d-wave state with multiplicative correlation factors for the Hubbard model
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A d-wave state wave function with multiplicative correlation factors for the Hubbard model is inves-

tigated using a variational Monte Carlo method. Employing a simple Gutzwiller-BCS wave function as

a starting wave function, we consider improved wave functions with off-diagonal correlation factors. The

Monte Carlo simulations are carried out on a square lattice with size 10 X 10 for U = 8 and next nearest

neighbor transfer t’ = —0.09. The ground-state energy is evaluated from an extrapolation. Our wave

functions show that pair correlation functions are enhanced for a negative value of ¢ ’.
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I. Introduction

Strongly correlated electron systems have been inves-
tigated for many years in order to understand the mech-
anism of superconductivity of the high-T, cuprate su-
perconductors. Strong correlations between the itinerant
electrons are believed to be crucial in cuprate high-T,
materials. Among the fundamental models for correlated
electrons, the two-dimensional Hubbard model has been
extensively studied since the proposal by Anderson.! The
two-dimensional Hubbard model can be regarded as a
simplified one-band model of three-band Cu-O network
in the oxide superconductors.

An important question is whether the superconducting
state is possible or not for the two-dimensional Hubbard
model. This possibility has been controversial since the
discovery of high-T oxide superconductors.? ¢ This pos-
sibility is supported by numerical calculations using the
variational Monte Carlo method (VMC)® 7 and recent
quantum Monte Carlo method (QMC).® A Monte Carlo
method employing constrained path approximation in-
dicates, however, that the superconducting correlations
are not enhanced in the ground state.® This disagree-
ment should be clarified. Since the typical energy scale
for superconductivity is very small compared to the band-
width or U, a discrete structure of energy levels is sensi-
tive for the ground state properties in finite systems. In
fact it has been shown for the two-chain Hubbard model
that the superconducting correlation functions are en-
hanced greatly if the level structures near the Fermi level
become dense by modifying the value of the interchain
transfer.'%13 Since the standard Quantum Monte Carlo
method suffers from a sign problem, the level spacings
should be kept large in order to avoid a negative sign in
QMC.'15 Thus it may be reasonable that the supercon-
ducting correlations are not enhanced in Quantum Monte
Carlo simulations which have been done so far. It is re-
quired to consider the case where a sign problem occurs
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in order to investigate a possibility of superconductivity
because in the variational Monte Carlo method the su-
perconducting phase was suggested to exist in the region
where the sign problem becomes serious.%”

Our model is the 2D Hubbard model defined by

H=—t Z (c:racjg +h.e)—t Z (c;[UCgU +h.c.)+
(ij)o (ie))e

UZniTnu, (1)

where c:ra (¢io) is the creation (annihilation) operator of
an electron with spin ¢ at the ith site. t is the transfer
energy between the nearest-neighbor (n.n.) sites. (ij) de-
notes summation over all the n.n. bonds. We also exam-
ine the effect of ¢ between next-nearest neighbor (n.n.n.)
sites. ((j¢)) denotes summation over the n.n.n. pairs.
In this paper we investigate the region with small energy
spacings near the Fermi level, where the sign problem is
necessarily serious for the standard QMC. In QMC the
following wave function is considered

wég"i}c — o ATK —ATUV .efATKe*ATUV,LpO’ (2)
where g is the non-interacting wave function. K and V'
indicate the kinetic and interaction parts of the Hamilto-
nian, respectively:

K=—t Z (cjgcjg + h.e)—t Z (c;[a_ceg + h.c.),
(ij)o (i)
(3)

V= Z i1 - (4)

AT = 3/m is assumed to be small. In the present paper
we investigate a generalized wave function given as

w(m) — e*AmKefamV A eiAlKeialv'(/)(], (5)



where \; and «; are regarded as variational parameters
to optimize the energy. Obviously (™) has lower energy
than that of wgf&c if m is fixed. Since 1/)8’}&0 approaches

the correct ground state wave function, (™ is also ex-
pected to approach the correct ground state as m — oo.
The purpose of this paper is to show the results for the
superconducting ground state by a variational method us-
ing the off-diagonal wave function correlation factors. 617
It will be shown that the sign problem becomes less vi-
olent for ("™ if m is small. The ground state energy
and correlation functions are calculated by our method.
The paper is organized as follows. In the second sec-
tion the wave functions are presented. The method of
calculations is also briefly discussed. In the subsequent
section we show our results for the BCS-Gutzwiller and
off-diagonal BCS-Gutzwiller functions. The last section
is assigned to a summary.

II. Formulation of superconductivity for off-diagonal
correlation factors

A. Wave functions

The Gutzwiller-projected BCS-type wave function is
defined as

ws = PG¢BCSa <6)
YBOS = H(uk + ”kCLTCiki”m' (™)
k

The gap function is assumed to be d-type pairing: A} =
Ag(cosk, — cosky). Coefficients uy and vy, which are
variational parameters, should be determined to mini-
mize the energy. We use the BCS form for ) and vy
defined by

v /uge = N/ (& + (G + AP, (8)

where & = —2(coskg+cosky)—pu. The chemical potential
w is adjusted so that the expectation value of the electron
number is equal to N.. Pg is the well-known Gutzwiller
operator given by

Po =[]0~ 1~ gninay), (9)
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for a variational parameter g in the range of 0 < g < 1.
An approach with fixed electron number is employed in
our previous papers.®” In order to formulate an approach
to consider the off-diagonal correlation operators, it is
more convenient to use the BCS function directly with-
out fixing the electron number. The two approaches are
equivalent in the thermodynamic limit with optimized
variational parameters. For this end the following simple
transformation is introduced for the down spin:!8

dk = Ciki’ d;[( =C ) (10)

The up-spin electrons are unaltered, for which we use

)

the notations ¢y = ¢j; and chL = Cep- The vacuum |0)

should read [0) = [] d;r(\ﬁ) if we write the vacuum for ¢
and d particles as |0): ¢} |0) = dj|0) = 0. Then

PYpos = H(uk+kaLdk)|0>,

k

_ E[(ukd;f( + vyt )[0).

(11)

The Gutzwiller projection operator is transformed to

Pe = [0 - (1 = 9yl ea1 — df ), (12)
i
and the Hamiltonian has the form

H= ftZ(c:rcj—d:rderh.c.)ft’ Z (c;[Cg—d;[dg+
(if) ({36
he)+UY dle —dld,). (13)

In terms of new operators the average electron number is
written as

Ne =N+ (c}er — dldy). (14)
k

The following wave functions are considered in this
paper:19
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(17)

Our motivation to introduce the superconducting order
parameter is to find more optimized wave functions in
VMC.

B. Method of Monte Carlo calculations

The Monte Carlo method using the auxiliary fields,
which has been developed in the projector Monte Carlo
computations, is employed in this paper.2®2!1 Following
the discrete Hubbard-Stratonovich transformation,?? the
Gutzwiller operator is written as follows

Pe = [J0--gde—da

%

= H exp(—ochrci + OCCTCid:'rdi)

) i

= 12N S exp[> (208 — a/2)(cle — dldy),

{Si:ﬂ:l} i

where g = ¢ @ and cosh(2a) = e~ /2 for complex repre-
sentation where a is a complex number. The real repre-
sentation is also possible. s; is the auxiliary field which

(18)



takes the value of £1 and N is the number of sites. The
norm (Pg|tg) is calculated as

(slps) = comst.
{uit{s:}
X (tolexp(h(u))exp(h(s))|¢o),
where g is the non-interacting wave function and the
potential h(s) is given by

h@p:Z}m&famefwy

1

where n; = ¢; ¢; and v; = d:rdz-. Then the norm is written
as a sum of determinants,

(Ys|hsy = const. Z
{ui{s:}
X det(ngexp(V(u, a))exp(V (s, a))p)21)

(19)

(20)

¢ is a 2N x N matrix with first and second N components
corresponding to ¢ and d electron parts, respectively:

(d0)ij = exp(iri-ky)vy (i =1,---,N;j=1,---,N),
(22)

WM M)y = const. Z
{uit{up s} {s7}

x det(gfexp(V (u!, a1))exp(—= M K) -

where «o; and )\; are variational parameters. K is a
2N x 2N matrix corresponding to the kinetic part of the
Hamiltonian, which is given by

K;; = —t (if (¢,7) are nearest neighbor pairs (i =
1,--

K;j=0 (otherwise (i=1,---,N;j=1,---,N)),
(27)
Kiynj+n _
t (if (4,7) are nearest neighbor pairs (i =
1’-..’N;j:17...7N))’ (28)
Kiinj+n = 0  (otherwise (i = 1,---,N;j =
1+, N)). 20)

We optimize the ground state energy I, with respect
to g, A, u, a; and \;. It is of great help to employ
the correlated measurements method in the process of
searching optimum parameter values minimizing E;.23:24

In one Monte Carlo step all the Hubbard-Stratonovich
variables are updated once following the Metropolis al-
gorithm. We perform several 5 x 10* ~ 10> Monte Carlo
steps to evaluate the expectation values for optimum pa-
rameters.

—cexp(=A K)exp(V (s', a1)) o),

(b0)iyn,; = exp(ir; - kj)uk]. (i =
1,--+,N).

In actual calculations the real representations are more
convenient to evaluate the determinant where the ele-
ments of ¢g are given by COS(ri'kj)Ukj and sin(r; 'kj)vkj
fori =1,---,N, and cos(r; - kj)ukj and sin(r; - kj)“kj
fori = N+1,---,2N. V(s,«) is a diagonal 2N x 2N
matrix corresponding to h(s):

V(s,a) = diag(2as1 —
af2,—2asyi1+ /2, -, —2asan + @/2).

af2,---,2asy  —
(24)

diag(as,---) indicates a diagonal matrix with elements
a1, -+ Following the standard Monte Carlo method em-
ployed in Quantum Monte Carlo simulations, we can eval-
uate the expectation value for 1g. In order to consider
the off-diagonal correlation factors, we evaluate the de-
terminants given as

(25)

III. Results of Monte Carlo calculations

A. Results for the Gutzwiller-BCS wave functions

The Gutzwiller-BCS wave function is investigated in
this section. The 2D Hubbard model has been exam-
ined by many authors using the Gutzwiller-BCS function
where the electron number is fixed.>""25 Instead we show
the Monte Carlo results using an algorithm without fix-
ing the electron number since this algorithm can be ap-
plied to off-diagonal wave functions more easily. Two
approaches should give the same results in the thermo-
dynamic limit. On a finite lattice it is possibly expected
that two algorithms give different results on a possibility
of phase transition due to finite size effects. Thus an ap-
proach using an alternative algorithm works as a check of
validity of the Gutzwiller-BCS wave function for the two-
dimensional Hubbard model. Our purpose of this section
is to show that both algorithms produce mostly the same
results for the Gutzwiller-BCS wave function.

The Monte Carlo simulations are carried out on the
square lattice with size 10 x 10. The parameters of the
Hamiltonian are chosen as ¢’ = —0.09 and U = 8 in units
of t. The average number of electrons is given by N, = 80.
The energy gain due to pair condensations is maximum
around the value of t/ = —0.1.” We adjust the chemical
potential in the wave function so that the expectation



-75.50

-76.50
E
-77.50
-78.50 - L 1 _
39.80 40.00 40.20 40.40
Ne/ 2
|
X
76.60 (D) -
X J
E .
-77.00
A=0
-77.40 g=0.32 -
g=0.30
- g=0.28
g=0.34
-77.80 -
39.90 40.00 40.10 40.20
Ne/ 2
-77.00 T — -
(0
A=0.07
-77.20
E
-77.40
A A=0
' g=0.32
9=0.30
g=0.28
_77.60 o I ! |
39.90 40.00 40.10
Ne/ 2

FIG. 1. Energy vs N, for the BCS-Gutzwiller function for
A =0.02 (a), 0.05 (b), and 0.07 (c).
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FIG. 2. Energy vs A for the BCS-Gutzwiller function.
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FIG. 3. The expectation value of sign (s) for several values
of parameters A and «. The parameters are the following. A:
g = 0.221, A = 0.194, ¢ = 0.263, X' = 0.138, ¢" = 0.280,
A =0.064; B: ¢ =0.1,A=0.2, ¢ =0.15, X = 0.2, ¢" = 0.2,
A''=0.1;C: g=0.08 A=0.2, ¢ =0.08, X' =0.2, g’ = 0.08,
A= 0.1; D: g = 0.08 X = 0.25, ¢ = 0.08, X = 0.25,
g” =0.08, X' = 0.25; E: g = 0.0695, A = 0.333, ¢’ = 0.0695,
N = 0.333, ¢" = 0.0695, N = 0.333 (A7 = 3/m (B = 1,
m = 3)). The value for E is evaluated from an extrapolation.

value of the electron number equals N,. We have applied
the periodic and antiperiodic boundary conditions along
the y and x directions, respectively, to avoid a situation
where the gap function Aj vanishes on the node. Since
we have a constraint to fix the average electron number,
there is one variational parameter in practice for the pro-
jected BCS wave function. It has been shown that the
d-wave state is the most favorable one compared with
s-wave and extended s-wave states.” Thus we show the
results for the d-wave state: Ay = A(cosk, — cosky).
We show the energy as a function of the average elec-
tron number for fixed g and A in Figs.1(a), (b) and (c).
The average electron number decreases with an introduc-
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FIG. 5. Energy versus N, for ¢g) and wgs). A = 0.05 for
¢ and A = 0.07 for .

tion of A if the chemical potential is fixed. In Fig.2 the
energy is shown as a function of A for which the expec-
tation value of the electron number is equal to N, = 80.
The figure clearly indicates that the energy has a mini-
mum at a finite value of A. The behavior as a function
of A is very similar to that obtained by the algorithm
with fixed electron number. It is thus supported that the
ground state is superconducting if calculations are based
on the BCS-Gutzwiller function. The d-wave BCS state
is stable for a negative value of t’ around the value of —0.1
for the 10 x 10 square lattice. This value is highly depen-
dent on the system size. Recent calculations for large IV
up to 22 x 22 for the BCS-Gutzwiller function?® indicate
that the superconducting condensation energy remains
finite in the thermodynamic limit for restrict values of ¢/
and electron density.
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FIG. 6. Energy as a function of A for wg) and wg?) from the
top.
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FIG. 7. Energy versus 1/(m+1). The upper and lower curves
correspond to the normal and d-wave state, respectively.

B. Off-diagonal Gutzwiller wave functions

Now we turn to show Monte Carlo results for the BCS-
Gutzwiller function with off-diagonal correlation factors.
The wave functions which we consider here are given by
eqs.(12)—(14). In the limit A — 0 they are reduced to
off-diagonal Gutzwiller functions given as

g) = eiAKPG“(/JF, (30)
g) = e_’\,KPGe_’\KPGwF, (31)

g’) — e N EPge N E Pae M Poipr, (32)
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FIG. 8. Pair correlation functions versus 1/(m + 1) for the
ground state. In (a) from the top Y, Dyy(€), Dyy(£ = 0)
and Dyy(¢ = 1) are shown. In (b) from the top Dy, (¢ = 2),
Dyy(£ =3), Dyy(t = 4), Dyy({ = 5), Dyz(£ = 5), Dyz (£ = 3)
and Dy (¢ = 2). Symbols on the vertical axis indicate the
values for U = 0 where from the top ), Dyy(£), Dyy(£ = 0)
and Dy, (¢ = 1) are shown.

where ¢ r is the Fermi sea occupied by the conduction
electrons up to the Fermi energy. If we can calculate the
energies for 1/)(51)7 (52), ey gm)’_ --, we can estimate the
correct ground state energy from an extrapolation with
respect to 1/m. This is also true for the wave functions

8), g), -+« It will be shown that we obtain the same
ground state energy for both the sequence of wave func-

tions.

C. Negative signs for the off-diagonal correlation
factors

Before going into the description of our results, we dis-
cuss a negative sign problem which is crucial for Quan-
tum Monte Carlo simulations in many fermion systems.
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FIG. 9. Pair correlation functions Dy, and D, as a function
of the distance. The extrapolated values are also shown by
circles.

2.0 - =
2
S *
E 15 [~ /’(/f’ |
e
S e
= ///// °
o
S 1.0 - -
o
% .
o . Ak & A
0.5 ‘ ‘
0.0 0.4 0.8 1.2
1/(m+1)
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1/(m+1). For circles an initial state is the d-wave BCS state,
and for triangles an initial state is chosen as the normal state.
The diamond indicates the value for U = 0.

It is well known that a sign problem occurs in Quantum
Monte Carlo simulations for the wave function

efATKefATUV . efATKefATUV,wO’ (33)

Yome =
where AT = 8/m. For our parameters (¢ = —0.09, U = 8
and N, = 80) a simulation with ¢ g suffers from a sign
problem even for small m. In Fig.3 the sign (s) is shown

for m = 3: a comparison is made between ¥garc and 1,/)g )
where Yguc is regarded as a special case with parame-
ters \ =N =) =Arand a =o' =o' = A7U for Q/Jg’).
In this figure the sign versus energy is shown for several
values of parameters. It is remarkable that the sign takes
a finite definite value if the variational parameters are
close to optimum parameters for m = 3. The optimized



parameters produce no sign problem in our case. Thus
if we consider 1™ (which is a generalization of Yomc)
the sign problem is reduced and the expectation values
are evaluated definitely in simulations.

D. Results for the off-diagonal wave functions

In Fig.4 we show the energy versus N, for w(sl) , where
the d-type symmetry is assumed. Obviously the d-wave
state has lower energy than that of the normal state.
Similarly the energy as a function of IV, is shown for wg)

and w(sg) in Fig.5. Then the energy as a function of A is
in Fig.6. In Table I the variational parameters used in
the simulation are presented. We show the energy versus
1/(m + 1) in Fig.7 where dashed and solid curves cor-

respond to the energies for z/)gm) and wgn)’ respectively.
Both curves predict the same values in an extrapolation
to the limit m — oo. The correlation functions of BCS
pair operators were calculated for wgm) (m = 1,2 and
3) in order to check the superconducting nature of the
ground state. Pair correlation functions are defined as

Dags(t) = (AL + 0)As(0)), (34)

IV. Summary

We have investigated the ground state property of
the two-dimensional Hubbard model using the Gutzwiller
and off-diagonal wave functions. The strong correlation
among electrons are properly treated by the Monte Carlo
method. In particular, the possibility of superconductiv-
ity was examined in connection to the oxide supercon-
ductors. The Monte Carlo simulations have been carried
out on the square lattice with size 10 x 10 for U = 8,
t' = —0.09 and N, = 80. Monte Carlo calculations are
not an easy task for this set of parameters since the sign
problem inevitably occurs because of the small level spac-
ings around the Fermi energy.

We have examined the d-wave states with multiplica-
tive correlation factors. First we have examined the
ground state using the Gutzwiller ansatz. The energy
has a minimum for finite value of A implying a possibility
of superconductivity. Second, the first order off-diagonal
wave function is examined for which we have determined
the optimum values of parameters. The ground state
is again superconducting for the improved wave func-
tions. The second and third order improved wave func-
tions are also investigated to estimate the ground state
energy. The minimum of the ground state is located at a
finite value of A, which strongly suggests that the ground
state is superconducting. The superconducting correla-
tion functions are also evaluated for the ground state.

where A, (i), o = x,y, denote the annihilation operators
of singlet electron pairs on nearest neighbor sites as:

An(i) = ¢iyCivar — CitCital s (35)

where & denotes a unit vector in (= z,y) direction. The
results for optimum parameters are shown in Figs.8(a)
and 8(b) as a function of 1/(m + 1). It is possible
to extrapolate pair correlation functions to the limit
1/(m+1) — 0 by straight lines. The extrapolated values
versus the distance ¢ are shown in Fig.9 with available
data for U = 0 and BCS wave functions. The pair corre-
lation functions are enhanced largely compared with the
non-interacting ones showing a clear contrast to the nor-
mal state Gutzwiller function. Let us compare the expec-
tation values of >, D, (¢) for wgm) and wgn) in Fig.10. If
we choose the normal state as an initial trial wave func-
tion, the superconducting correlation functions are en-
hanced only slightly for small m (m = 1,---,5). The
large-m calculations are required to confirm the possibil-
ity of superconductivity. The convergence of the wave
function is not so fast as compared with the convergence
of energy.

We have extrapolated the expectation values to the limit
of m — oo. The extrapolated values obviously indicates
that the superconducting correlation functions are en-
hanced compared to the non-interacting case.

We have investigated a generalized version of the wave
function employed in the standard Quantum Monte Carlo
method. As is shown in the text the sign problem is
softened for small m if we shift the values of parameters
in exponentials. A direction along which the parameters
are shifted from the QMC values [3/m coincides with the
direction to find a minimum of the ground state energy. If
we can continue the evaluations for larger m, the ground
state is tractable more correctly.

Our results indicate a possibility of superconductiv-
ity due to an electronic origin for the Hubbard model.
The Hubbard model has been investigated intensively us-
ing the Gutzwiller ansatz. We believe it important to
examine the ground state property employing improved
wave functions. A comparison with other methods such
as fixed-node or constrained path Monte Carlo methods
should be made for larger systems as well as for smaller

ones!” in the region where the sign problem arises.

We thank Dr. K. Kuroki and Prof. H. Aoki for dis-
cussions. Computations are performed by Cray C90 and
SR8000 in Tsukuba Advanced Computer Center(TACC)
in the Agency of Industrial Science and Technology.



TABLE 1. Variational parameters used in the simulation for 10 x 10, U = 8 and ¢ = —0.09.

wave function q A q b\ rd N
PaYpcs 0.32  0.05 — — — —
1
g;cs 0.074 007 0092 —  — - B
S 013 0.05 017 024 0065 — -
S 022 0.07 020 026 014 028 0.0635
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