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This article is devoted to discuss two exact arguments in strongly-correlated electron
systems: one is the method of reflection positivity in spin space and the other is the
Perron-Frobenius theorem in matrix theory. For several specific systems, we can show
that the ground state is unique and we can predict the total spin of the ground state.
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1. Introduction

Strongly correlated electron systems have been studied considerably in recent
years. Heavy fermions1,2,3 and oxide superconductors4 provide attractive problems
for researchers of solid state physics. The fundamental models to describe strongly-
correlated electrons are given by the Hubbard model, the Anderson lattice and the
Kondo lattice Hamiltonian.
The Hubbard model has a long history in describing the magnetism of ma-

terials since early works by Hubbard, Gutzwiller and Kanamori.5,6,7 The Hub-
bard model has attracted much attention recently, stimulated by studies of high-Tc
superconductors.8,9,10 Thus the importance of the Hubbard model of itinerant elec-
trons is increasingly being appreciated. One-dimensional Hubbard model is now
understood in a very elegant way by means of the Bethe ansatz 11,12,13 and confor-
mal field theory.14,15,16 The solutions revealed that the weak-coupling bosonization
theory17,18 can well describe the ground state of the 1D Hubbard model, which
established a novel concept of the Luttinger liquid.19 In spite of the success for the
one-dimensional correlated models such as the Hubbard model and the t-J model,
correlated electrons in two- or three-dimensional space are still far from a complete
understanding. In the study of the Hubbard model, main topics are likely the fol-
lowing:

(H1) Metal-insulator transition: Metal or Insulator?
(H2) Magnetism: Ferromagnetism or Antiferromagnetism?
(H3) Possibility of a superconductivity.
(H4) Fermi liquid or non-Fermi liquid.
(H5) Quantum Critical Phenomena.

The topic (H1) concerns the Mott transition due to large Coulomb repulsion.20 In
this article, of central importance is given by (H2): the magnetism of the Hubbard
model. The magnetism is intrinsically given by quantum many-body effects which
mainly arises from the strong Coulomb interactions.21 Quantum effects prevent
us from easy understanding of antiferromagnetism or ferromagnetism of itinerant
electrons.22 Recently the non-Fermi liquid behaviors associated with quantum crit-
ical phenomema have attracted much attention. 23,24,25,26 Thus exact results are
important as bench marks although they are limited to special cases.
The Kondo lattice Hamiltonian or the periodic Anderson model (or Anderson

lattice Hamiltonian) are established as models to describe heavy fermions that con-
tain rare-earth or actinide ions and show very characteristic behaviors. In particular,
they have large electron densities of states which are accompanied by a linear specific
heat and an almost temperature independent spin susceptibility. They behave like
Fermi liquids with very heavy mass which can become as large as several hundred
or a thousand times the free electron mass.1,2,3 These systems can be described by
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the conduction electrons and the localized f electrons which interact through a hy-
bridization interaction or an exchange type of interaction. The following are likely
to be questions concerning the Kondo lattice or the Anderson lattice Hamiltonian:

(K1) Fermi liquid state with heavy mass.
(K2) Interplay between the Kondo effect27,28 and the RKKY interactions.29,30,31

(K3) Magnetism: Ferromagnetism or Antiferromagnetism?
(K4) Anisotropic superconductivity.32

(K5) Metal-Insulator transition: Kondo insulators.
(K6) Antiferromagnetism and superconductivity: Coexistence.
(K7) Quantum critical phenomena: Non-Fermi liquid.25,26

Similar issues are addressed for the Kondo systems compared to the Hubbard model
except (K1) and (K2). If we remember the long debate concerning the Kondo prob-
lem, obviously they are not easy task to find solutions. As for the problem (K5),
SmB6 and YbB12 provide us examples of Kondo insulators,33,34,35,36 which can be
modeled as the Anderson lattice in which we have one electron at each site, corre-
sponding to the quarter-filled case. We also comment that there are theories which
insist that Kondo insulators may be described by the half-filled Anderson lattice
model.37,38 The Kondo matrials such as CeNiSn39,40,41 are also known as Kondo
insulators or low-carrier Kondo systems. It should be considered that several types
of Kondo insulators show completely different behaviors. As for the compound
Yb4As3, a mechanism of the metal-insulator transition due to a concept of ’self-
doping’ was recently proposed.42,43 Recently, impurities embedded in correlated
electrons are becoming a hot subject.44,45,46,47

In this paper, let us investigate two methods which sometimes provide us exact
information: they are the reflection positivity in the spin space and the Perron-
Frobenius theorem. First, we discuss the method of the reflection positivity in the
spin space. This method was first applied to the negative-U Hubbard model with
an even number of electrons and the positive-U Hubbard model at half filling.48

We start from writing a wave function in a matrix form.49 If the matrix can be
shown to be positive semidefinite, a uniqueness of the ground state is proved. This
method is called the reflection positivity in the spin space (or the spin-reflection
positivity) in analogy with the reflection positivity in field theory.50 We apply this
method to the Heisenberg model, the Kondo lattice and the Kondo-Hubbard model
for the half-filled conduction band. The spin-correlation functions such as 〈S+

i S−
j 〉

are proved to have definite signs. The spin-reflection positivity is clearly related
to the antiferromagnetic correlations in the Heisenberg model and the positive-U
Hubbard model at half filling. In a proof of the spin-reflection positivity, we make a
partial electron-hole transformation where the spin operators are transformed into
the η-spin (or pseudo spin) operators. Thus we shall add a section to discuss some
properties of η-operators.

Second, let us discuss the Perron-Frobenius theorem applied to many-electron
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systems. The Chapter 3 is devoted to present the Perron-Frobenius theorem and
its proof. This Chapter can be skipped if readers are familiar with the Perron-
Frobenius theorem. In the Chapter 4, we discuss several examples of correlated
electron systems for which the Perron-Frobenius theorem is applicable. A first one
is the Heisenberg model which was considered by Lieb and Mattis more than thirty
years ago. Secondly, the double exchange interaction is discussed in the light of
the Perron-Frobenius theorem, which may be important for the ferromagnetism of
solid. The double exchange has a long history and its relevance may be realized in
the Kondo systems. In several limits of parameters included in the Kondo lattice
or the Anderson lattice Hamiltonians, we can expect the ferromagnetism due to
the double exchange interaction. Thirdly, the Nagaoka ferromagnetism is discussed
from the viewpoint of the Perron-Frobenius theorem. The last Chapter is devoted
to some remarks.
In the remaining part of Introduction, we shall introduce the Hubbard model,

the Anderson model (lattice) and the Kondo model (lattice) in order to indicate
notations in this paper. This part can be skipped if readers are acquainted with
them. Let us start with the Hubbard model written as5

H =
∑
ijσ

tijc
†
iσcjσ + U

∑
i

ni↑n↓, (1)

where c†iσ (ciσ) denote the creation (annihilation) operators of electrons and niσ =
c†iσciσ are number operators. tij and U are parameters which control the electron
states and the other important parameter is the dimensionality of space. The U -
term represents the Coulomb interaction which works when the two electrons occupy
the same site. We denote the number of lattice sites and electrons as N and Ne,
respectively. Although the Hamiltonian (1) is quite simple, its understanding is
extraordinary difficult and it may form one of the high mountains in theoretical
physics. In most cases we assume that tij are non-zero between nearest-neighbor
sites. In the non-interacting limit U = 0, the Hamiltonian is easily diagonalized by
introducing the Fourier transform of ciσ. The ground state is obtained by filling the
energy levels up to the Fermi energy. In the other limit tij = 0, each site is occupied
by the up or down-spin electron, or is empty. This state is clearly insulating. The
non-zero tij induce the movement of electrons, which leads to the metallic state if
Ne �= N . At half filling Ne = N , the ground state is considered to be insulating if
U is large enough. This insulating state is described by the Heisenberg model given
by

H = J
∑
〈ij〉

Si · Sj. (2)

In connection with the Hubbard model, J is given as J = 4t2/U .51 For the nearest-
neighbor transfers −t = tij , the effective Hamiltonian for Ne �= N is given by

H = −t
∑
〈ij〉σ

a†iσajσ − t2

U

∑
jµµ′

[a†j+µ↑a
†
j↓aj↓aj+µ′↑ + a†j↑a

†
j+µ↓aj+µ′↓aj↑
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+ a†j+µ↑a
†
j↓aj+µ′↓aj↑ + a†j↑a

†
j+µ↓aj↓aj+µ′↑], (3)

where we have written aiσ = ciσ(1 − ni,−σ) and j + µ and j + µ′ indicate the
nearest-neighbor sites. The second term involves three-site terms when µ �= µ′.
The second fundamental models are the Anderson model52 and its extension to

the periodic case. The periodic Anderson model (or Anderson lattice Hamiltonian)
is given by53

H =
∑
〈ij〉σ

tijc
†
iσcjσ + εf

∑
iσ

f†
iσfiσ

+ V
∑
iσ

(c†iσfiσ + f†
iσciσ) + Uf

∑
i

nfi↑nfi↓, (4)

where f†
iσ (fiσ) are creation (annihilation) operators of the localized electron (f

electrons) and we write nfiσ = f†
iσfiσ. The last term shows the Coulomb interaction

between the localized electrons If we introduce the wave number k for ciσ:

ckσ =
1

N1/2

∑
j

e−ik·Rjcjσ, (5)

the Hamiltonian is written as

H =
∑
kσ

εkc
†
kσckσ + εf

∑
iσ

f†
iσfiσ

+
1

N1/2

∑
jkσ

(Vke−ik·Rjc†kσfjσ + h.c.) + Uf

∑
i

nfi↑nfi↓. (6)

The hybridization parameter V is generalized to include the k-dependence. In the
non-interacting case where Uf = 0, we have the upper and lower bands with the
dispersions given by

E±
k =

εk + εf
2

± [(εk − εf
2

)2 + |Vk|2]1/2. (7)

In the Kondo limit where the level of f electrons is located far below the Fermi
level and Uf is large compared to t and V , the effective Hamiltonian is given by the
Kondo lattice model

H =
∑
ijσ

tijc
†
iσcjσ + J

∑
i

σi · Si, (8)

where σi and Si denote the spin operators of the conduction electrons and localized
electrons, respectively. σai (a = x, y and z) is written as σai =

∑
σσ′ c

†
iσσ

a
σσ′ciσ′

where σaσσ′ are Pauli matrices. According to the Schrieffer-Wolff formula,54 the
exchange interaction is expressed as

J = V 2(
1

εf + U
− 1

εf
). (9)

The Anderson lattice and the Kondo lattice are more hard to clarify their physics
than the Hubbard model because of the two-band nature and may include fruitful
physical phases. The above three models are fundamental in the solid state physics.
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2. Reflection positivity in the spin space

2.1. Basic method

The purpose of the method of reflection positivity is to derive an inequality for
the ground state energy based on the Schwarz inequality. In order to apply this
method, we have to specify the lattice Λ and basis states on it. The number of the
sites is denoted by |Λ| and we assume that the number of lattice sites |Λ| is finite.
In this paper, let us consider the Hamiltonians which conserve S2 and Sz . The spin
operators are the quadratic operators

S+ = (S−)† =
∑
i∈Λ

c†i↑ci↓, Sz =
1
2

∑
i∈Λ

(ni↑ − ni↓), (10)

and S2 = (1/2)(S+S−+S−S+)+(Sz)2, with eigenvalues S(S +1). We work in the
subspace Sz = 0 for an even number of electrons. There are two kind of electrons
with spin up and spin down. We denote a set of basis states as Xσ ≡ {ψσ

α}α∈I which
is an orthonomal basis set composed solely of spin-σ electrons. (I denotes a set of
indices.) The total bases are written as a superposition of the up and down basis
states {ψαβ ≡ ψ↑

α ⊗ ψ↓
β}. Then a wave function is written as a linear combination

of ψαβ : 49

ψ =
∑
αβ

Cαβψ
↑
α ⊗ ψ↓

β . (11)

The wave function ψ is represented by a coefficient matrix C = (Cαβ), which
indicates that ψ can be interpreted as a map C : X↓ → X↑. We denote ψ as
ψ(C). X↑ and X↓ are vector spaces with the same finite dimension. Let us denote
operators acting on the vector space Xσ as Ôσ, which are assumed to be products
of an even number of operators such as Ôσ = c†iσcjσ. It is easy to calculate an
operation Ôσ to ψ,

Ô↑ψ =
∑
αβ

CαβÔ
↑ψαβ =

∑
αβ

∑
α′β′

Cαβ |ψα′β′ 〉〈ψα′β′ |Ô↑|ψαβ〉

=
∑
αβ

∑
α′β′

Cαβψα′β′δββ′ 〈ψ↑
α′ |Ô↑|ψ↑

α〉

=
∑
αβα′

(O↑)α′αCαβψα′β

=
∑
αβ

(O↑C)αβψαβ , (12)

where (O↑)α′α = 〈ψ↑
α′ |Ô↑|ψ↑

α〉 are matrix elements of Ô↑. Ô↑ψ is realized by a
multiplication of matrices O↑C. Similarly, one can obtain

Ô↓ψ =
∑
αβ

CαβÔ
↓ψαβ
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=
∑
αββ′

Cαβ(O↓t)ββ′ψαβ′

=
∑
αβ

(CO↓t)αβψαβ , (13)

where O↓t is the transposed matrix of O↓. An application of Ô↓ to ψ reads CO↓t

in terms of coefficient matrix. It is easy to see that

Ô↑Ô↓ψ =
∑
αβ

∑
α′β′

(O↑)α′αCαβ(O↓t)ββ′ψα′β′

=
∑
αβ

(O↑CO↓t)αβψαβ . (14)

In the following, we assume that the basis states are real so that matrices Oσ are
real, which is always possible without loss of generality. Thus we write Oσ† = Oσt

in this paper. Now it is straightforward to write down the Schrödinger equations
and the energy expectation values. Let us suppose that the Hamiltonian is given as

H = K↑ +K↓ + g
∑
a

V ↑
a V ↓

a , (15)

where Kσ and V σ
a are operators for spin σ. The third term shows interactions

between electrons and g is a coupling constant. We can choose the basis states so
that Kσ and V σ

a are real symmetric. We use the same notations to show matrices
of Kσ and V σ

a . The Schrödinger equation Hψ = Eψ is written as

K↑C + CK↓† + g
∑
a

V ↑
a CV ↓†

a = EC. (16)

A hermitian conjugate of this equation reads

K↓C† + C†K↑† + g
∑
a

V ↓
a C†V ↑†

a = EC†. (17)

Hence, if we have the up-down symmetry of spin for basis states, C and C† satisfy
the same Schrödinger equation. Thus C + C† and C − C† are also solutions of the
Schrödinger equation, and therefore we can assume that C is hermitian from the
beginning. Note that two conditions (1) Kσ and V σ

a are real and (2) Kσ = K−σ,
V σ = V −σ (up-down symmetry) are needed to obtain the hermitian matrix C.
Now, by applying C † and taking Trace in eq.(16), the energy eigenvalue is easily
calculated as

E(C) = Tr(C†K↑C + CK↓C†) + g
∑
a

TrC†V ↑
a CV ↓†

a , (18)

with the normalization 〈ψ|ψ〉 = TrC †C = 1. For g < 0, we can apply the Schwarz
inequality:

TrC†VaCV †
a ≤ TrPVaPV †

a , (19)
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where Va = V ↑
a = V ↓

a and P is the positive semidefinite matrix given as P =
(C†C)1/2. This inequality is easily proved as follows. Since C is hermitian, C can
be diagonalized by a unitary matrix U :

C = U †




ε1
ε2

·
·


U, (20)

with real eigenvalues εα. An eigenvector which belongs to the eigenvalue εα is given
by |α〉 = U †(0, · · · , 0, 1(α), 0, · · · , 0)t which satisfies C|α〉 = εα|α〉. Then,

TrC†V CV † =
∑
αβ

〈α|C†V C|β〉〈β|V †|α〉

=
∑
αβ

εαεβ〈α|V |β〉〈β|V †|α〉

=
∑
αβ

εαεβ|〈α|V |β〉|2

≤
∑
αβ

|εα||εβ||〈α|V |β〉|2 = TrPV PV †, (21)

where P is defined by

P = U †




|ε1|
|ε2|

·
·


U. (22)

P has |εα| as eigenvalues and satisfies P |α〉 = |εα||α〉. For negative values of g, we
obtain an inequality

E(C) ≥ E(P ). (23)

Therefore, if we assume that ψ =
∑

αβ Cαβψαβ is the ground-state wave function,
the following equality is followed:

E(C) = E(P ). (24)

This equation imposes strong constraints on the ground state, which enables us to
show that the ground state is unique under some conditions. Apparently, C = P

is a solution of E(C) = E(P ). Hence there is a state which satisfies C = P among
the ground states.
In order to prove a uniqueness of the ground state, we should show that C = P

(or C = −P ) is a unique solution of the equation E(C) = E(P ) because we easily
reach a contradiction if we assume that there are two ground states.48 For this
purpose, we need some conditions on the lattice. One idea to show the uniqueness
was shown by Lieb.48. Let us define a positive semidefinite matrix R = P − C

and show that R = 0. Since R can be regarded as a map R : X↓ → X↑, R = 0
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means that Rv = 0 for every v ∈ X↓, i.e. K ≡ {v ∈ X↓|Rv = 0} = X↓. If all
the eigenvalues have the same sign, C = ±P holds and we have nothing to prove.
Thus, we assume that C �= −P . Then R has at least one zero eigenvalue, indicating
that there is an eigenvector v such that Rv = 0 for some v ∈ X↓. Because P also
satisfies the Schrödinger equation (P is the wave function of the ground state), we
obtain for R,

K↑R+ RK↓† + g
∑
a

V ↑
a RV ↓†

a = ER. (25)

From Rv = 0, it follows that
∑
a

〈v|V ↑
a RV ↓†

a |v〉 = 0. (26)

Because of the up-down symmetry, we have

〈v|V ↑
a RV ↓†

a |V 〉 = 〈v|V ↓
a RV ↓†

a |v〉 =
∑
α

rα|〈v|V ↓
a |α〉|2 ≥ 0, (27)

where rα = |εα|−εαgeq0. Therefore 〈v|V ↓
a RV ↓†

a |v〉 = 0 for any a. Since R is positive
semidefinite, one can write 〈va|va〉 = 0 for va = R1/2V ↓†

a |v〉 where R1/2 is uniquely
determined. Then we obtain va = 0 which implies

RV ↓†
a |v〉 = 〈v|V ↑

a R = 0. (28)

Now
RK↓†|v〉 = 0 (29)

is also followed. For the Hubbard model, K↓ is the kinetic energy term and V ↓
a

are given by a matrix of number operators ni↓. In this case, if we assume the
connectivity of the lattice, we can create every vector inX↓ by succesive application
of K↓† and V ↓†

i (i ∈ Λ) starting from a any vector v ∈ X↓. Thus we have K = {v ∈
X↓|Rv = 0} = X↓ and then R = 0, i.e. P = C. This will prove the uniqueness
for the following reason. If there are two normalized ground state C1 and C2 with
C1 �= C2, then for every real constatnt α, the hermitian matrix C1 + αC2 (�= 0)
represents a ground state. We can choose α so that C1 + αC2 is never positive (or
negative) semidefinite. This contradicts the property that the ground state C1+αC2

should be positive semidefinite.
We have shown the outline of a proof to show the uniqueness of the ground

state. We have two steps; first we show an equality (1) E(C) = E(P ) and second,
one has to show (2) C = P (or C = −P ). The negative g < 0 means an attractive
interaction for the Hubbard model. Therefore, the method is strictly restricted to
models where the interaction is attractive or can be transformed into attractive one
by some transformations which preserve the up-down symmetry.
Let us mention that we cannot predict the total spin of the ground state within

the theory of positive semidefinite matrix without exceptional cases. In many cases
we can only show that the ground state is unique and we should refer to other
methods, for example, the Perron-Frobenius theorem, to obtain the total spin S.
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2.2. The negative-U Hubbard model

As a first example, let us consider the Hubbard model with the negative Coulomb
interactions, which is given as

H = −
∑
ijσ

tijc
†
iσcjσ + U

∑
i

ni↑ni↓, (30)

where ciσ(c
†
iσ) denote annihilation (creation) operators of the conduction electrons.

The Coulomb interaction parameter U is assumed to be negative (U < 0). We also
assume that the number of electrons is even. Let us denote the lattice on which the
Hamiltonian is defined as Λ.

Definition A lattice Λ is said to be connected with respect to {tij} if there is a
connected path of bonds by {tij} between every pair of sites: for any i, j ∈ Λ,
tij �= 0 or there is a set of sites {i1, · · · , in} ⊂ Λ such that tii1ti1i2 · · · tin−1in tinj �= 0.

The theorem obtained by Lieb is written as:

Theorem 2.1 We assume that Λ is connected and we have an even number of
electrons. Then the ground state of the Hubbard model is unique for any negative
U < 0 and has S = 0.

Remarks No other conditions on tij are needed. Since the Hamiltonian is isotropic
in the spin space, we can work in the subspace Sz = 0. Let {ψαβ = ψ↑

α ⊗ ψ↓
β} be a

set of real basis states within the subspace Sz = 0. The ground state wave function
is written as ψ =

∑
αβ Cαβψαβ as is shown in the preceeding section.

Proof The expectation value of the Hamiltonian is written as

E(C) = Tr(C†K↑C + CK↓C†) + U
∑
i

TrC†N↑
i CN↓

i , (31)

where matrices are defined as

(Kσ)αβ = 〈ψσ
α| −

∑
ij

tijc
†
iσcjσ|ψσ

β〉, (32)

(Nσ
i )αβ = 〈ψσ

α|niσ|ψσ
β〉. (33)

Kσ and Nσ
i are real symmetric matrices. According to the up-down symmetry, we

have K↑ = K↓ and N↑
i = N↓

i . Hence C can be assumed to be hermitian from
eqs.(16) and (17). Now we can apply the Schwarz inequality

TrC†N↑
i CN↓

i ≤ TrPN↑
i PN↓

i , (34)

to E(C) and obtain
E(C) ≥ E(P ), (35)
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for U < 0 where P is the positive semidefinite matrix defined by eq.(22): P =
(C†C)1/2. If we assume that ψ is the ground state, we have E(C) = E(P ). Then
C = P (or C = −P ) is a solution of this equation. In order to show a uniqueness of
the ground state, we define R = P − C following the outline in 2.1 and show that
KerR ≡ {v ∈ X↓|Rv = 0} = X↓. First, note that R satisfies

K↑R+ RK↓ + U
∑
i

N↑
i RN ↓

i = ER. (36)

R has at least one eigenvector which belongs to zero eigenvalue: Rv = 0 (otherwise
we have P = −C.) From eq.(36), we obtain

〈v|
∑
i

NiRNi|v〉 = 0, (37)

where Ni ≡ N↓
i = N↑

i . Since R is positive semidefinite, RN ↓
i v = 0(∀i) are followed.

This implies RK↓v = 0. Then we can show that by successive application of N↓
i

and K↓, one can construct every vector starting from v in the space X↓. In order
to see this, let us write an initial vector in the form,

v = c†i1↓c
†
i2↓ · · ·c†iNe/2↓|0〉. (38)

If we want to move an electron on the site i1, we apply operators N↓
i2
· · ·N ↓

iNe/2
K↓

to v. In order to fix a direction of transfer, we further apply N↓
j where j is a site

connected to i1 by the kinetic term. Repeating this procedure, we can construct all
the vectors inX↓, which is guaranteed by the connectivity of tij on the lattice. Then
we can show that C = P is a unique solution of E(C) = E(P ), which concludes
the uniqueness of the ground state. Therefore the ground state is connected for
all U < 0 and unique without level crossings with respect to U (< 0). In the limit
−U → ∞, the ground state has clearly S = 0. Or we can make the following
discussion. Since C is positive semidefinite now, TrC =

∑
α εα > 0 (if TrC = 0,

then C = 0). Thus we have Cαα �= 0 for some α. ψαα is the basis state which has
only the double occupied sites and obviously has S = 0.
The proof of Theorem 2.1 leads to a stronger statement.

Corollary Under the assumptions of the Theorem 2.1, the coefficient matrix C of
the ground state is strictly positive definite.

Proof We have shown that C is positive semidefinite. Let us assume that C has a
vanishing eigenvalue ε1. Then v = U†(1, 0, · · · , 0)t (where U is a unitary matrix in
eq.(20)) satisfies Rv = 0 for R = P − C. This means that KerR = X↓ and P = C.
Similarly, we obtain Sv = 0 for S = P + C and then P = −C is followed. Thus we
have C = −C; i.e. C = 0. This is a contradiction. (The ground state should be
non-trivial C �= 0.) Hence C has no zero eigenvalues and then is positive definite.
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It is obvious that we can generalize the Hamiltonian where the strength of
attractive force is site dependent Ui < 0.

2.3. The Hubbard model at half filling

An attractive interaction is essential to apply the Schwarz inequality to the
energy expectation value. If we remember that the repulsive Hubbard model

H = −
∑
ijσ

tijc
†
iσcjσ − µ

∑
iσ

niσ + U
∑
i

ni↑ni↓, (39)

can be transformed to an attractive one by the electron-hole transformation for the
half-filled case,55,56 the positive semidefinite matrix method is also applicable to the
repulsive model.

Definition A lattice Λ is said to be bipartite with respect to {tij} if Λ is divided
into two disjoint sublattices A and B such that tij = 0 for i ∈ A and j ∈ A or i ∈ B

and j ∈ B. Conventionally, we say that a lattice is bipartite if this condition holds.

We should assume that the lattice Λ is bipartite. The following statement is
important.48

Theorem 2.2 Let us assume that Λ is bipartite and connected with respect to
{tij}. The number of electrons Ne is equal to the number of the lattice |Λ|. We
further assume that Ne is even. Then the ground state of the Hubbard model for
U > 0 is unique apart from a trivial degeneracy due to Sz .

Proof We have included the chemical potential µ = U/2 so as to consider the
half-filled case. We work in the space Sz = 0. First we make the partial elecron-
hole transformation for the down spin: ci↓ → c†i↓, c

†
i↓ → ci↓ for i ∈ A and ci↓ →

−c†i↓, c
†
i↓ → −ci↓ for i ∈ B. The up spins are unaltered. Then the Hamiltonian is

transformed to

H̃ = −
∑
ijσ

tijc
†
iσcjσ + µ

∑
iσ

niσ − U
∑
i

ni↑ni↓. (40)

We denote the number operators as Nσ =
∑

i niσ. They transform as N↑ → N↑
and N↓ → |Λ| − N↓. The condition N↑ + N↓ = |Λ| becomes N↑ = N↓ in the new
system. The spin operators transform as

Sz =
1
2
(N↑ − N↓)→ Jz ≡ 1

2
(N↑ +N↓ − |Λ|), (41)

S+ =
∑
i

c†i↑ci↓ → η† ≡
∑
i

εic
†
i↑c

†
i↓, (42)

S− =
∑
i

c†i↓ci↑ → η =
∑
i

εici↓ci↑, (43)
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S2 → J2 ≡ 1
2
(η†η + ηη†) + (Jz)2, (44)

where εi = 1 for i ∈ A and εi = −1 for i ∈ B. η operators commute with H̃, and
the z-component of the total spin is transformed to Jz = 0. The ground-state wave
function is written as ψ =

∑
αβ Cαβψαβ and the expectation value of H̃ is given by

E(C) = Tr(C†K↑C + CK↓C†) + µ
∑
i

Tr(C†N↑
i C + CN↓

i C
†)

− U
∑
i

TrC†N↑
i CN↓

i . (45)

We can assume the up-down symmetry K↑ = K↓ and N↑
i = N↓

i , and then C is
assumed to be hermitian. Therefore the energy inquality holds: E(C) ≥ E(P ).
Now the same method as in Theorem 2.1 proves Theorem 2.2.
Clearly we can repeat the same arguments in the subspace Sz = 0, 1, · · · , |Λ|/2

(when |Λ| is assumed to be even). Hence in each subspace with definite values of
Sz , we can proove the uniqueness of lowest energy state. It should be noted that C
is shown to be strictly positive definite as is in Corollary of Theorem 2.1.
In Theorem 2.2 we have assumed that |Λ| = Ne is even.48 This condition can

be relaxed since the proof is also relevant when |Λ| is odd. We work in the sub-
space Sz = 1/2 for odd |Λ|. After the electron-hole transformation for the up-spin
electrons, our model is transformed to the negative-U Hubbard model with an even
number of electrons. Hence we can say in the following way.

Theorem 2.2’ Let us assume that Λ is bipartite and connected with respect to
{tij}. The number of electrons Ne is equal to the number of the lattice |Λ|. Then
the ground state of the Hubbard model for U > 0 is unique apart from a trivial
degeneracy due to Sz .

In order to determine the total spin of the ground state, we take the limit U → ∞.
In the large-U case, the original Hamiltonian is transformed onto the Heisenberg
model. For the spin-1/2 Heisenberg on a bipartite lattice, the signs of coefficients
Cαβ in the ground state are uniquely determined. Mathematically, this is proved by
the Perron-Frobenius theorem in matrix theory. This fact will lead us to determine
the total spin of the ground state, which is a theorem given by Lieb and Mattis:57

Lemma 2.3 Let us consider the spin-1/2 antiferromagnetic Heisenberg model on a
connected and bipartite lattice,

HA =
∑
ij

JijSi · Sj, (46)

where Jij are non-zero for i ∈ A and j ∈ B or i ∈ B and j ∈ A. Let us denote
the number of sites in A and B sublattices as |A| and |B|, respectively, and assume
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that |A| ≥ |B|. Then the ground state of HA has S = (|A| − |B|)/2.

According to this Lemma, we can say that

Corollary We assume that the same conditions for the Hubbard model with U > 0
at half filling. Then the ground state has S = (|A| − |B|)/2.

Therefore we have a ferromagnetic state for |A| > |B|. This ferromagnetism (more
correctly, ferrimagnetism) should be understood in the sense that the total spin is
proportional to the number of electrons. A two-dimensional model in high-Tc oxide
superconductors provide us an example of a model of ferromagnetism. The non-
interacting case has three bands which are bonding, non-bonding, and anti-bonding
bands. The half-filled case has electrons in the non-bonding dispersionless band,
which supports the ferromagnetism. It is quite likely that this model describes an
insulator.
Since the lowest energy state is unique in each subspace with definite value of

Sz , inequalities Eg(S) < Eg(S + 1) holds for S ≥ (|A| − |B|)/2 where Eg(S) is the
lowest energy with the total spin S.57

It is easy to see that we can replace the Coulomb interactions by the site-
dependent ones

∑
i Uini↑ni↓ as fas as Ui > 0 (∀i). One can also include the site-

dependent one-body term such as
∑

i εiniσ as far as εi = −Ui/2. This observation
leads us to investigate the (periodic) Anderson model. Let us consider the periodic
Anderson model given as

H = −t
∑
〈ij〉σ

c†iσcjσ − µ
∑
iσ

nciσ + U
∑
i

nci↑nci↓

+ V
∑
iσ

(c†iσfiσ + h.c.) + εf
∑
iσ

nfiσ + Uf

∑
i

nfi↑nfi↓, (47)

where fiσ(f
†
iσ) denote operators of the localized electrons and we write nfiσ =

f†
iσfiσ and nciσ = c†iσciσ. We set εf = −Uf/2 (symmetric case). 〈ij〉 indicates
a nearest-neighbor pair of sites. The last term indicates the Coulomb interac-
tion between the f electrons, and the fourth term drives hybridization processes
between the conduction electrons and localized electrons. This model has been
investigated by many methods such as numerical calculations59,60,61,62, variational
theory,63,64,65,66,67,68,69,70,71,72 and renormalized band theory.73 A slight extension
of Theorem 2.2 proves the following theorem.58

Theorem 2.4 Let us consider the symmetric Anderson model on a bipartite and
connected lattice where the total lattice including both the conduction and f elec-
trons is bipartite. The lattice of the conduction electrons is also bipartite itself
where tij are assumed to be zero for i, j ∈ A or i, j ∈ B. We examine the half-
filled case in which we set µ = U/2 and εf = −Uf/2. Then the ground state of
the symmetric periodic Anderson model is unique for U > 0 and Uf > 0, and has
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S = 0.

Proof We again make the electron-hole transformation for the down spin: ci↓ → c†i↓
and c†i↓ → ci↓ for i ∈ A, cj↓ → −c†j↓ and c†j↓ → −cj↓ for j ∈ B, fi↓ → −f†

i↓ and
f†
i↓ → −fi↓ for i ∈ A, and fj↓ → f†

j↓ and f†
j↓ → fj↓ for j ∈ B. The up electrons are

unaltered. Then the Hamiltonian is transformed into

H̃ = −t
∑
〈ij〉σ

c†iσcjσ + µ
∑
iσ

niσ − U
∑
i

ni↑ni↓

+ V
∑
iσ

(c†iσfiσ + h.c.)− εf
∑
iσ

nfiσ − Uf

∑
i

nfi↑nfi↓. (48)

We can apply a same argument to show a uniqueness of the ground state for U > 0
and Uf > 0. In order to predict the value of total spin, let us consider the strong-U
and -Uf limit where the system is represented by an antiferromagnetic Heisenberg
model. Since we have the same number of sites in A and B sublattices, the ground
state should have S = 0.
Because we have a finite energy gap for the non-interacting case, we can expect

a finite gap for Uf > 0. However, there is no proof for this expectation.
It is also straightforward to investigate single-impurity Anderson model, two-

impurity model, or other variants of the Anderson model as a slight modification of
Theorem 2.4. The two-impurity Anderson model is a simplest non-trivial extension
of the single-impurity Anderson model.74,75,76,77,78,79,80,81,82 It is quite likely that
this model contains competition effects between the local Kondo effect and the
intersite (RKKY) interaction. According to the Theorem 2.2 and the Corollary,
the interspin interaction is an oscillating function of the distance d between two
localized spins since the ground state has S = 0 for even d and S = 1 for odd d (in
units of the lattice constant) at half filling (where we assume that the lattice for
the conduction electrons have the same number of sites in A and B sublattices).

2.4. Heisenberg model

Since the antiferromagnetic Heisenberg model is obtained as the large-U limit
in the Hubbard model, it may be clear that the Heisenberg model has a positive
semidefinite matrix for the ground state. Although the uniqueness of the ground
state for the Heisenberg model is established,57 we discuss the positivity of the
coefficient matrix here since we can apply our technique to the Kondo lattice which
will be discussed in the next section. Let us consider the following proposition:83

Theorem 2.5 Let us consider the antiferromagnetic Heisenberg model given as

H =
∑
ij

JijSi · Sj, (49)

on a bipartite lattice |Λ| with respect to {Jij ≥ 0}. We assume that |Λ| is connected
with respect to {Jij}. Then, the ground state has a positive semidefinite coefficient
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matrix (after a electron-hole transformation) and is unique.

Proof We write the Hamiltonian by fermions as follows.

H =
∑
ij

Jij [
1
2
(S+

i S−
j + S−

i S+
j ) + Sz

i S
z
j ]

=
∑
ij

Jij [
1
2
(c†i↑ci↓c

†
j↓cj↑ + c†i↓ci↑c

†
j↑cj↓) +

1
4
(ni↑ − ni↓)(nj↑ − nj↓)], (50)

where ciσ (c
†
iσ) denote fermion operators of localized electrons and niσ = c†iσciσ.

Since we have always one spin at each site, we impose the constraint ni↑+ ni↓ = 1.
Now we make the electron-hole transformation for down spins: ci↓ → c†i↓ and c†i↓ →
ci↓ for i ∈ A, and cj↓ → −c†j↓ and c†j↓ → −cj↓ for j ∈ B. Then the transformed
Hamiltonian is written as

H̃ =
∑
ij

Jij [−12(c
†
i↑cj↑c

†
i↓cj↓+ c†j↑ci↑c

†
j↓ci↓)+

1
4
(ni↑+ni↓ −1)(nj↑+nj↓ −1)], (51)

where the constraint is given as ni↑ = ni↓. We set Qi = ni↑ − ni↓. It is easy to see
that Qi commutes with H̃ and Qj each other:

[Qi, H̃] = 0, [Qi, Qj] = 0(∀i, j ∈ Λ). (52)

Then the total space of configurations is divided into subspaces which are specified
by eigenvalues of Qi. Obviously the subspace given by

S0 ≡ {ψ(�= 0)|Qiψ = 0(∀i)} (53)

is the physical subspace. In this subspace, eigenfunctions satisfy

H̃ψ = Eψ, (54)

Qiψ = 0. (55)

Let us again express the ground-state wave function in a form ψ =
∑

αβ Cαβψαβ

with real basis states {ψαβ}. According to eqs.(12), (13), and (14), the Schrödinger
equation (54) reads

EC =
∑
ij

Jij [−12(T
↑
ijCT ↓†

ij + T ↑
jiCT ↓†

ji ) +
1
4
(N↑

ijC + CN↓†
ij )

+
1
4
(N↑

i CN↓†
j +N↑

j CN↓†
i )−

1
4
(N↑

i C +N↑
j C + CN↓†

i + CN↓†
j )], (56)

and the constraint equations are written as

N↑
i C = CN↓

i , (57)
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where matrices are defined by the following:

(Tσ
ij)αα′ = 〈ψσ

α|c†iσcjσ|ψσ
α′〉, (58)

(Nσ
ij)αα′ = 〈ψσ

α|niσnjσ|ψσ
α′〉, (59)

(Nσ
i )αα′ = 〈ψσ

α|niσ|ψσ
α′〉. (60)

The up-down symmetry implies T ↑
ij = T ↓

ij , N
↑
ij = N↓

ij and N↑
i = N↓

i . (N
σ
ij)

† = Nσ
ij

and (Nσ
i )

† = Nσ
i are obvious. Then we can assume that C is hermitian. From

eq.(56), the energy-expectation value is easily calculated as

E(C) =
∑
ij

Jij [−12Tr(C†T ↑
ijCT ↓†

ij + C†T ↑
jiCT ↓†

ji ) +
1
4
Tr(C†N↑

ijC + CN↓
ijC

†)

+
1
4
Tr(C†N↑

i CN↓
j + C†N↑

j CN↓
i )−

1
4
Tr(C†N↑

i C + C†N↑
j C

+ CN↓
i C

† + CN↓
j C

†)]. (61)

Here we use the constraint equations N↑
i C = CN↓

i to get

TrC†N↑
i CN↓

j = TrC†N↑
i N

↑
j C = TrC†N↑

ijC, (62)

and we write the energy E(C) as

E(C) =
∑
ij

Jij [−12Tr(C†T ↑
ijCT ↓†

ij + C†T ↑
jiCT ↓†

ji ) +
1
2
Tr(C†N↑

ijC + CN↓
ijC

†)

− 1
4
Tr(C†N↑

i C + C†N↑
j C + CN↓

i C
† + CN↓

j C
†)]. (63)

Therefore one can make use of the Schwarz inequality to obtain

E(C) ≥ E(P ), (64)

where P is the positive semidefinite matrix which satisfies P2 = C†C = CC†.
Here we must show that the wave function with the coefficient matrix P also be-
longs to the physical subspace S0, which means that PN↓

i = N↑
i P (for all i ∈ Λ).

This constraint indicates that we have no singly occupied sites in fermion rep-
resentation which means 〈ni↑(1 − ni↓)〉P ≡ TrPNi↑P (1 − Ni↓) = 0 and 〈ni↓(1 −
ni↑)〉P ≡TrPNi↓P (1−Ni↑) = 0. According to the Schwarz inequality TrCN↑

i C
†N↓

i ≤
TrPN↑

i PN↓
i , we obtain

0 ≤ TrPN↑
i P (1−N↓

i ) = TrPN↑
i P − TrPN ↑

i PN↓
i

≤ TrCN↑
i C − TrCN↑

i CN↓
i = TrCN↑

i C(1−N↓
i ) = 0, (65)

where we note that TrCN↑
i C(1−N↓

i ) = TrCN↑
i (1−N↑

i )C = 0 because of N↑
i C =

CN↓
i and (N

σ
i )2C = Nσ

i C (which follows from n2
iσψ = niσψ). Now it is followed

that TrPN↑
i P (1−N↓

i ) = 0. Since we have also (N
σ
i )2P = Nσ

i P , one gets

TrPN↑
i P (1−N↓

i ) = Tr(1−N↓
i )PN↑

i N
↑
i P (1−N↓

i ) = ||N ↑
i P (1−N↓

i )||2 = 0, (66)
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where the norm || · || is defined by ||A|| = (TrA†A)1/2. This implies N ↑
i P (1−N↓

i ) =
0. Similarly we can obtain (1 − N ↑

i )PN↓
i = 0. Therefore the constrain equation is

followed:
N↑
i P = PN↓

i . (67)

Now the energy equality E(C) = E(P ) has its sense. Following the same arguments
as before, the uniqueness of the ground state is proved, i.e. C = P (or C = −P ) is
a unique solution for the ground-state wave function.
Remarks The above proof consists of three steps: (I) To show the inequalityE(C) ≥
E(P ) for ψ(C) ∈ S0, (II) To show ψ(P ) ∈ S0 , and (III) To show that C = P (or
C = −P ) is a unique solution of E(C) = E(P ). Here we have used the Schwarz
inequality to show the step (II).
Thus the semidefinite positivity of the ground state wave function is rather

instinsic for the antiferromagnetic Heisenberg model. We should refer to the other
method (for example, the Perron-Frobenius theorem) to predict the total spin of
the ground state, which we shall discuss in the next Chapter. However, it is easy
to see that the ground state has S = 0 if two sublattices A and B have the same
number of sites because we clearly have S = 0 in the limit of large Jij > 0. Next
we comment on a similar theorem for the ferromagnetic Heisenberg model, which
is rather trivial since we obviously have a unique ferromagnetic ground state.

Theorem 2.6 Let us consider the ferromagnetic Heisenberg model on a connected
lattice Λ:

H =
∑
ij

JijSi · Sj, (68)

where non-zero Jij are negative: Jij < 0. Then the ground state has a positive
semidefinite coefficient matrix and is unique.

Proof Let us make again a partial electron-hole transformation for the down spin
in a fermion representation: ci↓ → c†i↓ and c†i↓ → ci↓ for i ∈ Λ. The Hamiltonian is
transformed into

H̃ =
∑
ij

Jij [
1
2
(c†i↑cj↑c

†
i↓cj↓ + ci↑c

†
j↑ci↓c

†
j↓)

+
1
4
(ni↑ + ni↓ − 1)(nj↑ + nj↓ − 1)], (69)

where we must impose ni↑ = ni↓ for wave functions. Now it is obvious that the
same argument will conclude the proof since the energy-expectation value is written
as

E(C) =
∑
ij

Jij [
1
2
Tr(C†T ↑

ijCT ↓†
ij + C†T ↑

jiCT ↓†
ji ) +

1
2
Tr(C†N↑

ijC + CN↓
ijC

†)

− 1
4
Tr(C†N↑

i C + C†N↑
j C + CN↓

i C
† + CN↓

j C
†)], (70)
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and we can derive E(C) ≥ E(P ). The constraint equations are proved for P in the
same way as in Theorem 2.5.
These theorems for the Heisenberg model may be proved by other method in a

more elegant way. Our proof will give a way to consider more complicated models
such as the Kondo lattice or the Kondo-Hubbard Hamiltonians, which are going to
be discussed in the next sections.

2.5. Kondo lattice Hamiltoninan

Let us turn to the Kondo lattice Hamiltonian which represents interactions be-
tween the localized spins and the conduction electrons. The model is written as

H = −
∑
ijσ

tijc
†
iσcjσ − µ

∑
i

nciσ + U
∑
i

nci↑nci↓ + J
∑
i

Si · σi, (71)

where ciσ (c
†
iσ) denote annihilation (creation) operators of the conduction electrons

and we write nciσ = c†iσciσ. The third term shows the Coulomb interactions between
the conduction electrons and the last term represents the exchange interactions
where Si and σi denote spin operators of the localized spins and the conduction
electrons, respectively. We have localized spins on each site in the Kondo lattice
Hamiltonian. We assume repulsive Coulomb interactions U > 0. Note that the
Kondo lattice model is usually defined without Coulomb interaction U . Here we
include the Coulomb terms in order to show a uniqueness of the ground state. Let
us consider a bipartite lattice Λ with respect to {tij} and fix the number of electrons
to be |Λ| (half-filled case), i.e. µ = U/2. We first investigate the antiferromagnetic
exchange interaction J > 0.83

Theorem 2.7 Let us consider the Kondo lattice Hamiltonian in eq.(71) for U > 0
and J > 0 at half filling. We assume that the lattice is bipartite where hopping
parameters tij are nonzero for i ∈ A and j ∈ B or i ∈ B and j ∈ A. The connectivity
of the lattice due to tij is also assumed. Then the ground state is unique and has
S = 0.

Proof Following the proof for the Heisenberg model, we use fermions to express the
localized spins and write the Hamiltonian in the form,

H = −
∑
〈ij〉σ

tijc
†
iσcjσ +

∑
i

[
1
2
J⊥(c

†
i↑ci↓f

†
i↓fi↑

+ c†i↓ci↑f
†
i↑fi↓) +

1
4
Jz(nci↑ − nci↓)(nfi↑ − nfi↓)]

+ U
∑
i

nci↑nci↓ − U

2

∑
iσ

nciσ, (72)

where fiσ(f
†
iσ) denote annihilation (creation) operators of localized spins. nfiσ indi-

cate the number operator of localized fermions. We have written the perpendicular-
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and z-component of exchange interaction as J⊥ and Jz , respectively. Let us assume
that J = J⊥ = Jz. We make the electron-hole transformation for the up spins:
ci↑ → c†i↑, c

†
i↑ →ci↑ for i ∈ A, fi↑ → −f†

i↑, f
†
i↑ →−fi↑ for i ∈ A and ci↑ → −c†i↑,

c†i↑ → −ci↑ for i ∈ B, fi↑ → f†
i↑,f

†
i↑ → fi↑ for i ∈ B where we have assumed that the

lattice is bipartite-divided into two disjoint sets A and B. The spin-down electrons
are unaltered, ci↓ → ci↓ and fi↓ → fi↓. In this transformation the z-component of
the total spin is invariant at half filling: S z = 0→ Sz = 0. Then H is transformed
into

H̃ = −
∑
〈ij〉σ

tijc
†
iσcjσ − U

∑
i

nci↑nci↓ +
U

2

∑
iσ

nciσ +
∑
i

[−1
2
J⊥(ci↑ci↓f

†
i↓f

†
i↑

+ c†i↓c
†
i↑fi↑fi↓) +

1
4
Jz(1− nci↑ − nci↓)(1 − nfi↑ − nfi↓)]. (73)

We work in the Sz=0 subspace since S2 and Sz are conserved and every energy
eigenvalue has a corresponding eigenfunction in this subspace. For H̃ the constraint
should read nfi↑ = nfi↓. We set Qi ≡ nfi↑−nfi↓. It is easy to see that Qi commutes
with H̃ and Qj (for any j):

[Qi, H̃] = 0; [Qi, Qj] = 0(∀i, j). (74)

Therefore the total space is divided into disjoint subspaces which are specified by
eigenvalues of Qi. The physical space is given by S0 = {ψ(�= 0)|Qiψ = 0(∀i)}.
The Schrödinger equation for C is written in the form,

EC = CH↓
0 +H↑

0C − J⊥
∑
i

1
2
(M↑

fciCM↓
cfi +M↑

cfiCM↓
fci)

+ Jz
∑
i

[
1
4
(N↑

cfiC + CN↓
cfi)−

1
4
(CN↓

fi +N↑
fiC)−

1
4
(CN↓

ci +N↑
ciC)

+
1
4
(N↑

ciCN↓
fi +N↑

fiCN↓
ci)]− U

∑
i

N↑
ciCN↓

ci

+
U

2

∑
i

(CN↓
ci +N↑

ciC). (75)

The matrices are defined by the following,

(Hσ
0 )αα′ = 〈ψσ

α| −
∑
〈ij〉

tijc
†
iσcjσ|ψσ

α′〉, (76)

(Mσ
cfi)αα′ = 〈ψσ

α|c†iσfiσ|ψσ
α′〉, (77)

(Mσ
fci)αα′ = 〈ψσ

α|f†
iσciσ|ψσ

α′〉, (78)

(Nσ
cfi)αα′ = 〈ψσ

α|nciσnfiσ |ψσ
α′〉, (79)

(Nσ
ci)αα′ = 〈ψσ

α|nciσ|ψσ
α′〉, (80)
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(Nσ
fi)αα′ = 〈ψσ

α|nfiσ|ψσ
α′〉. (81)

Please note that these matrices are real ones. From the definition, we have

(Nσ
cfi)αα′ =

∑
β

〈ψσ
α|nciσ|ψσ

β〉〈ψσ
β |nfiσ|ψσ

α〉 = (Nσ
ciN

σ
fi)αα′. (82)

We have the up-down symmetry:

Nσ
ci = N−σ

ci , Nσ
fi = N−σ

fi , Hσ
0 = H−σ

0 and Mσ
fci =M−σ

fci . (83)

It is easily followed from eqs(3), (4), and (5) that the constraint equations Qiψ = 0
is written as

N↑
fiC = CN↓

fi. (84)

The energy E(C) is given by

E(C) = Tr(C†H↑
0C + CH↓

0C
†) − J⊥

∑
i

1
2
Tr(M↑

fciCM↓
cfiC

† +M↑
cfiCM↓

fciC
†)

+ Jz
∑
i

[
1
4
Tr(C†N↑

cfiC + CN↓
cfiC

†)− 1
4
Tr(CN↓

fiC
† + C†N↑

fiC)

− 1
4
Tr(CN↓

ciC
† + C†N↑

ciC) +
1
4
Tr(N↑

ciCN↓
fiC

† +N↑
fiCN↓

ciC
†)]

− U
∑
i

Tr(N↑
ciCN↓

ciC
†) +

U

2

∑
i

Tr(C†N↑
ciC + CN↓

ciC
†). (85)

The identity below is useful in the following discussion,86

JzTr(C†N↑
ciCN↓

fi + C†N↑
fiCN↓

ci)

= −Jz
1
z
TrC†(zN↑

ci −N↑
fi)C(zN

↓
ci − N↓

fi)

+ zJzTrC†N↑
ciCN↓

ci +
1
z
JzTrC†N↑

fiCN↓
fi

= −Jz
1
z
TrC†(zN↑

ci −N↑
fi)C(zN

↓
ci − N↓

fi)

+ zJzTrC†N↑
ciCN↓

ci +
1
2z

JzTr(C†N↑
fiC + CN↓

fiC
†),

(86)

where z is a positive real number z > 0 and we have used the relation in eq.(84) to
derive the second equality. Then the energy E(C) is written as

E(C) = Tr(C†H↑
0C + CH↓

0C
†) − J⊥

∑
i

1
2
Tr(M↑

fciCM↓
cfiC

† +M↑
cfiCM↓

fciC
†)

+ Jz
∑
i

[
1
4
Tr(C†N↑

cfiC + CN↓
cfiC

†)− 1
4
Tr(CN↓

fiC
† + C†N↑

fiC)

− 1
4
Tr(CN↓

ciC
† + C†N↑

ciC)]
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+
∑
i

[− 1
4z

JzTrC†(zN↑
ci −N↑

fi)C(zN
↓
ci − N↓

fi)

+
1
4
zJzTrC†N↑

ciCN↓
ci +

1
8z

JzTr(C†N↑
fiC + CN↓

fiC
†)],

− U
∑
i

TrC†N↑
ciCN↓

ci +
U

2

∑
i

Tr(C†N↑
ciC + CN↓

ciC
†). (87)

Here we can again set that C is hermitian: C = C† due to the discussion in 2.1.
Then we obtain the inequality E(C) ≥ E(P ) for J > 0 and U > zJ/4. Since z

is an arbitrary positive real number, we can choose z so that U > zJ/4 holds for
any positive U . Therefore the inequality E(C) ≥ E(P ) is followed for every U > 0.
Since we have assumed that C is the coefficient matrix of the ground state, i.e.
ψ(C) is the ground state, we obtain E(C) = E(P ). This indicates that there is a
state with C = P (or C = −P ) among the ground states.
Here we should show that ψ(P ) belongs to the space S0: ψ(P ) ∈ S0. In order

to show this, we shall prove
N↑
fiP = PN↓

fi, (88)

which is easily shown by the method in the proceeding section for the Heisenberg
model. Thus the equality E(C) = E(P ) has its sense.
The uniqueness of the ground state is followed similarly, which means that one

can show Ker(P − C) = {v(�= 0) ∈ X↓|(P −C)v = 0} = X↓. Because the energy is
continuous with respect to parameters involved in the Hamiltonian, there is no level
crossing with respect to J > 0. In the large-U limit, H is mapped to a spin-1/2
antiferromagnetic Heisenberg model where we have the same number of sites in two
sublattices. Hence the ground state has S = 0.
The method above is also relevant for the Kondo lattice with the ferromagnetic

exchange coupling, which is shown as a separate statement.

Theorem 2.8 We consider the Kondo lattice Hamiltonian for U > 0 and J < 0 at
half filling with the same assumptions in Theorem 2.7. Then the ground state is
unique and has S = ||A| − |B|| (where |A| and |B| denote the number of sites in A

and B sublattices, respectively).

Proof For J < 0, the electron-hole transformation for the down spins are done in
the following way: ci↓ → c†i↓, c

†
i↓ → ci↓ for i ∈ A, fi↓ → f†

i↓, f
†
i↓ → fi↓ for i ∈ A,

and ci↓ → −c†i↓, c
†
i↓ → −ci↓ for i ∈ B, fi↓ → −f†

i↓, f
†
i↓ → −fi↓ for i ∈ B. In

order to derive the inequaliy E(C) ≥ E(P ), we use the identity in eq.(86) with
replacing z by −z. The total spin of the ground state is easily followed from the
formula given by Lieb and Mattis57 since the Hamiltonian is mapped onto a spin-1
antiferromagnetic Heisenberg model in the limit of large |J |.
Remarks Let us comment on the limit of large |J | (J < 0) for the Kondo lattice.
Obviously we have local triplets at every site in the limit |J | = ∞. Through the
virtual states with doubly occupied sites which have higher energies of the order of
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|J |, the localized spins are exchanged and the degeneracy is lifted. Let us consider
the following process ( ↑ ↓

↑ ↓
)

→
( ↑ ↓

↓↑
)

→
( ↑ ↓

↓ ↑
)

, (89)

where the symbol (·) indicates the spin configuration of the f and conduction elec-
trons at the sites i and j:(

fi fj
si sj

)
(fi, si = |0〉, | ↑〉, | ↓〉, | ↓↑〉). (90)

In the process above, the local state |1, 1〉i|1,−1〉j is transformed to |1, 0〉i|1, 0〉j
where |3 = 1,m〉i indicates a local triplet at site i with szi = m. Similarly other
interactions are included and thus the effective Hamiltonian is given by a spin-1
Heisenberg model.
We can generalize the Kondo lattice by including the intersite RKKY interac-

tions between localized spins. Let us investigate the Hamiltonian given by

H =
∑
ij

tijc
†
iσcjσ + U

∑
i

nci↑nci↓

+ J
∑
i

Si · σi +
∑
ij

JijSi · Sj. (91)

If the lattice is bipartite with respect to {Jij}, the uniqueness of the ground state
is proved in a same manner:

Theorem 2.9 We investigate the Kondo lattice in eq.(91) at half filling. Let us
assume that the lattice Λ is bipartite and connected with respect to {tij}. We
further assume that Λ is bipartite with respect to {Jij} and Jij ≥ 0. Then the
coefficient matrix of the ground state is positive semidefinite for U > 0 and J �= 0
at half filling (after a partial electron-hole transformation). Thus the ground state
is unique.

This statement indicates that the ground state is continuous with respect to Jij
as long as Jij are antiferromagnetic. Probably we don’t need to say that we can
extend Theorem 2.7-2.9 to the Hamiltonian where U and J are site dependent.

2.6. The Kondo-Hubbard model

Let us consider generalized models which may be called the Kondo-Hubbard
model including the Kondo lattice and the two-impurity Kondo model as special
cases. The Hamiltonian is written as

H = −
∑

ij∈Λ,σ

tijc
†
iσcjσ − µ

∑
i∈Λ

nciσ + U
∑
i∈Λ

nci↑nci↓ + J
∑
i∈Λf

Si · σi

+
∑
ij

JijSi · Sj, (92)
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where Λ denotes a lattice of the conduction electrons and Λf is a set of sites on
which the localized spins are located. nciσ indicate number operators: nciσ = c†iσciσ.
We investigate the case where Λf is a subset of Λ: Λf ⊂ Λ. Let us assume that Λ
is bipartite and divided into two sublattices A and B. We denote the numbers of
sites in A and B sublattices of Λ as NA and NB , and those in Λf as LA and LB,
respectively: NA +NB = |Λ| and LA + LB = |Λf | (NA ≥ LA, NB ≥ LB). For the
Kondo lattice, we have NA = LA and NB = LB . A similar argument in the section
2.5 proves the uniqueness of the ground state.

Theorem 2.10 Let us consider the Kondo-Hubbard model on a connected and
bipartite lattice in eq.(92) at half filling. We assume that the lattice is bipartite
with respect to {Jij ≥ 0}. Then the ground state is unique for U > 0 and J �= 0
(apart from a trivial degeneracy with respect to Sz for J < 0). The total spin is
given by

S = |NA − NB − LA + LB|/2 for J > 0,

S = |NA − NB + LA − LB|/2 for J < 0.

Since a proof of the uniqueness is very similar to that for the Kondo lattice, we
don’t repeat it here. The total spin of the ground state for J > 0 is given by the
Lemma 2.3 for the spin-1/2 Heisenberg model. For the ferromagnetic exchange
interaction J < 0, one can determine S employing the Perron-Frobenius theorem,
which will be discussed in the Chapter 3. For the Kondo lattice, S = 0 for J > 0
and S = |NA −NB | for J < 0.
As a corollary, we show a statement about the two-impurity Kondo model, for

which there has been a debate about a singular fixed point found in the numerical
renormalization group method.77 The Hamiltonian is written in the form:

H =
∑
ij

tijc
†
iσcjσ + U

∑
i

nci↑nci↓

+ J
∑
j=1,2

Sj · σj + JRKS1 · S2. (93)

Corollary Let us assume that the lattice is bipartite and connected and JRK ≥ 0
for 1 ∈ A and 2 ∈ B (or 1 ∈ B and 2 ∈ A) or JRK ≤ 0 for 1, 2 ∈ A (or 1, 2 ∈ B).
Then the ground state of the two-impurity Kondo model at half filling for U > 0
and J �= 0 is unique and continuous with respect to J(�= 0). Thus the ground state
has no singularity as a function of J(�= 0) on a finite lattice.

This is a direct consequense of Theorem 2.10 and consistent with the results by
Monte Carlo simulations,78 numerical renormalization group calculations79 and
diagonalizations.80 We can expect a sharp crossover between the on-site Kondo
region and the RKKY region; in the former case we have a local singlet at each site
and in the latter case localized spins are in a collective state.
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As an example of the Theorem, we point out that the ferromagnetism of the
poly(m-phenylenecarbene) is explained by the Kondo-Hubbard model with ferro-
magnetic exchange term J < 0.85,87 This organic material contains carbon sites
called carbene, where a non-bonding localized electron couples with a π electron on
the bridge through the Hund’s coupling.87

2.7. Inequalities for correlation functions

The spin-reflection positivity for the half-filled band with the repulsive Coulomb
interactions is closely related with antiferromagnetic correlations between the con-
duction electrons (and the localized spins). If C is positive definite, we can show

TrC†MCM † > 0, (94)

for a square matrixM . This inequality is easily derived as follows. Let εα and |α〉 be
eigenvalues and corresponding eigenvectors : C|α〉 = εα|α〉. Then TrC†MCM † =∑

αβ εαεβ|〈α|M |β〉|2 > 0.
By virtue of the property in eq.(94), one can derive inequalities for correlation

functions. If we take Mσ
αα′ = 〈ψσ

α|nciσ|ψσ
α′〉, we obtain a trivial inequality:

TrC†M↑CM↓† = 〈nci↑nci↓〉H̃ = 〈nci↑(1− nci↓)〉H > 0, (95)

where 〈·〉H and 〈·〉H̃ denote the expectation values in the original and transformed
space, respectively. For the choiceMσ

αα′ = 〈ψσ
α|nciσ−ncjσ|ψσ

α′〉, we have 0 < 〈(nci↑−
ncj↑)(nci↓ − ncj↓)〉H̃ = −〈(nci↑ − ncj↑)(nci↓ − ncj↓)〉H , i.e.

〈nci↑nci↓ + ncj↑ncj↓〉H < 〈nci↑ncj↓ + nci↓ncj↑〉H (i �= j). (96)

Similarly we can show −1/4 < 〈Sz
i S

z
j 〉H < 1/4 for Sz

i = nfi↑ − nfi↓ or nci↑− nci↓.
We can obtain non-trivial inequalities when we choose Mσ = 〈c†iσcjσ〉, 〈f†

iσfjσ〉
or 〈c†iσfiσ〉, which corresponds to consider correlation functions defined by

Sff (i, j) = 〈S+
i S−

j 〉, (97)

Scc(i, j) = 〈σ+
i σ−

j 〉, (98)

and
Sfc(i) = 〈S+

i σ−
i 〉, (99)

where spin operators are S+
i = f†

i↑fi↓, σ
+
i = c†i↑ci↓, S

−
i = (S

+
i )

† and σ−
i = (σ

+
i )

†.
For the Hubbard model with U > 0 at half filling, we can show by making the

electron-hole transformation for i ∈ A and j ∈ B,

Scc(i, j) = 〈c†i↑ci↓c†j↓cj↑〉H = −〈c†i↑c†i↓cj↓cj↑〉H̃
= −TrC†K↑

ijC(K
↓
ij)

† < 0, (100)

where the second equality is due to the electron-hole transformation and we have
defined

(Kσ
ij)αα′ = 〈ψσ

α|c†iσcjσ|ψσ
α′〉. (101)

26



Similarly we obtain

Scc(i, j) > 0 for i, j ∈ A or i, j ∈ B. (102)

For the Kondo lattice at half filling, it is easy to prove the following.84

Sff (i, j) < 0; i ∈ A, j ∈ B, (103)

Scc(i, j) < 0; i ∈ A, j ∈ B, (104)

Sff (i, j) > 0; i ∈ A, j ∈ A, (105)

Scc(i, j) > 0; i ∈ A, j ∈ A. (106)

For the on-site c-f correlations, we can show

Sfc(i) < 0 for J > 0, (107)

Sfc(i) > 0 for J < 0. (108)

Note that we have chosen the different signs for f electrons in the electron-hole trans-
formation for J < 0. The equations above indicates that the nearest-neighbor spins
are in an antiferromagnetic order and that the RKKY interactions are oscillating
functions of the distance between two localized spins.
We can obtain stronger inequalities for spin-correlation functions.88 Let us note

〈(1 − xc†i↑cj↑)(1− xc†i↓cj↓)〉H̃ = TrC†L↑
ijCL↓†

ij > 0, (109)

for real x and (Lσ
ij)αα′ = δαα′ − x(Kσ

ij)αα′ . For i ∈ A and j ∈ B, the above
inequality indicates the following after the electron-hole transformation for down-
spin electrons,

1− x〈c†i↑cj↑ + c†j↓ci↓〉H − x2l〈σ+
i σ−

j 〉H > 0. (110)

Since this holds for any real x, we have the correlation inequality

〈σ+
i σ−

j 〉H < − 1
4
(〈c†i↑cj↑ + c†j↓ci↓〉H)2 = −(〈c†i↑cj↑〉H)2, (111)

for U > 0. Note that for the non-interacting Hubbard model, the equality holds:

〈σ+
i σ−

j 〉H = −1
4
(〈c†i↑cj↑ + c†j↓ci↓〉H)2 (U = 0). (112)

The inequality in eq.(111) is stronger than eq.(104). For i, j ∈ A or i, j ∈ B, we
have

〈σ+
i σ−

j 〉H >
1
4
(〈c†i↑cj↑ − c†j↓ci↓〉H)2, (113)

which is, however, equivalent to eq.(102) because of the up-down symmetry. A
family of the correlation inequalities is followed straightforwardly according to the
reflection positivity in the spin space.
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2.8. η-spin operators

In this section let us summarize about η-spin operators which were considered
deeply by Yang and Zhang.89,90 The η-spin operators are defined by

η† =
∑
j

εjc
†
j↑c

†
j↓ ≡ J+, (114)

η =
∑
j

εjcj↓cj↑ ≡ J−, (115)

Jz =
1
2

∑
j

(c†j↑cj↑ + c†j↓cj↓ − 1), (116)

where εj is given by εj = 1 if j ∈ A and εj = −1 if j ∈ B. The η-spin operators
are obtained from the ususal spin operators by the partial electron-hole transforma-
tion. We have assumed that the lattice is divided into two subsets A and B. The
commutation relations are given as

[J+, J−] = 2Jz, (117)

[J+, Jz] = −J+; [J−, Jz] = J−. (118)

In this section, let us consider the Hubbard model:

H = −t
∑
〈ij〉

c†iσcjσ − µ
∑
iσ

niσ + U
∑
i

ni↑ni↓. (119)

One can obtain easily
[H, J+] = (U − 2µ)J+, (120)

[H, J−] = −(U − 2µ)J−, (121)

[H, J z] = [H,J2] = 0, (122)

where J2 = (1/2)(J+J− + J−J+) + (Jz)2. Thus the Hubbard model has two
SU (2) symmetries, which means the true SU (2) symmetry and the η-spin SU (2)
symmetry. We can diagonalize S2, Sz , J2, Jz and H simultaneously. Since

Sz + Jz =
∑
i

(c†i↑ci↑ − 1) = integer, (123)

the Hamiltonian has SO(4) = SU (2) ⊗ SU (2)/Z2 symmetry. Let us denote the
magnitude of the total η-spin as J . A pair of the total spins (S, J) is transformed
to (J, S) by the partial electron-hole trnsformation. J is related to the existence
of superconductivity, while S is related to the magnetism of the system. The η-
operators are sometimes called pseudospin operators.
Let us first investigate the repulsive U > 0 case. It can be considered that in one

dimension the ground state of the Bethe ansatz solution13 has the lowest value of the
η-spin for the repulsive Hubbard model.92 We may expect that the ground state is in
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the subspace of lowest weight of η-spin even for two or three dimensions. Let Ne be
the number of electrons. The z-component of the total η-spin has Jz = 1

2 (Ne−|Λ|).
Thus we have J ≥ |Ne − |Λ||/2. We can show that J = 0 for the half-filled band
because of the positive definiteness of the ground state.

Theorem 2.11 We consider the Hubbard model on a bipartite and connected
lattice at half filling. Then the ground state has J = 0 for U > 0.

Proof By the electron-hole transformation for the up-spin electrons, the Hamiltonian
is mapped to the negative-U Hubbard model with an even number of electrons.
The ground state of the transformed Hamiltonian is unique and has S = 0, which
indicates that we have J = 0 in the original system.
For the negative-U Coulomb interaction, the ground state can be a supercon-

ducting state with enhanced on-site pairing correlations. Yang considered a varia-
tional function given as

ψη = A(η†)Ne/2|0〉, (124)

where A is a normalization constant and Ne is the number of electrons. He called
ψη the η-paring state. It is easy to see that ψη is an eigenstate of the Hamiltonian:

Hψη = Ne(U/2 − µ)ψη . (125)

Here let us consider a question whether the η-paring state can be a ground state or
not.

Theorem 2.12 Let us consider the negative-U Hubbard model on a bipartite and
connected lattice. We assume that the number of electrons Ne is even and Ne ≤ |Λ|.
Then the η-pairing state ψη is not a ground state.

Proof By the electron-hole transformation for the up spins, the Hamiltonian is
transformed to the positive-U Hubbard model at half filling. In the new system one
has Sz = (|Λ|−Ne)/2, while one has Sz = 0 in the original system. In the subspace
with Sz = (|Λ|−Ne)/2, the lowest-energy state is unique and the total spin is given
by Lemma 2.3 following an argument of Lieb and Mattis:57

S =Max{(|Λ| − Ne)/2, ||A| − |B||/2}, (126)

where Max{X,Y } indicates larger one in X and Y . Hence in the original system
the total spin of η-operators is given by

J =Max{(|Λ| −Ne)/2, ||A| − |B||/2}. (127)

On the other hand, it is followed from direct calculations that the η-paring state ψη

has J = |Λ|/2,89 or
J2ψη =

|Λ|
2
(
|Λ|
2
+ 1)ψη. (128)
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Therefore the total η-spin of ψη is different from that of the true ground state. ψη
is orthogonal to the ground state.
From the proof of this theorem, we can say the following.

Corollary For the negative-U Huabbrd model on a bipartite and connected lattice
for an even number of electrons, if

||Λ| − Ne| < ||A| − |B||, (129)

then there is off-diagonal long-range order (ODLRO).91

Proof This is a direct consequence of the proof ofTheorem 2.12 and the next theorem
by Yang and Zhang.90

Theorem 2.13 For any state ψ for which J2 − (Jz)2 = O(|Λ|), there is ODLRO.

We should define ODLRO before a proof of Theorem 2.13. Let us define the two-
particle density matrix given as:91,93

Γ(r′1r
′
2|r1r2) = 〈ψ|ar′1ar′2a†r2a†r1 |ψ〉, (130)

for a wave function ψ, where ar are operators for electrons. The coordinate numbers
ri may include spins. If there is a long-range order for ψ, the two-particle density
matrix may have large values, for instance, if r1 is close to r2 and at the same time
r′1 is also close to r′2. This type of correlation was called an off-diagonal long-range
order (ODLRO) by Yang. Here we define ODLRO in the following way.

Definition We define three matrices from the two-partice density matrix Γ:

Xij = Γ(iσi, jσj|iσ′
i, jσ

′
j), (131)

Yij = Γ(iσi, jσj|jσ′
j, iσ

′
i), (132)

Zij = Γ(iσi, iσ′
i|jσj, jσ′

j). (133)

If one of matrices X, Y and Z has an eigenvalue of the order of the system size |Λ|,
we say that ψ has ODLRO.

Proof of Theorem 2.13 Let us define the matrix Z as

Zij = 〈ψ|c†i↑c†i↓cj↓cj↑|ψ〉. (134)

Let λ2 be the largest eigenvalue of Z. It is clear from the variational principle that

λ2 ≥ (v, Zv), (135)
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for any normalized vector v where (, ) indicates an inner product. Let us take
v = (vi) as vi = εi/|Λ|1/2. Then

λ2 ≥ 〈ψ|η†η|ψ〉/|Λ|
= 〈ψ|J+J−|ψ〉/|Λ| = (J 2 − (Jz)2 + J + Jz)/|Λ|
=

1
|Λ| (J

2 − (Jz)2) + O(1) = O(|Λ|) ≥ 0. (136)

Hence ψ has ODLRO from the definition.
The η-paring state has ODLRO because J = |Λ|/2 and Jz = ||Λ| − Ne|/2.

For the square lattice with |A| = |B|, ODLRO is not proved by this method since
J = Jz = ||Λ| − Ne|/2.94 Note that this does not imply an absence of ODLRO.

31



3. The Perron-Frobenius theorem in Linear algebra

3.1. Perron-Frobenius theorem: Irreducible case

The Perron-Frobenius theorem concerns real matrices with non-positive (or non-
negative) elements.98 Such matrices have important applications in the theory of
correlated electrons as well as in the theory of probability and economics.99 First,
Perron proved a theorem on the spectra of positive matrices. Second, Frobenius
generalized Perron’s theorem to irreducible non-negative matrices, where a positive
matrix is a special case of an irreducible non-negative matrix. Let us begin with
the definitions of a reducible matrix and an irreducible matrix.

Definition A square matrix A = (aij) (i = 1, 2, · · · , n; j = 1, 2, · · · , n) is called
reducible if there is a permutation which puts it into the form

[
B 0
C D

]
(137)

where B and D are square matrices. Otherwise A is called irreducible.

A permutation of a square matrix A = (aij) means a permutation of the rows
of A combined with the same permutation of the columns. Let us suppose that
A = (aij) corresponds to a linear operator in an n-dimensional vector space with
the bases e1, · · · , en. A permutation of A means a renumbering of the basis vec-
tors: a new basis system is given by e′1 = eσ(1), e

′
2 = eσ(2), · · · , e′n = eσ(n), where

(σ(1), · · · , σ(n)) is a permutation of indices 1, 2, · · · , n. Let B = (b ij) and C = (cij)
be real rectangular matrices of the same dimensions m × n. We write

B ≥ C (138)

if and ony if

bij ≥ cij(i = 1, · · · ,m; j = 1, · · · , n). (139)

We will write
B > C (140)

if the equality sign can be omitted in all the inequalities.

Definition A rectangular matrix A with real elements A = (aij) is called non-
negative (A ≥ 0) or positive (A > 0) if all the elements of A are non-negative
(aij ≥ 0) or positive (aij > 0).

Let λ1, · · · , λn be eigenvalues of A and we define

ρ(A) =Max{|λ1|, · · · , |λn|}. (141)
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Now let us investigate the spectral properties of irreducible non-negative matrices.

Theorem 3.1 (Frobenius) Let A = (aij) (i, j = 1, · · · , n) be an irreducible non-
negative square matrix. Then
(a) ρ(A) > 0 and r = ρ(A) is an eigenvalue of A. To the eigenvalue r there
corresponds an eigenvector x with positive coordinates:

Ax = rx, x > 0, x ∈ Rn. (142)

(b) If A ≥ B ≥ 0, then for any eigenvalue β of B we have

r = ρ(A) ≥ |β|. (143)

If B has eigenvalue β such that r = |β|, then A = B. (c) r = ρ(A) is a simple
eigenvalue, i.e. r is a simple root of the secular equation det(xI −A) = 0, where I

is a unit matrix.

In the following we call r = ρ(A) the Frobenius eigenvalue of A. If we multiply
A by (−1), we can make all the coordinates negative and we can discuss the low-
est eigenvalue. The diagonal elements are not important in an application to the
Hamiltonian H since we can add a constant matrix cI to H (where c is a real
constant). We will show a proof of Theorem 3.1 in the next section. As a special
case, the Perron’s theorem is derived where the matrix A is positive (A > 0). It
is convention that we call Theorem 3.1 the Perron-Frobenius theorem. We present
some important porperties of the Frobenius eigenvalue below.

Theorem 3.2 Let A be an irreducible non-negative square matrix. Let us assume
that α ∈ R, x ∈ Rn, α ≥ 0,x ≥ 0, and x �= 0. If Ax = αx, then α = ρ(A) and
x > 0.

Theorem 3.3 For an irreducible non-negative square n× n matrix A and x ∈ Rn

(x ≥ 0, x �= 0), we set Ax = y. We define

αA(x) =Min{yi
xi

}, βA(x) =Max{ yi
xi

}, (144)

where we exclude the values of i for which xi = 0. Then

αA(x) ≤ ρ(A) ≤ βA(x). (145)

If αA(x) < ρ(A) < βA(x), then

αA(x) < ρ(A) < βA(x). (146)

Theorem 3.4 For an irreducible non-negative square n× n matrix A, we let B =
1 +A. Let

aj = Bja (j = 1, 2, · · ·), (147)
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for a > 0, a ∈ Rn. Then we have

αB(a1) ≤ αB(a2) ≤ · · · , (148)

βB(a1) ≥ βB(a2) ≥ · · · , (149)

and
lim
j→∞

αB(aj) = lim
j→∞

βB(aj) = 1 + ρ(A). (150)

(αB(aj) and βB(aj) are defined in Theorem 3.3.)

These theorems tells us a method to obtain the maximal eigenvalue and a cor-
responding eigenvector with positive coordinates for an irreducible non-negative
square matrix. Let us show several examples.

Example 1 Let H to be

H =




0 −1 0 −1
−1 0 −1 0
0 −1 0 −1
−1 0 −1 0


 (151)

which is the Hamiltonian for a fermion on a 4-site lattice. Let A = −H. We set
a1 = (1, 1, 1, 1)t. Then a2 = Aa1 = (2, 2, 2, 2)t and we have αA(a1) = βA(a1) = 2,
i.e. r = 2. Hence the lowest eigenvalue of H is −2.

Example 2 A second example is less trivial, which is given by

H =




0 0 −1 −1
0 0 −1 −1
−1 −1 U 0
−1 −1 0 U


 . (152)

This is the Hamiltonian for the 2-site and 2-electron model where basis states are
given as ψ1 = −c†1↑c

†
2↓|0〉, ψ2 = c†1↓c

†
2↑|0〉, ψ3 = c†1↓c

†
1↑|0〉, and ψ4 = c†2↓c

†
2↑|0〉.

For example, we set U = 2 and define A = −H + 2I. Let us start from a vector
a1 = (1, 1, 1, 1)t. Then one can easily obtain (we normalize vectors in which the
last component equals 1.0),

a2 = Aa1/2 = (2, 2, 1, 1)t, α(a1) = 2, β(a1) = 4, (153)

· · · (154)

a6 = (1.625, 1.625, 1, 1) t, α(a5) = 3.2, β(a5) = 3.25, (155)

· · · (156)

a11 = (1.61798, 1.61798,1, 1) t, α(a10) = 3.2359550, β(a10) = 3.2363636. (157)
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Thus we have 3.2359550≤ r ≤ 3.2363636. This implies that the ground-state energy
of H = −A + 2I is given as −1.2359550 ≤ Eg ≤ −1.2363636. The exact value is
Eg = −1.2360680 and the eigenvector is v = ((1 +

√
5)/2, (1 +

√
5)/2, 1, 1)t =

(1.61803, 1.61803,1,1) t. For the general U > 0, we can proceed with the same
method. Let an = (1, 1, xn, xn)t (0 < xn < 1). Then

Aan =




U + 2xn
U + 2xn

2
2


 , α(an) = U + 2xn, β(an) = 2/xn. (158)

(Here we have assumed that U + 2xn ≤ 2/xn.) In the limit n → ∞, we have
U + 2x = 2/x for x = limxn. Then the lowest eigenvalue of H is given by

Eg = −2x = U

2
− ((U

2
)2 + 4)1/2. (159)

Next we show an interesting theorem regarding an irreducible non-negative ma-
trix. Let r = ρ(A) be a Frobenius eigenvalue of A. We have two cases:
(I) r > |α| for any other eigenvalue α(�= r) of A. In this case we say that A is
primitive.
(II) There are eigenvalues λ1, · · · , λk for which r = |λi| (i = 1, · · · , k, k ≥ 2). In this
case A is said to be imprimitive.
For an imprimitive matrix A, A has a structure mentioned below.

Theorem 3.5 (Frobenius) Let A be an irreducible non-negative n× n matrix. We
assume that there are k eigenvalues λi (i = 1, · · · , k) (k ≥ 2) where the absolute
values are equal to the Frobenius eigenvalue. Then (a) λi (i = 1, · · · , k) is simple
root of the secular equation of A, and we can write

λn+1 = ρ(A)ei2πn/k , n = 0, 1, · · ·, k − 1. (160)

(b) By a permutation matrix P , A is written as

P−1AP =




0 A12 0 . . . 0
0 0 A23 . . . 0
. . . . . .
Ak1 0 0 . . . 0


 . (161)

For a primitive matrix A, we can say about an existence of limit Am. The behavior
of Am in the limit m → ∞ is crucially dependent on whether A is primitive or not.

Theorem 3.6 Let A ≥ 0 an irreducible square matrix. Then if and only if ρ(A) = 1
and A is primitive, we have

lim
n→∞An = A∗ �= 0. (162)
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3.2. Perron-Frobenius theorem: General case

Now let us go over to reducible matrices. Some properties of irreducible non-
negative matrices are preserved for reducible ones, since a reducible matrix is ob-
tained as the limit of a sequence of irreducible matrices.

Theorem 3.7 Let A be a non-negative n× n matrix.
(a) A has a non-negative eigenvalue r. To this eigenvalue r there corresponds a
non-negative eigenvector:

Ax = rx (x ≥ 0, x �= 0). (163)

(b) The absolute value of all the eigenvalues of A do not exceed r.

This theorem is also sometimes called the Perron-Frobenius theorem. We again call
r as the Frobenius eigenvalue. A uniqueness of the eigenvector with the maximal
eigenvalue is not guaranteed because A may be reduced to a triangular block form.
In the next section we show a proof. Instead, a short proof for Theorem 3.7 (a) is
presented here by virtue of Brouwer fixed point theorem.

Proof of (a) We can assume that every column of A has at least one non-zero
element. ( Otherwise 0 is an eigenvalue and the theorem holds.) LetN = {x|||x||2 =∑n

i=1 x
2
i = 1,x ≥ 0}. We define a continuous mapping f (x) : N → N by

f (x) =
1

||Ax||Ax. (164)

Clearly, if x ∈ N , then f (x) ∈ N . Thus it is from the Brouwer theorem (see the
Lemma below) that the mapping f (x) has a fixed point. For some x∗, we have

f (x∗) = x∗, x∗ ∈ N. (165)

Hence
1

||Ax∗||Ax∗ = x∗. (166)

We let r = ||Ax∗||, for which r ≥ 0 since aij ≥ 0 and x∗ �= 0(∈ N ). Then we have

Ax∗ = rx∗, (167)

and (a) holds.
As a reference, we show the Brouwer theorem.100,101 Let Dn be n-disk defined

as Dn = {x ∈ Rn|||x||2 = ∑n
i=1 x

2
i = 1}.

Lemma 3.8 (Brouwer) A continuous mapping f : Dn → Dn has a fixed point:
f(x) = x for some x ∈ Dn.

Proof Let us assume that f(x) �= x for any x ∈ Dn. Then x − f(x) �= 0 for any
x ∈ Dn. We define a mapping g : Dn → Sn−1 as follows. For each x ∈ Dn, g(x)
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is a projection of x onto Sn−1 where x− f(x) is parallel to g(x)− x. Then g(x) is
continuous and g|Sn−1 is an identity mapping. However, this mapping is impossible
because Dn and Sn−1 have different topological invariants,100

Hn−1(Dn) = 0, Hn−1(Sn−1) = Z. (168)

Hence f has a fixed point.
Lastly we show one statement for a non-negative matrix.

Theorem 3.9 Let A be a n × n non-negative matrix and r be the Frobenius
eigenvalue of A. For x = (x1, · · · , xn) > 0, we set

λx = min
1≤i≤n

∑n
j=1 aijxj

xi
, Λx = max

1≤i≤n

∑n
j=1 aijxj

xi
. (169)

Then
λx ≤ r ≤ Λx. (170)

If A is irreducible,
max
x

λx = r = min
x
Λx. (171)

Corollary

min
1≤i≤n

n∑
j=1

aij ≤ r ≤ max
1≤i≤n

n∑
j=1

aij , (172)

min
1≤j≤n

n∑
i=1

aij ≤ r ≤ max
1≤j≤n

n∑
i=1

aij . (173)

3.3. Appendix: Proof of the Perron-Frobenius theorem

In this section the Perron-Frobenius theorem is proved, where we follow the
treatments in Refs.102,103. First let us consider the following Lemmas.

Lemma 3.10 For an n× n irreducible matrix A,

(I +A)n−1 > 0, (174)

where I is a unit matrix.

Proof Let A = (aij) and Γ = {(i, j) ∈ Ω × Ω|aij �= 0} for Ω = {1, 2, · · · , n}. We
set Am = (a(m)

ij ). We define Γ(i, j) as a set of path connecting i and j, that is,
if σ = (i, i1, · · · , im−1, j) ∈ Γ(i, j), then aii1 �= 0, ai1i2 �= 0, · · · , aim−2im−1 �= 0 and
aim−1j �= 0. We write L(σ) = m which is called the length of σ. Then

a
(m)
ij =

∑
i1,···,im−1

aii1ai1i2 · · ·aim−1j

=
∑

σ∈Γ(i,j),L(σ)=m

aσ , (175)
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where aσ = ai0i1ai1i2 · · ·aim−1im (i0 = i). Hence a
(m)
ij > 0 if and only if there

exists σ ∈ Γ(i, j) such that aσ > 0 and L(σ) = m. One can assume that in
σ = (i0, i1, · · · , im) indices i0, i1, · · · , im are different each other. This indicates
that if Γ(i, j) �= φ, we have an element σ = (i0, i1, · · · , im) ∈ Γ(i, j) such that
m + 1 ≤ |Ω| = n, i.e. m ≤ n− 1. Therefore Γ(i, j) �= φ implies

aij + a
(2)
ij + · · ·+ a

(n−1)
ij > 0. (176)

Since A is irreducible, Γ(i, j) �= φ for i �= j and then (i, j) element xij of (I +A)n−1

is positive because of eq.(176):

xij = (n − 1)aij +
(

n− 1
2

)
a
(2)
ij + · · ·+ a

(n−1)
ij > 0. (177)

Obviously, the diagonal elements of (I + A)n−1 is ≥ 1 > 0.

Lemma 3.11 For a non-negative n × n matrix A and a real positive number s,
ρ(A) < s if and ony if there is some y > 0 (y ∈ Rn) such that sy > Ay.

Proof Let us suppose that ρ(A) < s. Then ρ(B) < 1 forB = A/s. Since the absolute
value of every eigenvalue of B is less than 1, I +B +B2 + · · · converges and equals
(I−B)−1 . Hence (I−B)−1 ≥ 0. Let z = (1, · · · , 1)t, then (I−B)−1z = y > 0. (Note
that each row of (I −B)−1 has at least one non-zero element.) Since z = (I −B)y,
we have y > By.
Inversely, suppose that y > By for y > 0 and B = A/s. Let u = y − By > 0,

then Biu ≥ 0 (i = 1, 2, · · ·). It is easy to see that

um = u+ Bu+ B2u+ · · ·+Bmu = (I + B +B2 + · · ·+Bm)(I − B)y

= y −Bm+1y ≤ y. (178)

If we write um = (v(m)
1 , · · · , v(m)

n ), then we obtain a bounded and monotonically
increasing sequence: v(1)

j ≤ v
(2)
j ≤ · · ·. Since um converges, we have um−um−1 → 0,

i.e. Bmu → 0. Hence Bm → 0 since u > 0. This indicates that ρ(B) < 1.

Proof of Theorem 3.1 (a) Let {si} be a sequence such that s1 > s2 > · · · > r

and limsi = r. It is followed from Lemma 3.11 that siyi > Ayi for some yi > 0
(yi ∈ Rn). We can suppose that ||yi|| = 1. Since {yi} is bounded in Rn, {yi} (or
its subsequence) converges to some limit. Let y = limyi. Obviously y ≥ 0 and
||y||= 1. Since siyi > Ayi, we have ry ≥ Ay.
Now we show that ry = Ay. Since (I + A)n−1 > 0 from Lemma 3.10, we have

v ≡ (I +A)n−1y > 0. Suppose that ry �= Ay, then

0 < (I +A)n−1(rI − A)y = (rI − A)(I +A)n−1y = rv −Av. (179)

Then rv > Av is followed. v > 0 indicates that r > ρ(A). This is a contradiction.
Hence we have ry = Ay.
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Next we show that y > 0 and r > 0. The former is followed from 0 < (I +
A)n−1y = (1 + r)n−1y. To show the latter, suppose that r = 0. Then Ay = 0,
which leads to A = 0 since y > 0. Hence (I + A)n−1 = I which contradicts with
(I +A)n−1 > 0.
(b) Let B = (bij). Let β be any eigenvalue of B: Bx = βx (x = (x1, · · · , xn)t �=

0). Since ρ(At) = ρ(A), there exists y > 0 (y ∈ Rn) such that Aty = ry for
r = ρ(A). We define x+ as x+ = (|x1|, · · · , |xn|)t. Because

∑
j bijxj = βxi, we have∑

j bij |xj| ≥ |β||xi| or
Bx+ ≥ |β|x+, x ≥ 0. (180)

We multiply y from the left and obtain

β(y,x+) ≤ (y, Bx+) ≤ (y, Ax) = r(y,x+). (181)

Note that (y,x+) > 0 since y > 0 and x+ ≥ 0. Then we have

r ≥ |β|. (182)

Let us consider the case where r = |β|. Then

(y, Bx+) = (y, Ax+) (183)

is followed. The fact y > 0 indicates that

Bx+ = Ax+. (184)

Similarly we have Bx+ = rx+ from eq.(181). Hence Ax+ = rx+. Then it is
followed from (a) that x > 0. Thus A = B from eq.(184).
(c) Let f(t) = det(tI − A). Then

f ′(t)

=

∣∣∣∣∣∣∣∣

1 −a12 · · · −a1n

0 t− a22 · · · −a2n

· · · · · ·
0 −an2 · · · t− ann

∣∣∣∣∣∣∣∣
+ · · ·+

∣∣∣∣∣∣∣∣

t− a11 −a12 · · · 0
−a21 t − a22 · · · 0
· · · · · ·

−an1 −an2 · · · t− ann

∣∣∣∣∣∣∣∣
= det(tIn−1 − A1) + · · ·+ det(tIn−1 −An), (185)

where In−1 is a unit matrix of degree n − 1. Let Bi be a matrix obtained from A

by replacing elements in the ith row and ith column by 0. Ai is defined from A

by removing ith row and ith column from A. By a permutation matrix P , we can
write

PBiP
−1 =



0 0 . . . 0
0
· · · Ai

0


 . (186)

Hence we have
det(tI − Bi) = t · det(tIn−1 − Ai). (187)
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This means that ρ(Bi) = ρ(Ai). Since A ≥ Bi ≥ 0, ρ(A) ≥ ρ(Bi) from (b). Thus
we have r = ρ(A) > ρ(Bi) = ρ(Ai) (A �= Bi). This indicates that

det(rIn−1 − Ai) > 0. (188)

Therefore f′(r) > 0 and r is a simple root of f(t) = 0.

Proof of Theorem 3.2 Since At and A have the same eigenvalues, ρ(A) = ρ(At).
There exists y > 0 (y ∈ bfRn) such that Aty = ry for r = ρ(A). Then (αx,y) =
(Ax,y) = (x, Aty) = (x, αy). Hence α(x,y) = r(x,y). Since (x,y) > 0, we have
α = r. From (I + A)n−1 > 0, (I + A)n−1x = (1 + α)n−1x > 0 is followed. Then
x > 0.

Proof of Theorem 3.3 Let α = αA(x), β = βA(x) and r = ρ(A). From the definition,
we have αx ≤ y = Ax ≤ βx. If we take z > 0 such that Atz = rz, then (αx, z) ≤
(y, z) ≤ (βx, z). Hence

(αx, z) ≤ (Ax, z) = (x, Atz) = r(x, z) ≤ (βx, z). (189)

Since (x, z) > 0, we have α ≤ r ≤ β. If α = r, then αx = Ax is followed from
eq.(189) and z > 0. Hence we have αx = y. It is followed from the definition of α
and β that β = α. Similarly β = r implies α = β. Therefore we have α < r < β if
α < β.

Proof of Theorem 3.4 Let us apply B ≥ 0 to the inequality αB(aj)aj ≤ Baj ≤
βB(aj)aj :

αB(aj)aj+1 ≤ Baj+1 ≤ βB(aj)aj+1. (190)

From the definitions of αB and βB , we have

αB(aj) ≤ αB(aj+1) ≤ βB(aj+1) ≤ βB(aj). (191)

Since 1 + r = ρ(B) (r = ρ(A)), we have αB(aj) ≤ 1 + r ≤ βB(aj) (j = 1, 2, · · ·)
from Theorem 3.3. It is followed from the definition that I +A is primitive. Thus
a sequence {(B/(1 + r))j}j=1,2,··· has a finite limit limj→∞(B/(1 + r))j because of
Theorem 3.6. Hence for some b ∈ Rn,

lim
j→∞

(
B

1 + r
)ja = lim

j→∞
(1 + r)−jaj = b. (192)

Applying B, we have

lim
j→∞

(1 + r)−jBaj = lim
j→∞

(1 + r)−(j+1)aj+1(1 + r) = (1 + r)b. (193)

From the definition of αB and βB , we obtain

lim
j→∞

αB(aj) = 1 + r, lim
j→∞

βB(aj) = 1 + r. (194)
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This concludes the proof.

Proof of Theorem 3.6 Suppose that limm→∞ Am = A∗ �= 0. From a theorem in
Linear algebra (see Lemma 3.12 below), we should have ρ(A) = 1 and its multiplicity
should be 1. Thus A is primitive.
Inversely, suppose that ρ(A) = 1 and A is primitive. Obviously limm→∞ Am =

A∗ �= 0 exists from Lemma 3.12.

Lemma 3.12 For a n×n square matrix A, the following (a) and (b) are equivalent.
(a) There exists a limit limn→∞ An = B.
(b) For any eigenvalue α of A, we have |α| < 1 or α = 1. If α = 1 is the eigenvalue
of A, α = 1 is a simple root of the characteristic equation.
(See some text for a proof.)

Proof of Theorem 3.7 (a) Let A = (aij). We define a matrix A(m) = (a(m)
ij ) by

a
(m)
ij = aij + 1/m for m = 1, 2, · · ·. Since A(m) > 0, A(m) is irreducible. Then by

Theorem 3.1, A(m) has the Frobenius eigenvalue r(m) and its corresponding positive
eigenvector x(m) > 0:

A(m)x(m) = r(m)x(m), r(m) > 0, x(m) > 0. (195)

Let

N = {x|
n∑
i=1

xi = 1, x ≥ 0}. (196)

We can assume that x(m) ∈ N (m = 1, 2, · · ·). Since N is compact, from {x(m)} we
can chose a subsequence

xν1 ,xν2, · · · ,xνj , · · · , (ν1 < ν2 < · · · < νj < · · ·), (197)

which converges. Let
x = lim

j→∞
xνj . (198)

Obviously A(m) > A(m+1) > A (m = 1, 2, · · ·). Then by Theorem 3.1(b), we
have r(m) ≥ r(m+1) > 0 (m = 1, 2, · · ·). Thus the sequence r(1), r(2), · · · , r(j), · · ·
is bounded from below and monotonically decreasing, indicating an existence of a
limit:

r = lim
m→∞ r(m) ≥ 0. (199)

Then {r(νj)} also converges to r and in the limit j → ∞ we have

Ax = rx. (200)

Clearly x ≥ 0 since x ∈ N .
(b) Since A(m) is irreducible and A(m) > A ≥ 0, we have

r(m) ≥ |α|, (m = 1, 2, · · ·) (201)
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for any eigenvalue α of A from Theorem 3.1(b). Let m → ∞, then

r ≥ |α|. (202)

Now (b) holds.

To keep the section within reasonable length, we omit a proof of Theorem 3.8 since
its proof has a little bit large length. See, for example, Ref.98 for a complete proof.

Proof of Theorem 3.9 Let y be an eigenvector corresponding to the Frobenius eigen-
value r = ρ(At). Then

ytA = ryt, yt ≥ 0, (203)

is followed. From the definition of λx and Λx, we have

λxxi ≤
n∑

j=1

aijxj ≤ Λxxi (i = 1, 2, · · · , n), (204)

and
λxx ≤ Ax ≤ Λxx. (205)

It is followed from eq.(203) that

λx(y,x) ≤ r(y,x) ≤ Λx(y,x). (206)

Since (y,x) > 0, we have
λx ≤ r ≤ Λx. (207)

If A is irreducible, there is a vector x∗ > 0 such that Ax∗ = rx∗. Therefore

r = (
n∑

j=1

aijx
∗
j)/x

∗
i . (208)

This implies r = λx∗ = Λx∗ .
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4. Applications of the Perron-Frobenius theorem to interacting systems

4.1. The Heisenberg model

Let us discuss the Heisenberg model following the treatment in Refs.57,104 to
prove a uniqueness of the ground state on a finite lattice employing the Perron-
Frobenius theorem. We write again the Lemma mentioned in the section 2.4.

Theorem 4.1 Let us consider the spin-1/2 antiferromagnetic Heisenberg model on
a connected and bipartite lattice,

H =
∑
ij

JijSi · Sj, (209)

where Jij ≥ 0 are non-zero for i ∈ A and j ∈ B or i ∈ B and j ∈ A. Let us denote
the number of sites in A and B sublattices as |A| and |B|, respectively, and assume
that |A| ≥ |B|. Then the ground state is unique and has S = (|A| − |B|)/2.

Proof In the subspace with Sz = M , we can choose the basis set {φα} where
each φα denote a configuration of spins in the real space. First, let us perform a
transformation

Sx
i → −Sx

i , Sy
i → −Sy

i , Sz
i → Sz

i (i ∈ A) (210)

and the spins on the B-sublattice are unaltered. The Hamiltonian reads H =
H0 +H1 in the new system, where

H0 =
∑
ij

JijS
z
i S

z
j , (211)

H1 = −
∑
ij

Jij
1
2
(S+

i S−
j + S−

i S+
j ). (212)

H1 is the off-diagonal part of H.
Suppose that the z-component Szi has mi(i ∈ Λ) (=1/2 or −1/2) in a given state

φα. Then our basis state is given by

φα = C(S+
1 )

1
2 +m1 (S+

2 )
1
2 +m2 · · · (S+

N )
1
2+mN ψ0, (213)

where ψ0 is the state occupied by down spins at each site and C is a positive
normalization constant. Then it is easy to check that the matrix element defined
by

Tβα = 〈φβ|H1|φα〉 (214)

is non-positive for any α and β:
Tβα ≤ 0. (215)

The connectivity of Λ guarantees that T = (Tβα) is irreducible.aHence the Perron-
Frobenius theorem implies a uniqueness of the lowest energy state in each subspace
aSee the section 3.1 for the definition of irreducible.
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with Sz = M . This indicates that the ground state is unique since every energy
eigenvalue has a corresponding eigenfunction in the lowestM subspace. The ground
state eigenfunction ψ has positive amplitudes for this basis set, i.e.

ψ =
∑
α

cαφα, cα > 0. (216)

Now let us consider the total spin of the ground state. If |A| = |B|, we can
easily construct a trial state with S = 0. A simple one is

ψtri = C ′ψi1j1ψi2j2 · · ·ψiN/2jN/2 , (217)

where ik ∈ A, jk ∈ B and C ′ > 0. (i1, · · · , iN/2 are different one another, which
also applies to j1, · · · , jN/2.) ψikjk denotes a local singlet in which spins are located
on sites ik and jk. If we compared the signs of amplitudes in the expansion in our
basis set {φα}, we can check that ψ and ψtri have exactly the same signs (if we go
back to the original system). Thus we have 〈ψ|ψtri〉 �= 0. Hence ψ has S = 0. We
can proceed in a similar manner for general cases |A| > |B|, where the spins on the
different sublattices are in antiferromagnetic-like states and the spins on the same
sublattices are ferromagnetic like.
In the theorem above, the spin of a localized electron is 1/2, but following the

original paper57 we may be extending to deal with various types of localized spins,
where the magnitude of spin on each site is si. In this case the total spin is given
by

S = |SA − SB |, (218)

where SA and SB are maximum possible spins on each sublattices,

SA =
∑
i∈A

si, SB =
∑
j∈B

sj . (219)

4.2. Double exchange interaction and ferromagnetism

In this section let us consider the ferromagnetism induced by double exchange
interaction. The double exchange interaction may be important for the ferromag-
netism of real materials such as mixed valency compounds. In the subsequent sec-
tions we will show several models which exhibit ferromagnetism due to the double
exchange interaction. The double exchange interaction was first proposed long time
ago by Zener105 in the study of ferromagnetism of mixed valence compounds such
as La1−xCaxMnO3. Later Anderson and Hasegawa106 calculated energy splitting
due to the double exchange. In the semiconducting phase each Mn ion has a charge
of 3+. When some of the La3+ are replaced by Ca2+ ions, a corresponding number
of Mn3+ ions are replaced by Mn4+ ions. This doping effect gives rise to electrical
conductivity. Let us examine the magnetism of two Mn ions separated by an O2−

ion. Following Zener, we assume large Hund couplings so that each Mn ion has its
highest multiplicity. We define three configurations as follows.107

44



ψI : Mn3+(↑↑)O2−(↓↑)Mn4+(↑)
ψII : Mn3+(↑↑)O−(↓)Mn 3+(↑↑)
ψIII : Mn4+(↑)O2−(↓↑)Mn 3+(↑↑)

Since ψI and ψIII have the same energy, the ferromagnetic state will be stabilized
through the excited state ψII . This resonance is absent for two Mn ions with
antiparallel spins. Hence an effective exchange interaction between Mn3+ and Mn4+

is ferromagnetic, which is the proposal by Zener called the double exchange.
Let us consider the following process; this may be also called the double exchange

where the ferromagnetic couplings between localized spins are induced by succesive
exchange interactions between the conduction electrons and the localized spins. We
define three states ψ1, ψ2 and ψ3 with Sz = 1/2 in which di(σ) (i = 1, 2) denotes
the localized electron with spin σ and the exchange process occurs through the
intermediary of s(σ′) electron.

ψ1 = d1(↑)s(↓)d2(↑),
ψ2 = d1(↑)s(↑)d2(↓),
ψ3 = d1(↓)s(↑)d2(↑).

Suppose that we have an exchange coupling H = J(S1 · σ + S2 · σ) between d and
s electrons. We have off-diagonal elements of H as


 0 J/2 J/2

J/2 0 0
J/2 0 0


 . (220)

Clearly two localized spins are ferromagnetic, which is also seen by the Perron-
Fobenius theorem. Maybe we don’t need to refer to the Perron-Frobenius theorem
for such a small system. For J < 0 the ground state has S = 3/2 since the
eigenvector is positive (> 0). For J > 0 the matrix of off-diagonal elements is
non-positive for the set of basis {−ψ1, ψ2, ψ3} and therefore two localized spins are
parallel again.
Based on this consideration, we investigate the Kondo (lattice) Hamiltonian

given as
H = J

∑
iσσ′

Si · c†iσσσσ′ciσ′ +
∑
ijσ

tijc
†
iσcjσ, (221)

where Si is the spin-1/2 localized spin on the i-th site and σσσ′ indicate the Pauli
matrices. The localized spins are located on every sites periodically. c†iσ and ciσ are
operators for the conduction electrons with the transfer matrix elements tij between
the i-th and j-th sites. Here let us assume that J < 0 corresponding to the Hund
coupling.
Suppose that |J | is large or tij are small considerably.108,110 When the transfer

term is absent, the eigenstates of H are highly degenerate with respect to spin and
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electron configurations. The electron hoppings due to the perturbation produce the
double exchange interaction and the degeneracies are removed. Our purpose is to
derive an effective Hamiltonian in the limit where |J | � |tij|. We should exclude
doubly occupied sites since they have higher energy of the order of J . The transfer
term is written in a form which is similar to the ’correlated hopping’ Hubbard
model, where the transfer integrals are dependent on spin configurations at sites i

and j. An important feature is that we have the terms such as c†i↓cj↑ and c†i↑cj↓.
The following four processes should be considered, where we use the notation

(
di dj
si sj

)
, (222)

for which di and si indicate spin state of the localized spin and the conduction
electron at site i, respectively, and − means no conduction electron:

( ↓ ↑
− ↑

)
→

( ↓ ↑
↑ −

)
→

( ↑ ↑
↓ −

)
, (223)

( ↓ ↓
− ↑

)
→

( ↓ ↓
↑ −

)
→

( ↑ ↓
↓ −

)
, (224)

( ↓ ↓
− ↑

)
→

( ↓ ↑
− ↓

)
→

( ↓ ↑
↓ −

)
, (225)

( ↑ ↓
− ↑

)
→

( ↑ ↑
− ↓

)
→

( ↑ ↑
↓ −

)
. (226)

These transfers are written in a unified way,

tij(1− ni↑)c
†
i↓cj↑(1− nj↓)(PjPi)↓↑, (227)

where a matrix (Pi)σσ′ is defined by

(Pi)σσ = σSz
i +

1
2
+ λ (σ =↑, ↓), (228)

(Pi)↑↓ = S−
i , (Pi)↓↑ = S+

i , (229)

or we can write
(Pi)σσ′ = Si · σσσ′ + (

1
2
+ λ)δσσ′ . (230)

(λ is a constant.) (PiPj)↓↑ = (Pi)↓↑(Pj)↑↑ + (Pi)↓↓(Pj)↓↑ in eq.(227) contributes to
four terms above. Therefore the effective Hamiltonian for the conduction electrons
is written in the form of a modified infinite-U model (λ = 1):108

Heff =
∑
ijσσ′

tij(1− ni,−σ)c
†
iσcjσ′(1− nj,−σ′)(PiPj)σσ′ . (231)
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Now we investigate the ground state of this effective Hamiltonian. Let us consider
the following statement.111

Theorem 4.2 We consider the Hamiltonian in eq.(231) on a one-dimensional (con-
nected) lattice with open boundary condition. Suppose that t = tij are non-zero for
nearest-neighbor pairs (i, j) and t < 0. Then the ground state is unique for Ne < N

(where Ne and N are number of electrons and sites, respectively).

Proof It is easy to see that matrix elements of the Hamiltonian are non-positive if t
is negative. This is because an electron cannot pass through another electrons since
no doubly-occupied sites are allowed. It is also obvious that the matrix is irreducible
because of the geometry (with periodic localized spins) of one-dimensional chain. To
show this, we can employ the mathematical induction with respect to the number
of sites.111 Therefore the ground state is unique according to the Perron-Frobenius
theorem.
As a result of the Perron-Frobenius theorem, we have the ferromagnetic ground

state with a positive eigenvector. This is a ferromagnetism due to the double ex-
change interaction. A similar discussion is possible for the antiferromagnetic Kondo
coupling J > 0 which is going to be investigated in the next section.

4.3. 1D Kondo lattice in the limit of large J

The Kondo lattice with the antiferromagnetic J > 0 is also mapped onto a
Hubbard model with infinitely large on-site Coulomb interaction if we regard the
local singlet as a hole.109,110 Our model is defined on a one-dimensional lattice
with open boundary condition. The ground state can be ferromagnetic due to the
succesive exchange interactions (i.e. double exchange). We can easily emagine that
the local singlets are moving along a chain and we should note that spin-flip process
of the neighboring localized spins is never included in the infinite-J limit. This point
is different from the case with the ferromagnetic J < 0 in the previous section. The
matrix of the Hamiltonian is not necessarily irreducible in the zeroth order of t/J ,
which means that we have the spin degeneracy. For example, see the following
process:( ↑ ↓ ↓

↑
)

→
( ↑ ↓ ↓

↑
)

→
( ↑ ↑ ↓

↓
)

→
( ↑ ↑ ↓

↓
)

, (232)

where the upper and lower parts indicate the localized spins and conduction elec-
tron, respectively. The localized spins are never exchanged.
Hence we should consider contributions of the order of t/J . There are two kinds

of virtual processes: one is to make a local triplet and the other is to go through
a doubly-occupied site. Both of them create next nearest neighbor hopping terms.
(See below.)

( ↑ ↓ ↑
↓

)
→

( ↑ ↓ ↑
↓

)
→

( ↑ ↓ ↑
↓

)
, (233)
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( ↑ ↓ ↑
↑ ↓

)
→

( ↑ ↓ ↑
↓↑

)
→

( ↑ ↓ ↑
↓ ↑

)
. (234)

The former involves a spin flip and the latter causes no effect in the spin configura-
tion. Therefore the effective Hamiltonian for J > 0 is written as, (See Ref.109 for a
mathematical derivation)

H = −t
∑
〈ij〉σ

f
¯
†
iσf¯jσ

+ t′
∑
iσ

(f
¯
†
i−1σn¯i

f
¯i+1σ + h.c.), (235)

where f
¯iσ

are correlated operators: f
¯iσ
= fiσ(1−ni,−σ) and n¯i

=
∑

σ f¯
†
iσf¯iσ

. t′ given
by t′ = t2/(2J) is the transfer parameter of three-site terms. The basis set for this
effective Hamiltonian consists of states with various spin configurations without
double occupancy. Thus it is easy to check that every off-diagonal element can be
non-positive where they are −t or −t′. Obviously the matrix of the Hamiltonian is
irreducible since we have spin-flip processes. Hence a straightforward application of
the Perron-Frobenius theorem leads to the following statement.

Theorem 4.3 Consider the Kondo lattice on a connected one-dimensional lattice
with the open boundary condition. Suppose that J > 0 is antiferromagnetic. Then
the spin degeneracy in the limit J = ∞ is lifted by the first-order perturbation in
1/J . As a result the ground state is unique and ferromagnetic with the total spin
S = (N − Ne)/2 for Ne < N if J is large enough (where N is the number of sites
and Ne is the number of conduction electrons).

The localized spin forms a singlet with a conduction electron at each site and the
remaining spins are in a collective ferromagnetic state. The origin of the ferromag-
netism is the double exchange as is the case for J < 0. Clearly this statement is
not valid for the two- or three-dimensional models.

4.4. Kondo lattice with one conduction electron

Next application of the Perron-Frobenius theorem is the Kondo lattice with
one conduction electron, which is also important to clarify the ground-state phase
diagram.112,113 It may be clear from the discussion above that the ground state has
a ferromagnetic order in the limit of small carriers because of the double exchange.
In fact, we can show the following proposition.114

Theorem 4.4 Let us consider the Kondo lattice Hamiltonian on a connected lattice
given by

H = −
∑
ijσ

tijc
†
iσcjσ + J

∑
i

Si · σi, (236)

where σi denotes the spin operator of the conduction electron at site i. tij =
t > 0 are assumed to vanish except between nearest-neighbor sites. Suppose that
we have one conduction electron and we impose the open or periodic boundary
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conditions. Then the ground state is unique for J �= 0 (apart from the 2S + 1-fold
spin degeneracy). The total spin of the ground state is given by

S = (N − 1)/2 for J > 0,

S = (N + 1)/2 for J < 0,

where N is the number of sites.

Proof First, we consider the case for J > 0 (antiferromagnetic coupling). If N is
even, we work in the space Sz = 1/2, while if N is odd, our space has Sz = 0. The
basis set consists of the states given as

ψ(jσ;σ1, · · · , σN) = σc†jσ|σ1, · · · , σN〉, (237)

where |σ1, · · · , σN〉 indicates the localized spin configuration. Note that a spin-down
conduction electron has a negative sign attached to wave functions. The Schrödinger
equation reads

Hψ(jσ;σ1, · · · , σN) = −
∑
i

tijψ(iσ;σ1, · · · , σN) +
1
4
J

∑
j

σjψ(jσ;σ1, · · · , σN)

− 1
2
J

∑
j(σ �=σj)

ψ(j,−σ;σ1, · · · , σj−1,−σj, σj+1, · · · , σN).

(238)

It is straightforward to see that all the off-diagonal elements are non-positive for
J > 0 and t = tij > 0. Since we have the spin-flip process between two localized
spins within our basis set, the matrix of the Hamiltonian is shown to be irreducible.
Then the lowest eigenvalue in the space Sz = 0 or 1/2 (i.e. the ground state ψ), is
unique with a positive eigenvector.
In order to show that the ground state has the total spin S = (N − 1)/2, we

construct a trial state ψtri with S = (N − 1)/2 such that 〈ψtri|ψ〉 �= 0. From the
construction of basis set, the following state

ψferr = ψ(1, ↑; ↓, ↑, · · · , ↑) + ψ(1, ↓; ↑, ↑, · · ·, ↑), (239)

has S = (N − 1)/2 in the space with Sz = (N − 1)/2. Then we define

ψtri = (S−)nψferr, (240)

where n = [(N−1)/2] (=integer part of (N−1)/2). Since ψtri is a linear combination
of basis states with non-negative weights, we have 〈ψtri|ψ〉 �= 0. Hence the ground
state has S = (N − 1)/2.
For the ferromagnetic coupling J < 0 (which is rather obvious compared to the

case J > 0), we use the following basis states:

ψ(jσ;σ1, · · · , σN) = c†jσ|σ1, · · · , σN〉, (241)

49



with the same notation as before. The Schrödinger equation for these bases has the
form

Hψ(jσ;σ1, · · · , σN) = −
∑
i

tijψ(iσ;σ1, · · · , σN) +
1
4
J

∑
j

σσjψ(jσ;σ1, · · · , σN)

+
1
2
J

∑
j(σ �=σj)

ψ(j,−σ;σ1, · · · , σj−1,−σj, σj+1, · · · , σN).

(242)

Obviously, the argument for J > 0 applies to the present case, and therefore we
have a unique ground state with the total spin S = (N + 1)/2.

4.5. Anderson lattice for Ne = N + 1

Let us consider the Anderson lattice model at quarter filling with one extra
electron, Ne = |Λ|+ 1. Let N = |Λ|. We write again the Hamiltonian:

H = −t
∑
〈ij〉σ

c†iσcjσ − µ
∑
iσ

nciσ

+ V
∑
iσ

(c†iσfiσ + h.c.) + εf
∑
iσ

nfiσ + Uf

∑
i

nfi↑nfi↓. (243)

Here we do not include the Coulomb interactions between the conduction electrons
because they are not important for our purpose. Since the Anderson (lattice) Hamil-
tonian is mapped onto the Kondo (lattice) Hamiltonian in the limit εf → −∞ and
Uf → ∞, we can expect a ferromagnetic ground state for Ne = N +1.115 Obviously
the ground states are degenerate with respect to spin configurations in the limit
εf → −∞ (or V → 0). Due to the perturbations in terms of V , the degeneracy
will be partly lifted. We shall show that a first order perturbation in V lifts the
degeneracy and a ferromagnetic state will be the ground state. Let us suppose that
we can write the wave function in the form,

ψ = ψ0 + ψ1 + ψ2 + · · · . (244)

ψ0 is a zero-th order wave function which consists of basis states given as

ψiσ;{σn} = σc†iσf
†
1σ1

f†
2σ2

· · ·f †
NσN

|0〉, (245)

where {σn} (n = 1, 2, · · · , N ) denotes a set of spin configurations of f electrons. In
the subspace {ψiσ;{σn}}, one conduction electron is moving around and we have a
large spin degeneracy. The second term ψ1 is of the order of V/εf and includes
spin exchange processes between the conduction electrons and the f electrons. It
is a priori not clear whether the degeneracy is lifted completely or we still have a
degeneracy in the ground states. For simplicity, let us consider the lattice with open
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boundary conditions. We make a statement in the following form.b

Theorem 4.5 Let us condider the Anderson lattice Hamiltonian with open bound-
ary conditions. We assume that Ne = N + 1 and Uf =∞. In the limit εf → −∞,
we have a degeneracy in the ground states with respect to spin configurations.
The degeneracy is lifted due to the first order perturbation of the order of V/εf
and then the ground state becomes unique. The ground state has the total spin
S = (N − 1)/2.

Proof We set Ne = N + 1. In the limit εf → −∞, a wave function is written as a
linear combination of the basis states {ψiσ;{σn}}:

ψ0,σ,{σn} =
∑
i

a0
iσ;{σn}ψiσ;{σn}. (246)

We have the large degeneracy with respect to {σn} and σ. If we apply the Hamil-
tonian to ψiσ;{σn}, we obtain

Hψiσ;{σn} = −tσ(c†i+1σ + c†i−1σ)f
†
1σ1

· · ·f †
NσN

|0〉
+ V σc†iσ

∑
j

(−1)j−1c†jσj
f†
1σ1

· · ·f †
j−1σj−1

f†
j+1σj+1

· · ·f †
NσN

|0〉

+ Nεfψiσ;{σn}. (247)

Hence ψ1 consists of basis states given as

ψiσ,jσ′;{σn} = (−1)jσc†iσc†jσ′f
†
1σ1

· · ·f †
j−1σj−1

f†
j+1σj+1

· · ·f †
NσN

|0〉. (248)

For i = j, the above definition means

ψi↑,i↓;{σn} = ψi↓,i↑;{σn}

= −(−1)ic†i↓c†i↑f†
1σ1

· · ·f †
i−1σi−1

f†
i+1σi+1

· · ·f †
NσN

|0〉. (249)

It is easy to see that ψ1 is of order V/εf if we substitute ψ = ψ0 + ψ1 given as

ψ0 =
∑

iσ{σn}
a0
iσ;{σn}ψiσ;{σn}, (250)

ψ1 =
∑

iσjσ′{σn}
a1
iσjσ′{σn}ψiσ,jσ′;{σn}, (251)

into the Schrödinger equation Hψ = Eψ. If we apply H to ψ1, we have ψ2 in
which the conduction electrons excited from the f-level move to neighboring sites.
However, ψ2 is a state of the order of (1/εf)2, and we do not consider ψ2 here.c

bWe thank Prof. K. Ueda for his instructive comments.
cIn Ref.115, this property is not mentioned explcitly. Probably clever readers are already aware
of the fact that Hψ1 contains higher-order contributions. We should let the amplitude of a state
such as

c
†
i↑c

†
k↑f

†
1σ1

· · ·f †
j−1σj−1

f
†
j+1σj+1

· · ·f †
NσN

|0〉 (k �= j) (252)

to be 0. This means that the exchange of the conduction electrons with the same spin is not
included.
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With this definition in mind, it is clear that off-diagonal elements due to the kinetic
part of the Hamiltonian are always non-positive (−t < 0 or 0) within the subspace
spanned by {ψiσ;{σn}, ψiσ,jσ′;{σn}} for the open boundary conditions. It is also easy
to obtain

〈ψiσ,jσ′ ;{σn}|H|ψiσ;{σn}〉 = −V δσ′σj (i �= j), (253)

and
〈ψi↑,i↓;{σn}|H|ψiσ;{σn}〉 = −V δ−σσi . (254)

These two matrices are non-positive if V > 0. Thus we have shown that all the
off-diagonal elements are non-positive in our subspace. Because of the geometry
of the Anderson lattice, the Hamiltonian is irreducible. Hence, according to the
Perron-Frobenius theorem, the ground state is unique and is a linear combination
of basis states with positive coefficients.
In order to investigate the total spin, we have only to make a trial state with

the total spin S = (N −1)/2 having a non-zero inner product with the ground state
ψ. One example is

ψtr = (S−)nψferr, (255)

where
ψferr =

∑
i

(−1)i−1(c†i↑f
†
i↓ − c†i↓f

†
i↑)

∏
j �=i

f†
i↑|0〉. (256)

Therefore we can show that S = (N − 1)/2.
A mean field theory predicts the ferromagnetic phase near quarter filling116 and

suggests that the ferromagnetism survives in the thermodynamic limit.

4.6. 1D Kondo lattice with large Coulomb interaction U

In this section, we investigate the effect of Coulomb interaction between the
conduction electrons for the Kondo lattice Hamiltonian. The importance of the
Coulomb interaction is now being appreciated for rare earth compounds. The
Hamiltonian is written in the form

H = −t
∑
〈ij〉

c†iσcjσ + U
∑
i

ni↑ni↓ + J
∑
i

Si · σi, (257)

where 〈ij〉 indicates a nearest-neighbor pair of sites and we denote niσ = c†iσciσ.
We assume that the lattice is one-dimensional and we denote the number of sites
as N and that of conduction electrons as Ne. We have considered the Kondo lat-
tice Hamiltonian in the Chapter 2 for the half-filled band, where antiferromagnetic
correlations are proved for U > 0. However, the exchange processes of the conduc-
tion electrons are reduced by the Coulomb interaction U away from the half filling,
which may change the nature of spin correlations. Let us discuss the following
proposition.46

Theorem 4.6 Assume that U is very large and Ne < N . Let us set the open
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boundary condition. Then the ground state of the one-dimensional Kondo lattice
in eq.(257) is unique and has the total spin

S = (N −Ne)/2 for J > 0 ,

S = (N +Ne)/2 for J < 0.

Proof We denote the operators of localized electrons as fiσ and f†
iσ . Suppose that

U is infinitely large and that J > 0. We use the following representation for the
basis states:

ψ({xj}, {σj}; {si}) =
Ne∏
j=1

σjc
†
xjσj

N∏
j=1

f†
jsj

|0〉

≡
Ne∏
j=1

σj|x1σ1, x2σ2, · · · , xNeσNe〉 ⊗ |s1, · · · , sN 〉,

(258)

where {xi} represent positions of the conduction electrons, x1 < x2 < · · · < xNe ,
and {σi} and {sj} denote spin configurations of the conduction and localized elec-
trons, respectively. The wave function of this type is a generalization of that for the
single-conduction electron case. Since U is infinite, an electron cannot pass through
another electrons by the nearest-neighbor transfers. Then the Schrödinger equation
for ψ({xj}, {σj}; {si}) reads

Hψ({xj}, {σj}; {si}) = −t
∑

$(x
−1 �=x
−1)

Ne∏
i

σi

× |x1σ1, · · · , x$−1σ$−1, x$ − 1σ$, x$+1σ$+1, · · · , xNeσNe〉
⊗ |s1 · · ·sN 〉

− t
∑

$(x
+1 �=x
+1)

Ne∏
i

σi

× |x1σ1, · · · , x$−1σ$−1, x$ + 1σ$, x$+1σ$+1, · · · , xNeσNe〉
⊗ |s1 · · ·sN 〉

+
J

2

∑
$,j(x
=j,σ
=−sj)

Ne∏
i

σi

× |x1σ1, · · · , x$−1σ$−1, x$ − σ$, x$+1σ$+1, · · · , xNeσNe〉
⊗ |s1 · · ·sj−1,−sj , sj+1, · · · , sN 〉
+ (diagonal terms)

= (hopping terms)

− J

2

∑
$,j(x
=j,σ
=−sj)

ψ({xi}, {σ1, · · · , σ$−1,−σ$, σ$+1,
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· · · , σNe}; {s1 · · ·sj−1,−sj , sj+1, · · · , sN})
+ (diagonal terms). (259)

Obviously, the matrix elements due to the hopping terms and exchange interactions
are non-positive (if t > 0 and J > 0). The matrix of the Hamiltonian is shown to
be irreducible, for instance, in a similar manner to the double exchange model in
the section 4.2.111 Therefore the Perron-Frobenius theorem implies that the ground
state is unique.
To show that the ground state has the total spin S = (N −Ne)/2 for J > 0, we

consider the following state

ψtri =
Ne∏
j=1

(c†j↑f
†
j↓ − c†j↓f

†
j↑)(S

−)n
N∏

i=Ne+1

f†
i↑|0〉. (260)

We can check that ψtri has a non-zero inner product with the ground state. Hence
S = (N − Ne)/2.
For J < 0 (ferromagnetic case), the basis states are written in the form

ψ({xj}, {σj}; {si}) =
Ne∏
j=1

c†xjσj

N∏
j=1

f†
jsj

|0〉

≡
Ne∏
j=1

|x1σ1, x2σ2, · · · , xNeσNe〉 ⊗ |s1, · · · , sN 〉. (261)

Similarly, we can show that the ground state has S = (N +Ne)/2.
We can say that this is the ferromagnetism due to the double exchange inter-

action. The above proposition indicates an example of the ferromagnetism induced
by the Coulomb repulsion. In particular, a metallic complete ferromagnetic state
is realized for J < 0. For a possible phase diagram of the 1D Kondo lattice with
U > 0, see Ref.46.
Now let us turn to the model where all the off-diagonal elements are non-positive

and the Hamiltonian is, however, not (proved to be) irreducible. An example of
such a model is given by the one-diemnsional Kondo Hamiltonian with two local-
ized spins. We impose the open boundary condition for Ne < N . Suppose that
the Coulomb repulsion U between the conduction electrons is very large, then the
Hamiltonian has non-positive off-diagonal elements. Since we cannot show that the
Hamiltonian is irreducible, we apply the Perron-Frobenius theorem for the general
case to the two-impurity Kondo model. As a result, among the ground states there
is one with a non-negative eigenvector. This eigenstate contains a ferromagnetic
order, in which two localized spins show a parallel correlation.

4.7. Nagaoka ferromagnetism

A possible ferromagnetic state near half filling was pointed out by Nagaoka and
Thouless.117,118 This famous Nagaoka state can be recognized as an application of
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the Perron-Frobenius theorem.119 The Hamiltonian is given by the Hubbard model:

H =
∑
ij

tijc
†
iσcjσ + U

∑
i

ni↑ni↓, (262)

where niσ = c†iσciσ. We denote the number of sites and electrons as N and Ne,
respectively. Nagaoka proved the following statement.

Theorem 4.7(Nagaoka) Assume that tij is nonvanishing only between nearest-
neighbor sites, which is denoted by t. The crystal structure is simple cubic, body-
centered cubic, face centered cubic, or hexagonal closed packed. Then the ferro-
magnetic state with the maximum total spin is the ground state of the system for
Ne = N − 1, U =∞, and t > 0.

Remark The ferromagnetic state is given by filling up the band for up electrons
except one level at the band top. This state has

S = Smax =
1
2
Ne, Sz = ±S, (263)

E = −zt, (264)

where z is the number of nearest-neighbor sites. The lattice structures mentioned
above have the property that the Hamiltonian corresponding to a given lattice is
irreducible. Let us consider the three-site ring with two electrons: d1(↑)d2(↓)d3(−).
If a hole goes around a loop, we obtain d1(↓)d2(↑)d3(−). Thus two electrons with
antiparallel spins are exchanged. It is also easy to see that we can rearrange spins
in the four-site ring from one configuratin to another for any numbers of up- and
down-spin electrons. (Note that this is not possible for the five-site ring.) Then by
the induction the irreducibility of the Hamiltonian is proved, i.e. any two states in
the basis set is connected by the succesive application of the Hamiltonian.117

Proof We use the representation of basis states given by Nagaoka:

ψiαi = (−1)ic†1σ1
c†2σ2

· · · c†i−1σi−1
c†i+1σi+1

· · ·c†NσN
|0〉, (265)

where αi denotes the set (σ1, σ2, · · · , σi−1, σi+1, · · · , σN) and |0〉 is the vacuum state.
We can work in the space with fixed Sz . Then the Schrödinger equation is written
in the form:

Hψiαi =
∑
j

tij(−1)2i−j−1c†1σ1
· · ·c†j−1σj−1

c†j+1σj+1
· · ·c†NσN

|0〉

= −
∑
j

tijψjαj . (266)

Hence the off-diagonal elements are non-positive. As we have noted before that the
Hamiltonian is irreducible, the straightforward application of the Perron-Frobenius
theorem states that the ground state is unique and given by a linear combination
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of all the states ψiαi with positive amplitudes in the space Sz = 0 or 1/2. From the
definition of basis states, the ground state has S = (N − 1)/2.
Remark Since the square cubic (sc) and the body-centered cubic (bcc) with nearest-
neighbor hoppings are bipartite, we can change t into −t by attaching (−1) to
wavefunctions on the B sublattice. Hence

Corollary The ground state for sc and bcc has the maximum total spin for Ne =
N − 1, U =∞, and t = tij < 0.

An extension of the Nagaoka’s theorem is possible where the restriction on the
lattice can be relaxed.119 Let us give a definition and theorems.

Definition A finite lattice Λ is said to be irreducible with respect to {tij} if the
Hamiltonian corresponding to Λ is irreducible in each sector with fixed Sz .d

Theorem 4.8 Let us consider the Hubbard model in eq.(262) with {tij ≥ 0},
U =∞, and Ne = N − 1. Then there exist at least N states with S = (N − 1)/2.

Theorem 4.9 Consider the Hubbard model in eq.(262) with {tij ≥ 0}, U =∞, and
Ne = N−1. Let us further assume that the lattice Λ is irreducible. Then the ground
state is unique apart from the trivial N -fold degeneracy and has S = (N − 1)/2.

Theorem 4.8 is proved by the Perron-Frobenius theorem for the general case. A set
of the lattices mentioned in Theorem 4.9 include the lattice sturctures in Theorem
4.7, the triangular lattice and the lattices which consist of three-site loops and four-
site loops. It is not clear whether the crystal of C60 is irreducible or not since C60

has five-site loops and six-site loops. It is impossible to generalize the statement
for more than one hole. The ferromagnetism near half filling in the thermodynamic
limit has been investigated by many authors120,121,122,123,124,125,126 being a hot topic
in strongly-correlated electrons. For the one-dimensional chain, the ferromagnetic
state is among the ground states and is not necessarily unique.

4.8. A zigzag Anderson lattice: Ne ≤ N

For the one-dimensional Hubbard model, the ground states are degenerate with
respect to spin configurations for U = ∞. This degeneracy is easily lifted toward
the ferromagnetic state by the hybridization with the higher-energy levels, which is
examined in this section.127 Our Hamiltonian is the Anderson lattice model given
as

H =
∑
ij

tijc
†
iσcjσ + Uc

∑
i

nci↑nci↓ +∆
∑
iσ

f†
iσfiσ

dWe use the terminology irreducible inplace of connected since we have used connected in the
Chapter 2.

56



+ V
∑
iσ

[f†
iσ(ciσ + ci+1σ) + h.c.] + Uf

∑
i

nfi↑nfi↓, (267)

where Uc and Uf denote the strength of Coulomb interactions among the conduction
electrons and f electrons, respectively, and the level of f electrons is denoted by ∆.
Other notations are standard for the Anderson model. We call this model the zigzag
Anderson lattice here. The hopping parameters tij are non-zero between nearest-
neighbor sites and assumed to be positive t = tij > 0. An extension to the two
or three dimensional cases is straightforward. For the two-dimensional space, the
Hamiltonian is written as

H =
∑
ij

tijc
†
iσcjσ + Uc

∑
i

nci↑nci↓ +∆
∑

iµ(=x,y)σ

f†
i+ 1

2µσ
fi+ 1

2µσ

+ V
∑
iµσ

[f†
i+ 1

2µσ
(ciσ + ci+µσ) + h.c.] + Uf

∑
iµ

nfi+ 1
2µ↑nf1+ 1

2µ↓, (268)

where µ denotes a unit vector in the x and y directions. Let us consider the case
in which ∆ � t and 0 < V/∆ � 1. We suppose that Uc and Uf are large. Then
in the limit V/∆→ 0, the ground states are highly degenerate. Our purpose is to
show that the degeneracy is lifted toward the ferromagnetic state by a perturbation
in V/∆. We use the following representation for the basis states up to the order of
V/∆:

ψ0(σ1 · · ·σN) = c†1σ1
c†2σ2

· · · c†NσN
|0〉, (269)

ψ1(iσ;σ1 · · ·σi−1σi+1 · · ·σN) = (−1)c†1σ1
· · ·c†i−1σi−1

f†
iσc

†
i+1σi+1

· · · c†NσN
|0〉, (270)

ψ1(iσ;σ1 · · ·σiσi+2 · · ·σN) = (−1)c†1σ1
· · ·c†iσi

f†
iσc

†
i+2σi+2

· · ·c†NσN
|0〉. (271)

The ground state wavefunction is a linear combination of these bases. The matrix
elements are given by

〈ψ1(iσ;σ1 · · ·σi−1σi+1 · · ·σN)|H|ψ0(σ1 · · ·σN)〉 = −V δσσi , (272)

〈ψ1(i− 1σ;σ1 · · ·σi−1σi+1 · · ·σN)|H|ψ0(σ1 · · ·σN)〉 = −V δσiσi+1 , (273)

〈ψ1(iσ;σ1 · · ·σiσi+2 · · ·σN)|H|ψ1(iσ;σ1 · · ·σi−1σi+1 · · ·σN)〉 = −tδσiσi+1 . (274)

Then the matrix is non-positive (for V > 0 and t > 0) in our basis set and is shown
to be irreducible because we have spin-flip processes between nearest-neighbor sites.
In summary we can say:

Theorem 4.10 Consider the zigzag Anderson lattice in eq.(267) at quarter filling
Ne = N . Let us assume that Uc and Uf are infinitely large and the hopping pa-
rameters tij are non-zero and positive only between nearest-neighbor sites. Assume
further that V > 0, ∆ > 0, V/∆ � 1 and t/∆ � 1 (for t = tij > 0). Then the
ground state has the maximum total spin S = Ne/2.

If we restrict ourselves to the one-dimensional space, we can expect the ferromag-
netism for less than quarter filling.127 Let us examine this case. The basis set is
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composed of states which are up to the order of V/∆. In the limit V/∆ = 0, our
representation is an extension of that given by Nagaoka:

ψ0(i1σ1, · · · , inσn) = (−1)i1+···+inc†i1σ1
c†i2σ2

· · ·c†inσn
|0〉, (275)

where n = Ne. In the subspace spanned by the states ψ0(i1σ1, · · · , inσn), we have

Hψ0(i1σ1, · · · , inσn) = −t
∑

j(ij−1 �=ij−1)

ψ0(i1σ1, · · · , ij−1σj−1, ij − 1σj,

ij+1σj+1, · · · , inσn)
−t

∑
j(ij+1 �=ij+1)

ψ0(i1σ1, · · · , ij−1σj−1, ij + 1σj,

ij+1σj+1, · · · , inσn).
(276)

Here the non-zero matrix elements are negative −t < 0. In the order of V/∆ we
should consider the following two processes:

si(σ)di(−)si+1(σ′)→ si(σ)di(σ′)si+1(−)→ si(−)di(σ′)si+1(σ)
→ si(σ′)di(−)si+1(σ),

si(−)di(−)si+1(σ)→ si(−)di(σ)si+1(−)→ si(σ)di(−)si+1(−)
→ si(−)di(−)si+1(σ).

The former can be taken into account with the non-positive matrix elements by
using the Nagaoka representation for the basis states as in eqs.(270) and (271). The
latter process gives rise to positive matrix elements which may cause a mismatch
in the proof. However, this process contributes to give an effective transfer term
without producing any effects on the spin configurations, which means that the
spin-flip processes are not accompanied. If t � V 2/∆ (or t � V ), we can neglect
it since V/∆ · V/t is much smaller than 1.e Therefore we can say in the following
way (although it is not perfectly mathematical which means that the Hamiltonian
is nearly non-positive):

Theorem 4.11 We consider the one-dimensional zigzag Anderson lattice Hamilto-
nian for Ne ≤ N with same conditions stated in Theorem 4.10. Suppose further
that t � V 2/∆ and impose the open boundary condition. Then the ground state
has the maximum total spin S = Ne/2.

We can modify the structure of hybridizations so that the ground state remains
ferromagnetic at quarter fillingNe = N . For instance one can consider the Anderson
eThis kind of argument can be applied to the Anderson lattice for N e = N + 1 in the section 4.5.
The basis states of type in eq.(252) produce the exchange of electrons with the same spin and
then we have positive matrix elements which cannot be removed. However, these contributions
make no effects on the spin configurations of other electrons, leading to an effective hybridization.
Hence we can again neglect the basis states in eq.(252) if |V/ε f | � 1 and |t/εf | � 1.
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lattice with ’mountain structure’ given as

H =
∑
ij

tijc
†
iσcjσ + Uc

∑
i

nci↑nci↓ +∆
∑
iσ

f†
iσfiσ

+ V
∑
iσ

[f†
iσ(ci−1σ + ciσ + ci+1σ) + h.c.] + Uf

∑
i

nfi↑nfi↓. (277)

Other extensions may be possible.

4.9. 1D Hubbard model

Because of the restricted geometry of the one-dimensional models, it is shown
that the ground state of some 1D models is a singlet for an even number of electrons
for the appropriate boundary conditions. Lieb and Mattis have shown that the
ground state is a singlet for the interactions of diagonal type.128 In this section
we shall consider the one-dimensional Hubbard model and the t-J model from the
viewpoint of the Perron-Frobenius theorem.129 The Hamiltonian is given by

H = −t
∑
〈ij〉σ

c†iσcjσ + U
∑
i

ni↑ni↓ + J
∑
〈ij〉

Si · Sj, (278)

where 〈ij〉 indicates nearest-neighbor sites on a one-dimensional chain and we as-
sume that t > 0 and J ≥ 0. Let us investigate the following proposition.

Theorem 4.12 The ground state of the Hamiltonian (278) is unique and a singlet
for an even number of electrons in the following cases for t > 0 and J ≥ 0.
(1) Ne = 4m + 2 (m=integer) for the periodic boundary condition or the open
boundary condition.
(2) Ne = 4m for the antiperiodic boundary condition or the open boundary condi-
tion.
(We exclude the case in which U =∞ and J = 0.)

Proof We can work in each sector with fixed Sz . For simplicity let us work in the
subspace with Sz = 0. It is convenient to use the representation for the basis states
by Lieb:48

ψαβ = ψ↑
α ⊗ ψ↓

β

= c†i1↑ · · ·c
†
in↑c

†
j1↓ · · ·c

†
jn↓|0〉, (279)

where n = Ne/2, and α = (i1 · · · in) and β = (j1 · · ·jn) indicate the locations
of electrons in the real space for i1 < i2 < · · · < in and j1 < j2 < · · · < jn.
Obviously, all the off-diagonal matrix elements due to electron hoppings are non-
positive −t < 0. It is also easy to see that the off-diagonal elements due to the
nearest-neighbor exchange interaction are non-positive. For instance, when we can
exchange the up-spin electron at site im and the down-spin electron at site j$, we
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obtain

S−
im

S+
j


c†i1↑ · · · c†in↑c
†
j1↓ · · ·c†jn↓|0〉

= c†i1↑ · · · c
†
im−1↑c

†
im↓c

†
im+1↑ · · ·c

†
in↑c

†
j1↓ · · ·c

†
j
−1↓c

†
j
↑c

†
j
+1↓ · · · c

†
jn↓|0〉

= −c†i1↑ · · ·c†im−1↑c
†
i
↑c

†
im+1↑ · · ·c†in↑c

†
j1↓ · · · c†j
−1↓c

†
jm↓c

†
j
+1↓ · · · c†jn↓|0〉.

(280)

The boundary conditions depend upon the number of electrons so that the matrix
elements are non-positive. It is clear that the Hamiltonian is irreducible except the
case in which U =∞ and J = 0. Therefore the Perron-Frobenius theorem indicates
that the ground state is unique and is continuous with respect to U and J ≥ 0.
The ground state is a singlet since it is connected to the non-interacting case where
U = 0 and J = 0.
As is shown in Theorem 4.12 the ground state has definite signs in a linear

combination of basis states, which makes the one-dimensional systems tractable by
analytical and numerical methods.
Lastly, we consider an unrealistic model which means the 1D t-J model with the

ferromagnetic interaction J < 0:

H = −t
∑
〈ij〉σ

(1− ni,−σ)c
†
iσcjσ(1− nj,−σ) + J

∑
〈ij〉

Si · Sj. (281)

If we use the basis states given by

ψ(i1σ1, · · · , inσn) = c†i1σ1
c†i2σ2

· · ·c†inσn
|0〉, (282)

where n = Ne, all the off-diagonal elements are non-positive for t > 0 and J < 0
if we impose appropriate boundary conditions. Hence we can show in a similar
way that the ground state has the maximum total spin. If we make the electron-
hole transformation for the down-spin electrons in the ferromagnetic t-J model in
eq.(281), we can obtain the Hamiltonian which exhibits exactly a superconduc-
ing ground state. Let us consider a ’correlated hopping’ Hubbard model with the
attractive interaction given as88

H̃ = −t
∑
〈ij〉
[ni↓c

†
i↑cj↓nj↓ + (1− ni↑)c

†
i↓cj↓(1− nj↑)]

− tp
∑
〈ij〉
(c†i↑c

†
i↓cj↓cj↑ + c†j↑c

†
j↓ci↓ci↑)

+ V
∑
〈ij〉

ninj − ε0
∑
iσ

niσ + const, (283)

where tp = −J/2, V = J/4 and ε0 = J/2. The up-spin electrons should be accom-
panied with the down-spin electrons in this Hamiltonian. Since S2 and Sz commute
with H, the η-spin operators J2 and Jz commute with H̃. Let Ne and N be the
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number of electrons and that of sites, respectively. Suppose that we work in the
space with Sz = 0 (Sz commutes with H̃). According to the partial electron-hole
transformation, J is transformed to S and we have

J = Ne/2 = N/2, Jz = (Ne −N )/2. (284)

Hence there is ODLRO because of Theorem 2.13. Note that the ground state has
the same quantum numbers of J and Jz as the Yang’s η-paring state. In fact, the
ground state of H̃ is given by

ψη = A(J+)Ne/2|0〉, (285)

because the ferromagnetic ground state for H in eq.(281)

ψferr = A(S+)Ne/2| ↓↓ · · · ↓〉 (286)

is transformed to the η-paring state ψη. A class of the attractive Hubbard models
for which the ground state is given by the Yang’s state has been investigated in
Refs.130,131.

5. Concluding remarks

We have discussed the applications of the reflection positivity in the spin space
and the Perron-Frobenius theorem. The reflection positivity in the spin space is in-
trinsic for the Heisenberg model, the Hubbard model and the Kondo lattice at half
filling. The reflection positivity in the spin space means that the matrix represen-
tation of the ground state eigenfunction is positive definite. One may wonder why
this property is called the reflection positivity. In order to answer this question, let
us examine the reflection positivity in field theory.50,132,133,134 We denote a set of
basis states with spin-σ electrons as Xσ which are finite-dimensional vector spaces.
We denote a set of linear transformations on Xσ as Aσ , which are represented as
matrices. We write A = A↑ + A↓. A can be regarded as C∗−algebra135 with the
standard operator normf

||M ||= sup{||Mu||;u∈ X σ , ||u||= 1} (M ∈ Aσ). (287)

fA C∗−algebra is an algebra which has the algebraic structure of bounded operators acting on a
Hilbert space. A vector space A with coefficient field C (the field of complex numbers) is called
∗-algebra if A is a ring and a mapping (called an involution) X ∈ A → X ∗ ∈ A is defined with
the properties:

(1) X∗ = X,
(2) (XY )∗ = Y ∗X∗,
(3) (αX + βY )∗ = α∗X∗ + β∗Y ∗.

The algebra A is called normed algebra if we can associate a real number ||X || to each ele-
ment X ∈ A, satisfying the criterions of norm. A normed algebra A with involution is a Banach
∗-algebra if A is complete and has the property ||X || = ||X ∗||. A Banach∗-algebra is called a
C∗-algebra if ||X ∗X || = ||X ||2 holds for all X ∈ A.
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Suppose that there is a one to one and continuous map θ : A↑ → A↓ such that

θ(M +N ) = θ(M ) + θ(N ), (288)

θ(αM ) = α∗θ(M ), (289)

forM,N ∈ A↑ and α ∈ C. α∗ denotes its complex conjugate. Let us denote a linear
functional on A as 〈·〉. Then we can define the reflection positivity in the following
way:132,133,134

Definition Let A be a C∗−algebra with an identity and A± be subalgebras of A.
Suppose that there is a one to one and continuous map θ : A+ → A− such that

〈θ(M )M 〉 ≥ 0 (∀M ∈ A+). (290)

Then 〈·〉 is said to be reflection positive with respect to θ.

We define the functional 〈·〉 as

〈F 〉 = TrF (F ∈ A). (291)

When the number of spin-up electrons is equal to that of spin-down electrons, A↑
and A↓ are identical as sets. If we define θ as θ(M ) = I↓↑M †I↑↓ (M ∈ A↑), we
obtain

〈θ(M )M 〉 = TrM†M ≥ 0, (292)

Iσ,−σ are identity mapping A−σ → Aσ for σ =↑ or ↓. Thus 〈·〉 is reflection positive
with respect to θ(M ) = M†. This is a trivial example. Let us investigate the
reflection positivity with respect to the ground state. As is shown in the section
2.1, the eigenfunction can be regarded as a mapping

C : X↓ → X↑, (293)

if we write the eigenfunction in the form ψ =
∑

αβ Cαβψαβ . Then we can define
the following θ:

θ(M ) = C†M †C (M ∈ A↑). (294)

If C is hermitian and positive definite, θ is one to one (injective).g For positive
definite C, 〈θ(M )M 〉 = TrC†M †CM ≥ 0, i.e. 〈·〉 is reflection positive with respect
to θ in eq.(294).hiHence we can say that the ground state has reflection positivity
if the coefficient matrix C of the ground state is positive definite.
The second part of this paper has been devoted to discuss the applications of

the Perron-Frobenius theorem which has a long history since the work by Lieb and
Mattis. Theory of irreducible non-negative matrices was developed to be a beautiful
gSince C has inverse C−1, θ(M) = 0 implies M = 0, i.e. Kerθ = {0}.
hStrictly speaking, we should identify M ∈ A ↑ with M ∈ A↓ if we compare 〈θ(M)M〉 with the
energy eq.(18).
i θ in eq.(294) is not morphism, i.e. θ(MN) = θ(M)θ(N) does not hold.
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theory. The Perron-Frobenius theorem indicates that the ground state eigenfunction
has no nodes and thus in most cases this theorem predicts ferromagnetic ground
states.
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