 for (d).
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E
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g

FIG. 7. Energy expectation values as a function of g for  (1)

at half-�lling.

0.0
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0.0 0.5 1.0
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k / π

FIG. 8. The momentum distribution function for  (1) at

half-�lling.

�@�(kF ; !)=@!, where �(kF ; !) the f-electron self-

energy, is presented in Table V as well as �nf(kF ) and

�ns(kF ). The enhancement factor can be as large as

several hundreds in the Kondo region. We present the

spin correlation functions in Figs.15(a) and 15(b). The

features are essentially similar to those obtained for the

Gutzwiller function, which may reect the one dimen-

sionality of the model.

IV. Summary

We have proposed a new wave function for the periodic

Anderson model. The wave function is improved by con-

sidering multiplicative operations of the o�-diagonal op-

erators starting from the Gutzwiller function. Our wave

0.0

1.0

2.0

3.0

0.0 0.5 1.0

S
(q

),
 C

(q
)

q / π

FIG. 9. The spin and charge structure functions for  (1) at

half-�lling.
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TABLE IV. Ground state energy for 1D non-half-�lled case with N = 40 and Ne = 70. The parameters are given
by V = 0:5, U = 10:0 and Ef = �1:0 and �3:0. The boundary condition is chosen to be periodic. rmix denotes

rmix = Emix(U)=Emix(U = 0) and Emix = Emix(U).

Ef Energy �E Sff (` = 1) Sfc(` = 0) Emix rmix g v �f �

 G �1 �89:77(0) �2:67 �0:12(1) �0:15(1) �9:40(0) 0.395 0.03 0.24 �0:8 �

 (1)
�1 �90:58(0) �3:48 �0:13(1) �0:11(1) �9:24(0) 0.388 � 10�4 0.14 �0:8 0.07

 G �3 �167:25(0) �0:14 �0:15(2) �0:0016(1) �0:29(0) 0.021 � 6� 10�4 0.007 �0:9 �

 (1)
�3 �168:91(0) �1:81 �0:15(2) �0:004(3) �3:78(0) 0.26 � 3� 10�5 0.004 �0:9 0.09

TABLE V. Physical quantities that contain information on the correlation e�ects for 1D non-half-�lled case with N = 40 and

Ne = 70. The parameters are given by V = 0:5, U = 10:0 and Ef = �1:0 and �3:0. The boundary condition is chosen to be

periodic. �nf(kF ) and �ns(kF ) denote the jumps in nf (k) and ns(k), respectively, at k = kF . nf is the number of f electrons.
�@�(kF ; !)=@! is the many-body enhancement factor evaluated through the Fermi liquid relation. q is the enhancement factor

obtained using the Gutzwiller approximation given by q = [(1� nf )=(1 � nf=2)]
1=2.

Ef �nf �ns nf v �f �@�(kF ; !)=@! q�1

 G �1 0.29 0.031 0.859 0.24 �0:8 2.3 2.0

 (1)
�1 0.23 0.024 0.886 0.14 �0:8 3.2 2.2

 G �3 0.0044 0.00013 0.999 0.007 �0:9 226 22

 (1)
�3 0.0034 0.00023 0.997 0.004 �0:9 293 13

-2.245

-2.235

-2.225

0.00 0.02 0.04 0.06 0.08

E
/N

g

(a)

-4.182

-4.180

-4.178

-4.176

0 0.002 0.004 0.006 0.008 0.01

E
/N

g

(b )

FIG. 10. The energy as a function of g for the Gutzwiller

function for Ef = �1 (a) and Ef = �3 (b) for non-half-�lled
case. N = 40, Ne = 70, V = 0:5 and U = 10. The variational

parameters v and �f are optimized for each g.

function is simplest one among the non-trivial functions

as a �rst step toward a development of the variational

theory for the Anderson model. The multiplicative op-

eration considered in this paper is regarded to produce

the electron-hole excitation corrections to the Gutzwiller

function. The expectation values are evaluated using the

Monte Carlo algorithm with the auxiliary �elds.

0.0

0.5

1.0

0.0 0.5 1.0

n(k)

k / π

(a)

0.0

0.5

1.0

0.0 0.5 1.0

n(k)

k / π

(b)

FIG. 11. The momentum distribution function for the

Gutzwiller function for Ef = �1 (a) and Ef = �3 (b).
N = 40, Ne = 70, V = 0:5 and U = 10.

An application is made to investigated the 1D periodic

Anderson model. It has been shown that the energy is

lowered greatly due to the o�-diagonal operation. The

o�-diagonal operation produces only small e�ects to the

correlation functions, which means that the correlation

functions are basically determined by the zeroth approx-

imation given by the Gutzwiller function in 1D dimen-

sion.

In the Kondo region the Gutzwiller function gives a

poor estimate for the energy expectation value as indi-

cated by the property that the energy lowering is very

small. This suggests an instability of the ground state

against the ordered states with the ferromagnetic or an-

tiferromagnetic long range ordering in the Kondo region

if the calculations are based on the Gutzwiller function.
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FIG. 12. The spin and charge structure functions for the

Gutzwiller function for Ef = �1 (a) and Ef = �3 (b). Cir-
cles and triangles denote the f-electron and conduction elec-

tron correlation functions, respectively. Filled and open sym-

bols correspond to spin and charge correlation functions, re-

spectively. The parameters in the Hamiltonian are N = 40,

Ne = 70, V = 0:5 and U = 10.

The phase diagram of the ground state should be inves-

tigated taking account of the o�-diagonal correlation fac-

tors since the energy lowering is appreciably large. Fol-

lowing the work in this paper an application to examine

an instability against various ordering states deserves an

intensive investigation. Higher order o�-diagonal func-

tions may be necessary to consider the ground state more

exactly. The 2D or 3D models must be investigated as

more realistic models in the future. Applications to other

models such as the orbitally-degenerate periodic Ander-

son model, the two-impurity Anderson model33{37 and

the d-p model (three-band Cu-O model)38 are also pos-

sible.

The author expresses his sincere thanks to K. Yamaji

and S. Koike for discussions. Computations were sup-

ported by the Research Information Processing Systems
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FIG. 13. The energy as a function of g for  (1) for Ef = �1

(a) and Ef = �3 (b) where N = 40, Ne = 70, V = 0:5 and

U = 10. v and �f are optimized to obtain a minimum of
energy. For (a) � = 0:06 (triangles), 0.07 (circles) and 0.08

(squares). For (b) � = 0:08 (triangles), 0.09 (circles) and 0.10
(squares).
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FIG. 14. The momentum distribution function for  (1) for

Ef = �1 (a) and Ef = �3 (b) where N = 40, Ne = 70,

V = 0:5 and U = 10.

(RIPS) at Agency of Industrial Science and Technology

(AIST) in Tsukuba.
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FIG. 15. The spin and charge structure functions for  (1) for

Ef = �1 (a) and Ef = �3 (b) where N = 40, Ne = 70,
V = 0:5 and U = 10. Circles and triangles denote the

f-electron and conduction electron correlation functions, re-

spectively. Filled and open symbols correspond to spin and
charge correlation functions, respectively.
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