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Super conductivity of the 2D Hubbard Model with a Small U

Jun KONDO

Superconductivity of the two-dimensional Hubbard model with t'=0 has been examined
in the small-U limit, where the matrix element of pair scattering is expressed as
Viee=U+U?x(k+k"). The susceptibility x(k) has been evaluated accurately and the gap equation,
which reduces to a seqular equation, has been solved precisely. The gap isfound to be of the
form O exp (-2t°/xU?) , where x is the eigenvalue of the seqular equation with dimension of
10 to 25. We have found the largest eigenvalue x is aways positive (superconductive). The
symmetry of the gap function is by, for the electron density n2> 0.6 and by, for n.<0.6,
depending on the peak position of x(k). It isroughly (1t,17) for the former case and (11,0) for
the latter. The superconductivity seems to prevail even for n.— 0. These results can be
explained in terms of the following criterion: In order to have a superconducting energy gain
for arepulsive interaction, the gap functions at k and k' should have different signs, when the
interaction for pair scattering from k to k' islarger than its average and they should have the

same sigh when the pair scattering is smaller than its average.

81 Introduction

Recent theoretical studies on the two-dimensional
Hubbard model indicate that the ground state of the
model seems to be superconducting for some range of
parameters™™®. Our concern is how superconductivity
is possible when the interaction isrepulsive. We set the
problem in the following way. Let us write the
interaction energy of the BCS theory as

H'EF ke Vi U ViU Vi

where V. is the matrix element for the pair transition
fromk tok' and u, and v are variationa parameters of
the theory. If one can make the above energy negative,
then we regard the ground state of the model is
superconducting. When V.. is negative, one may take
UV, positive. When it is positive, one must devide the
k-space into two regions, where u,v, is either positive
or negative. Then the sum has contributions of both
signs. How can the negative contributions overcome
the positive ones? First we note that, when V,. is

independent of k and k', the sum is expressed as
V(3 V)% which is positive or at best zero. So our
strategy is such that u,v, and u,v, should have different
signs when V. islarger than its average and the same
sign when V. is smaller than the average. Taking the
BCS wave function for the Hubbard Hamiltonian, in
which theinteraction isk-independent, one cannot make
the interaction energy negative even for the d-wave
pairing. To have ak, k'-dependence of the interaction
for the Hubbard Hamiltonian one may derive an
effective interaction as in the spin fluctuation theory™2.
This theory tells us that the effective interaction is
expressed as
2
Ve = 5+ x(k k) @

up to the second order of U, where x(k) is the wave
number dependent susceptibility of the unperturbed
band, and it also tells us that, when x(k) has a peak at
(1t 1), ad-wave superconductivity is possible. Another
way to have ak, k'-dependence of the interaction isto
take account of the electron correlation. Yamgji et al.>”

KEY WORDS : superconductivity, Hubbard model, two-dimension

-( 67

)-



BFEAAHE A e s Ee4 B R

took a BCS wave function with a Gutzwiller projection
to take account of the electron correlation but with a
bare Hubbard U and showed that the ground state is a
d-wave superconductor for some parameter regions. In
their theory the effective interaction, if the theory can
be reformulated in terms of it, should have a k, k'-
dependencefavorablefor the d-wave superconductivity.

In this paper wefirst derive Eq. (1) by taking account
of the electron correlation correct up to the first order
of U. Then we calculate x(k) accurately and solve the
self-consistency equation for the superconducting gap
function A, as precisely as possible by taking the
interaction asgiven in Eq. (1). We find that the ground
stateis superconducting at least for the electron number
per site between 0.9 and 0.1. The symmetry of the gap
function changes from b4 to by, at the electron number
= 0.6. This switch of the symmetry can clearly be
explained in terms of the criterion: In order to have a
superconducting energy gain for arepulsiveinteraction,
the gap functions A, and A, should have different signs,
when the interaction V, islarger than its average, and
the same sign, when it is smaller than its average.

82 Formulation

We take the two-dimensional Hubbard model

H=H+H', (2
Ho=3 o&Cok Coc ©)
&=-2t(cosk,+cosk,) — 1 4
H'=US Co: 'Cn: G, o (5)

wheret denotes the nearest-nei ghbour hopping integral
and U isthe on-site Coulomb repulsion. The total site
number and the total electron number will be denoted
by N and N,, respectively. The electron states where all
the N, electrons are paired will be denoted by @, @,etc.
and those where only one pair is broken by ¢, ys, etc.
We look for the solution of the Schrodinger equation

HW=EW, (6)

inwhich W is expressed as

W=3 a2 b (7)
When U is small, we eliminate the second term with
the use of a perturbation theory and obtain the equation
for a, as

(E-E)a= e [MH'MIY,, ©®)
where
~ o\ (nH"T)(iH" m)
<nH m>—<nH m>+zi?5, ©

E denotes the energy of the excited state (4 : E; = [IHiLl
When ¢, and @, differ only by asingle pair, (k1 ,-k 1)
for @, and (k't ,-k'L) for @, then the effective matrix
element for the transition from ¢, to @, is obtained by
calculating contributions from the two diagrams shown
inFig.1. Theresultis

U Uu?
Vo =— +—x(k +K'
kk N N X( )1 (1)
where
f (1 f ) 2
k)= - grk/ .
X(k) = N 4 T & N €. £q (10)

In deriving this result, we replaced E—E by the
excitation energy necessary for going from @, to ¢ ,
E—E.. and furthermore neglected ¢—¢, , because we
consider k and k' both very close to the fermi surface.

Following the BCS theory we take the independent
pair approximation :

K1 ~kl K1 -k
k1 —k | %1 -k
Fig.1 Diagrams contributing to the first order

correction of the scattering amplitude.
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l'IJO = Z nan(pn = F)Nel_I (uk +VkakTTa~le)‘o> . (11)
Then the ground state energy is obtained as
E, = (WHW) =(WHWY)
(12)

— 2
- z K2EN + Z e Vi U ViU Vi -

Minimizing this expression with respect to v,, we have

1

% &l o_
u == +—E Vi =
20 E,

1

O 1a,
2%“;5 uka_Egv (23

with E,=4/& + &, and the self-consistency equation

__1 A
A= _E Zk-vkk' g

As we solve this equation in the weak-coupling limit,

(14)

namely the limit of small A, we note that the sum over
k'in Eq.(14) is simplified in this limit. Consider the
sum Zk%, where A isafunction of k=(k,k). We set
A, as A=Az, where A denotes the magnitude of A,
and z, represents its k-dependence. For A — 0 the sum
divergesaslogA . Wewant to find the correct coefficent
of logA but are not concerned with non-divergent terms.
This amounts to finding the correct exponent of the
superconducting gap but its prefactor may be incorrect.
For this purpose we use “polar” coordinatese, 8 instead
of kik,, where e=¢, and 6 is the angle between k and
the k, axis (see Fig.2). Replacing the sum over k by an
integral over € and 6 by using the density of states
p(£,6), we have

S =N

For very small A the main contribution to the integral
over € comes from ¢ close to zero, so Eq.(15) gives us
aterminvolving log[A-z(0,0)]. Thisimpliesthat, to find
the coefficient of logA, we can set z(&,0) to a constant,

A(e, 6)

(15

say, unity. Thus we have

Ny

(8)

—de = —2g(0)logA +non - divergent terms.

(16)
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kx, ky)

k e=£(kx, ky)

T

J' kx

Fig.2 Definition of the “polar” coordinates, € and 6.

Thisresult tells us that for the limit of small A we can
set as
3 A
“E,
in the accuracy of retaining only the logA term.
Consequently, in the same accuracy Eq.(14) iswritten
as

= —ZIOQAZkAﬁ(Sk) (17)

zZ=logA- > Ve A E¢) Ze (18)

83 Methods of solving the self-consistency
equation

3.1 Fourier transform
We decompose all the quantities that depend on the
wave number k into components depending on integers
n and m. Thus

i (kyn+k,m)
)

2= wZon® (19)

Ve =V(k+K) = V(k +K; 1k, +Kky)

z k,(n+kym |(I<X n+ky m) (20)

Eq.(18) now reads in terms of the Fourier components

le: IOgA |Svnm Z n'm (Z k 5(gk)ei[kX(mnl)*—ky(mi-mV)]) Z,
(21)

Thisisahomogeneous linear equation and can be solved
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by a standard method, 1/1ogA being the eigenvalue. We
have solved this equation by taking more than 1000
Z.n Sinto account. (Independent z,,, s are about 120.)
Convergence of the results is satisfactory for n=N./N
larger than 0.4. To obtain areliable result for n,<0.4
we resort to the second method. The results of the
eigenvalues and the gap functionsfor n,>0.4 are dmost
the same for both methods. Since the second method
takes less computation time and is more transparent to
obtain aphysical insight, we will concentrate on it after
this.

3.2 Useof the“polar” coordinates
We decompose z, as

z=2(£,6)=3 z(¢)e"

and express V. in terms of the “polar” coordinates:

(22)

Vi =V )2V (ke Ktk )
=V(k(g,0)cosO+k(&,8 )cosa, k(g,0)sinf
+k(€,8)sing)
=V(,6,€,), (23)
where k(&,6) is the magnitude of k expressed in terms
of € and 6. With the use of the “polar” coordinates
Eq. (18) reads

2(£,8)=l0ogA-NJJp(,8)V(g,8,¢,8) X€) (€, 8)deda.
(24)

One may be interested only in the gap function on the
fermi surface z(0,6). Defining z by z=z(0) and
expressing Eq.(24) in terms of it, we obtain

z=logA-3 Hiz (25)
where \

H, = o J’VF 6,8)p-(6)e"°"dal e, (26)

V(6,8)=V(0,6,0,6), (27)
and

P=(6)=p(0,6). (28)

Solving this equation gives us A and z except their

=(
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absolute magnitude. However, z fixes the angular
dependence of the gap function. Note that V:(6,8) is
the interaction strength for the transition of the pair from
6-direction to @-direction and is the most important
quantity in the following argument.

Since the matrix H,. is not hermitian, one may
wonder if itseigenvalueisreal or not. A proof that itis
real will be given in the following. Define o by p..;
=/p-(6)€""°d6. Multiplying both sides of Eq.(25) by
Z-p..- and summing over | and I', one obtains

YuZeprz = 109A-Y i1z o Hirz (29)

Using theformula ¥,€'®?=211§6-8), one can show that

20 Hi=NfJo=(B)p=(8)Ve(6,6)e"* " “d6de, (30)

which is now hermitian when |' and I" are regarded as
suffixes. Thus one sees that both sumsin Eq.(29) are
real and so islogA.

84 Irreducible representations of even parity

We now concentrate on superconductivity of even
parity in the square lattice. The eigenfunction of the
gap equation (25) is specified by one of theirreducible
representations, ay,, 8y, 014 and by, of the square lattice.
Symmetry requirements of each representation pose
constraints on the form of the gap function:

2(0,6)=5% -1, coALO Ayg (31)
20,6)=Y .1z SN4LO Ay, (32)
Z(0,6)=3 (=124, COS(AL-2)8 by (33)
2(0,0)= 12124, SIN(AL-2)0 Dby (34)

The L=0 term of the a,, representation was omitted to
suppress a strong s-type repulsive term U/N in Eq.(1).

Following these limitations on the values of |, the
seqular equations are also modified. We present the case
of the by, representaion as an example:

Zy =10gAY | <1Gy Zy 2, L=12,-- (35)

where
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Gu = [[ 28V (6,6)cos(4L ~2)6
T
(36)
reos(4L' -2)& dad@ .

We now express V<(6,0) in terms of x(k+k") using
Eq.(1). Wefirst note that the constant term in Eq.(1),
U/N, does not contribute to the integral in Eq.(36),
because the integrand involves cos26 or higher cosine
terms. Wedefine x:(6,8) by thevalueof x(k+k"), where
k and k' are on the fermi surface and 8 and G are their
polar angles:

Xe(6,8) =x(K:(6)cosb+k:(8)cosd, k-(6)sind
+ke(8)sing) , (37)

where

k:(6)=k(0,6). (38)

Since the U term vanishes, we expect an attractive
interaction occurs at U?. So we set
_ 2tz

xy?’
where x isto be determined. With these definitions we
have a seqular equation for b,, symmetry:

logA = (39)

XZy 2= 1=1FuZaa, L=1,2-- (40)

where

F.=-2 [[P=(8)x¢(6.8)cos(4L ~2)8
TT
[Bos(4L' —2)8 dadg .

(41)

Eq.(40) is a homogeneous linear equation with the
eigenvalue being x. If we have a positive eigenvalue,
we can conclude that the superconducting state with
b, symmetry is stable. The most stable superconducting
state is what has the largest eigenvalue x.

We have first made a computer program to calculate
X(k.k)) for arbitrary k, and k,. Using this program we
calculated x-(6,8) for 200200 pointsin the intervals
of O<6<mrand —72<G<m/2. With these data the double
integral was evaluated using an interpolation method.
Finally theresult ismultiplied by 4 to obtain the integral

in EQ. (41), in which the integration ranges are 0<6<27t
and 0=6'<27t Thisis allowed by symmetry properties
of x=(6,8). Inthe usual case wetook L upto 15andin
some cases to 25. We note that, when we take 160x160
points instead of 200x200, the final results of x and z
differ only lessthan 1 %.

85 Results

Thefermi surface (or thefermi line) in the ki, plane
isshown in Fig.3 for the upper right part of the plane.
The electron number per Sten, wasvaried from0.9t0 0.1,

Fig.4 shows the logarithm of the largest eigenvalue
x as afunction of n, for the four representations. One
seesthat the b,y state is the most stable for n=0.9t0 0.6
but the by, state takes place for n, less than 0.6. It is

ky

2

Fig.3 Thefermi surfaces
for n=0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9.
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Fig4 Logarithm of x vs n, for four
symmetries of the gap function.



remarkabl e that the ground state of the Hubbard model
is superconducting down to n.=0.1, where the fermi
surface isalmost acircle asin the jellium model.
Figs.5-8 show the susceptibility x(k.,k ) asafunction
of k. and k for n.=0.9 to 0.3, in which one may notice
severa ridges. The projection of the ridges onto the k-
planeisshown in Figs.9-10 for n.=0.9 and 0.4. Point A
in Fig.9 corresponds to the fermi surface shifted as
indicated in Fig.11 and point B to that also asindicated
in Fig.11. Thustheridgeisalocus of the center of the
shifted fermi surface, that is always in touch with one
of the original fermi surfaces. At point B the shifted
fermi surface is in contact with two of them and the
susceptibility has apeak there. If the fermi surface were
aperfect square, the positions of the peaks are expressed
by ((1%8), (1)), where £ =2-2./n, . Wenote&is
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close to the hole number 6=1-n,, when dis small.
For asmall electron number (e. g. n:=0.4) the fermi
surfaceisnearly acircle and the projection of theridges
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indicated as“A” and “B” in Fig.11, respectively.
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is essentially acircle of the radius 2kg, which overlaps
with other ones centered on other reciprocal lattice
points (see Fig.10). Crossing of the 2k circles occurs
at points close to (£m,0) or (0,£m), where the
susceptibility isthe largest (see Fig.7). Thisisin sharp
contrast to the case n,=0.9, where the crossing (point
B) occurs closeto (11, 1) and the susceptibility hasa
peak there. We will see later that thisis the reason for
switching the most stable symmetry from by, to by, as
the electron number decreases. Further reduction of the
electron number resultsin non-crossing of the 2k: circles
asisseen in Fig.8 for the case of n.=0.3. Even in this
casethe susceptibility retainsthe symmetry of the square
lattice. It islarger on the k, or k, axis than on theline 45

2t

0

¢ 2n

k
Fig.10 Projection of the ridges of x(kk) for n=0.4.
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kx/ T
Fig.11 The fermi surfaces in the extended zone. The fermi
surface denoted by “A” is shifted from the central zone

so asto touch with aneighbouring fermi surface. “B” is
in touch with two of the neighbouring fermi surfaces.
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degrees from these axes. (Thisis not clearly seenin
Fig.8.) Thisfact becomesimportant when one considers
the origin of superconductivity for very small n.and is
due to the effect of one of the near-by 2k- lines, which
does not cross but approachesthe central 2k linealong
the principal axes.

Fig.12 (a) shows x:(6,8) for n;=0.9. One sees that
avery sharp ridge runs along the line from (172, 0) to
(O, 112) or along equivaent lines, the highest point being
a (1v4, 114). Point (0, T12) inthe 8- plane, for example,
represents transition from k on thek, axisto k' on thek,
axis. Then k+k' is very close to point B in Fig.9 (see
Fig.13), where the susceptibility isthe largest. For point
(6,8")on the line from (1/2,0) to (0,1/2), the
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Fig.12 (a) x=(6,0") for n=0.9.
(b) z(0,6) x(0,6") for n=0.9, where z(0,6) isthe
gap function of b,y symmetry. Note that the peaks
and the valleys along the diagonal (6= 8) are
180 degrees out of phase from those of (a).
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Fig.13 Scatteringsfrom k to k' where 8+6=1v2.
In this case k+k' always points to (T,1).
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Fig.14 (a) x:(6,0) for n=0.7.
(b) (0,6) x z(0,6") for n.=0.7, where z(0,6)
is the gap function of b;; symmetry.

corresponding k+k' is aso close to the peak points (see
Fig.13). On the other hand, along the line from (11,0) to
(0,—m) or equivalent lines k+k' is zero (backward
scattering), so the susceptibility is the smallest there.
One may notice deep valleys running along these lines
inFig.12(a).

Fig.14(a) and Fig.15(a) show x:(6,8) for n,=0.7 and
n.=0.5, respectively. The ridges now split and go down
and the regions around (0,0) and (£1V/2, +10/2) swell
up. In Fig.16(a), which shows x:(6,8) for n;=0.4, one
sees mesas centered at (0,0) and (xn17/2, £n102). The
origin of the mesasis seen from Fig.7. Point (0,0), for
example, implies that both k and k' are on the k, axis.
Since k(6= 0) isabout 0.51mtfor n.= 0.4, k+k' is close
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to (1.021, 0), where the susceptibility isthe largest. On
the other hand, point (174, 114) implies k+k' is at 45
degrees from the k, axis, where the susceptibility is
smaller than that on the principal axes as mentioned
previously. As one goesto n=0.3, one still finds ruined
mesas along the diagonal. (See Fig.17(a). Note the
extended scale of the ordinate.) This weak undulation
(maximaat (0,0) and (£172,£172) and mimimaat (£174,
+174) also comes from the fact that the susceptibility
is larger on the principal axes than on the line at 45
degrees from them. We have found such undulation

symmetries. We first discuss the case of n.=0.9, for
which the gap function with the b,; symmtry gives us
the most stable superconducting state. In Fig.18(a) we
show the signs of cos28x cos268 on the 8- plane. Our
criterion to obtain an energy gain for the superconducting
state was that the product of the gap functions,
z(0,60)xz(0,8), should be negative where the
susceptibility x-(6,8) islarge and vice versa. Watching
Fig.12(a) and Fig.18(a), we find that the gap function
cos20really satisfies this criterion. In fact we find
F.,=0.0187, which is positive and implies a
superconducting energy gain. By taking terms up to
L=10 we find the largest eigenvalue of Eq.(40) is
x=0.0204. The gap function, Eq.(33), with L summed

even for n=0.1.
We now present the results of diagonalization of
Eq.(40) for b,y symmetry and similar equationsfor other
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Fig.17 (a) x=(6,6) for n=0.3. Note the extended scale

0
T of the ordinate.

Fig.16 (a) x«(6,0) for n.=0.4.
(b) z(0,6) x z(0,8") for n=0.4, where z(0,6) is the
gap function of b,y symmetry. Note that the mesas
of (a) are placed in the middle of those of (b).

(b) z(0,6) x2(0,8) for n=0.3, where z(0,6) is
the gap function of b,, symmetry. Note that the
undulations along the diagonal (6= 8" of (a)
and (b) are mutually out of phase.
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upto 10isshownin Fig.19, whichisbasically of cos26
type. Fig.12(b) shows z(0,6) x z(0,8") with this gap
function, which is consistent with Fig.18(a).

L et us next consider the case of n=0.4. In contrast
to the case of n.=0.9 the susceptibility x:(6,0') is now
small at (x174, £174)and equivalent points on diagonals
(Fig.16(a)). Thisfitsto the gap function sin26. In fact,
the undulation of sin26xsin2@' along the diagonal axis
(6=6) is 180 degrees out of phase from that of x:(6,8"
along the same axis. (See Fig.18(b) and Fig.16(a).) This
is favourable for a superconducting energy gain. By
diagonalizing the seqular equation for the b,y symmetry
with L upto 10 wefind the largest el genval ue x=0.00039
and the gap function as shown in Fig.20. z(0,6)xz(0,8")
for this caseis shown in Fig.16(b).

As n, becomes smaller further, x-(6,8") shows

p
n
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77 2 0
-n 7 %7 MR E
7, | 7
L7, %/ L7 //2
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—JE
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;
m
% Z
! .
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Fig.18 Thesignsof cos20 xcos26' (a) and sin20xsin26" (b).
In the shaded regions the sign is plus and in the open
regionsit is minus.
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undulation of a smaller amplitude along the diagonal
with maximaat (0,0), (172, £172) etc. and mimima at
(2104, £174) etc. (see Fig.17(a)) and the gap function
isbetter represented by asingle sin26term. An example
isshown in Fig.21 for n.=0.2. Such asmall undulation
of x:(6,8) istheresult of x(k) having the symmetry of
the square lattice even for very small n., being larger
on the principal axesthan on the lines 45 degrees from
them. Since this undulation is out of phase from that of
sin260x sin26 adong the diagonal, the gap function sin26
picks up such a small undulation and givesrise to a
superconducting energy gain.

As one sees in Fig.4 the eigenvalues of the a4
symmetry and the b,, symmetry are almost degenerate
at n=0.38. The corresponding gap functions and the

2.8 l

’+\

9.4 -

1.8

2@, B

2.8 . . . [P,
e.e 21 .2 - .4 .5

hix
Fig.19 The gap function z(0,6) of by, symmetry for n.=0.9.
L issummed up to 10 in Eq.(33).
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Fig.20 The gap function z(0,6) of b,y symmetry for n.=0.4.
L issummed up to 10 in Eq.(34).
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products of them are shown in Figs.22-25. x(6,8) for
n.=0.38 isalso shownin Fig.26, where one sees mesas
at (0,0) and (xn1v2, £n172). From these figures one
can imagine that each mesa determines the form of the
gap function initsvicinity independently of other mesas.
Thisis confirmed by treating a simple model, where
we take xx(6,0)=V+V, for #+6*<f and x(6,68)=V,
otherwise with V>0. Our task is to obtain a
superconducting energy gain with such a repulsive
interaction. Wetake agap function which isnormalized
and whose average is zero:

2(6) = 2, 2—0’(1—2002)@"92 _

NER s (42)

Fig.21 Thegap function z(0,6) of b,y symmetry for n=0.2.
L is summed up to 10 in Eq.(34). The main
contribution comes from L=1.
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Fig.22 Thegap function z(0,6) of a,; sSymmetry for n.=0.38.
L issummed up to 15 in Eq.(31).
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Fig.23 Thegap function z(0,6) of b,y symmetry for n.=0.38.
L is summed up to 15 in Eq.(33). Note that thisis
regarded asthe antisymmetric combination of thelocal
gap function around 8= 0 and that around 6= T12.
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Fig.24 z0,6) x z0,60)for n=0.38, where z(0,6) is
the gap function of a,; sSymmetry.
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Fig.25 Z0,0) x z(0,8) for n.= 0.38, where z(0,6)
is the gap function of b,; symmetry.
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The hint is the form of z(0,6) near 6= 0 or 6= T2 in
Fig.22 and Fig.23. Our concern is whether the integral

[Ix<(6,6)2(6)(8)d6dE = [[er. 2 <5V 2(6) Z( ') 6"
(43)

can be negative. Calculation shows that it is negative
for af*>2 and isaminimum at a°=3.18. Thisresult is
well understood by watching Fig.27, where the signs
of z(6) x z(8") are shown together with the integration
region. If the integration extends over the entire plane
(B- ), theintegral vanishes. For small Bit ispositive.
But when Bisasindicated in Fig.27, one can imagine it
may be negative. Thisis one of the cases, where the
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Fig.26 x«(6,6) for n=0.38

Fig.27 The signs of z(6) x z(6), where z(0) is defined in
Eq.(42). In the shaded regionsthe signisplusandin
the open regionsit is minus. Inside the circle of the
radius 3 the integration in Eq.(43) is carried out.

564 % RS

negative contributions arising from pair transitions
between states with different signs of the gap function
overcome positive ones arising from transitions between
states with the same sign of the gap function.

86 Discussion

In this paper we have concerned with the way to
obtain a superconducting energy gain for a repulsive
interaction. The idea of deviding the k-space into two
regions where the gap function is either positive or
negative is similar to that of the two-band
superconductivity, where the sign of the gap function
is different for different bands™*?. In order to have a
net energy gain the interaction must have an appropriate
wave number dependence. In thisrespect we have found
that the two-dimensional Hubbard model isideal. At
least for asmall U one can say that the ground stateisa
superconductor with some symmetry of the gap function
without worrying about SDW. We have also seen that
the wave number dependence of the interaction in the
Hubbard model arises from the electron correlation,
which may be taken into accounnt either by a
perturbation theory or by a Gutzwiller projection. For
a large-U limit it may also be taken by another
perturbation theory, which gives us the t-Jmodel. The
spin fluctuation theory is a way to take account of
higher-order termsin U. It is not certain, however, that
the effect of the electron correlation is fully taken into
account in the wave number dependent susceptibiliy.
In this respect it is interesting to note that inelastic
neutron scattering experiments™ on Sr,RuO, revealed
asignificant spin fluctuation at an incommensurate k-
point, whereas it is atriplet superconductor.
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