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Superconductivity arising from coulomb repulsion between electrons has been studied for a multiband
system. We consider on-site and inter-site coulomb integrals, inter-site exchange integrals and inter-site
exchange-like integrals [K of eq. (42)]. We do not take account of the correlation effect caused by the
interaction, such as spin fluctuation etc., and calculate the average of the interaction energy with the BCS
wave function. We find that when K is so large that satisfies eq. (50), an s-type superconducting state is
stable when there are two fermi surfaces. The gap functions on these fermi surfaces have different signs
and so the pair transition between them gives us a negative energy for a positive K, leading to
superconductivity.
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1. Introduction

Superconductivity arising from coulomb repulsion has
been a subject of many theoretical works. A point of interest
for it is how a condensation energy (a negative energy)
arises from a positive interaction energy.1,2) The key is to
devide the k-space into two regions, where the sign of the
gap function is either positive or negative. The pair
transition from the positive region to the negative one or
the reverse transition gives us a negative energy, if the
matrix element of the transition is positive. When the k-
dependence of the matrix element is appropriate, this
negative contribution overcomes the positive ones, which
arise from the pair transition within each region and results
in superconductivity. A bare coulomb repulsion incorporated
with the BCS wave function is not appropriate for this
scenario to be realized, and one must take the electron
correlation into the BCS wave function to obtain an effective
interaction which has an appropriate k-dependence3–8) or
take the correlation directly by using something like the
Gutzwiller projection.9–11)

The aim to obtain a negative energy from a positive
interaction may also be achieved when one treats a two-band
or multi-band superconductivity. In this case the sign of the
gap function within each band may be definite but different
from each other. Then the pair transition between the bands
of different signs of the gap may give us a negative energy
when the transition matrix element is positive. This scenario
was first proposed by the present author12) and studied by
several authors for realistic substances.13–22) As we shall see
later, such a pair transition between bands is induced by an
exchang-like integral between atomic orbitals belonging to
different bands. Our concern is that many other integrals,
such as on-site or inter-site coulomb or exchange integrals,
might destroy the superconductivity caused by the interband
transition. This problem was not studied seriously in
previous works and we here present some results of the
study for the condition of realizing superconductivity from
the interband transiton. We consider a bipartite lattice and
first find a one-particle eigenstate (Bloch orbitals) by

introducing intra- and inter-sublattice transfer integrals.
Based on these Bloch states the interaction Hamiltonian is
expressed in terms of many integrals involving four atomic
orbitals. We keep only the on-site and inter-site coulomb
integrals, the exchange and exchange-like integrals between
orbitals belonging to different sublattices. With such a
Hamiltonian we take its average by the BCS wave function
extended to a multiband case. We do not take account of the
electron correlation, which means we work in the lowest
order of the interaction. Contrary to the single band case we
find that superconductivity exists in a wide range of
reasonable parameter values without invoking higher-order
effects of the interaction. In most cases superconductivity
exists when there are two fermi surfaces, on each of which
the sign of the gap function is definite but different from
each other. In some cases the gap function may have zeros
even though it is essentially of the s-character.

2. The Model

We consider L atomic orbitals in the unit cell denoted by
�n� with � ¼ 1; � � � ;L. Here, n specifies the unit cell, and the
position vector of the n-th unit cell is denoted by Rn and that
of the �-th atomic orbital measured from Rn by ��, so we
write as

�n�ðrÞ ¼ ��ðr� Rn � ��Þ: ð1Þ

Especially, we use the notation �0
� ¼ ��ðr� ��Þ. We

construct L LCAO’s from �n� as

uk� ¼
1ffiffiffiffi
N

p
X
n

eik�Rn�n�; ð2Þ

from which we obtain the eigenstates of the one-particle
Hamiltonian as

 k
l ¼

X
�

��l ðkÞu
k
� l ¼ 1; � � � ; L: ð3Þ

Here N is the total number of the unit cells. The coefficient
of the transformation, ��l ðkÞ, has the property ��l ðkÞ ¼
	���l ð�kÞ.

We now take account of the electron-electron interaction.
In the second quantization scheme, the electron field is
described by
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 ðr; �Þ ¼
X
lk	

alk	 
k
l ðrÞ	ð�Þ; ð4Þ

where � denotes the spin coordinate and 	ð�Þ is either the up-
spin (�) function or the down-spin (
) function. In this
scheme the interaction takes the form

H0 ¼
1

2

X
��0

Z
 yðr; �Þ yðr0; �0ÞVðr; r0Þ ðr0; �0Þ ðr; �Þd�d�0:

ð5Þ
Among terms involved in eq. (5), we retain only those which
correspond to scattering of the Cooper pair. Thus we have

H0
red ¼

1

2

X
lkl0k0

Vlkl0k0

X
		0

aylk	a
y
l�k	0al0�k0	0al0k0	; ð6Þ

where

Vlkl0k0 ¼ h k
l  

�k
l j k0

l0  
�k0

l0 i: ð7Þ

In general we use the notation

h�i�jj�l�ki ¼
Z

	��ið1Þ 	��jð2ÞVð1; 2Þ�lð1Þ�kð2Þd�1d�2: ð8Þ

The right hand side of eq. (7), which involves  k
l ’s, can be

expressed in terms of �n�’s by using eqs. (2) and (3). Among
integrals involving �n�’s, we retain only coulomb integrals,
exchange integrals and exchange-like integrals, whose
definitions will be shown presently. Thus we have

Vlkl0k0 ¼
1

N

X
n��0

eiðk�k0Þ�Rn 	���l ðkÞ�
�0

l ðkÞ�
�
l0 ðk

0Þ 	���
0

l0 ðk
0Þh�0

��
n
�0 j�

0
��

n
�0 i

þ
1

N

X
n��0

0
eiðkþk0Þ�Rn 	���l ðkÞ�

�0

l ðkÞ�
�0

l0 ðk
0Þ 	���l0 ðk

0Þh�0
��

n
�0 j�

n
�0�

0
�i

þ
1

N

X
n��0

0
j��l ðkÞj

2 � j��
0

l0 ðk
0Þj2h�0

��
0
�j�

n
�0�

n
�0 i: ð9Þ

The integrals in each line of eq. (9) are, from the above, the coulomb integral, the exchange integral and the exchange-like
integral, respectively. All these integrals must be positive. The prime on the summation sign means to neglect the term with
n ¼ 0 and � ¼ �0. We naturally have Vlkl0k0 ¼ 	VVl0k0lk. Furthermore we have Vlkl0k0 ¼ Vl0k0lk, if the atomic orbitals are real,
which we assume to be the case. For simplicity we assume that all these atomic orbitals are of the s-type.

Now we take the BCS wave function extended to a multiband case

� ¼
Y
lk

ðulk þ �lkaylk"a
y
l�k#Þj0i; ð10Þ

and calculate the average of eq. (6) with it to find

hH0
redi ¼

X
lkl0k0

Vlkl0k0ulk�lkul0k0�l0k0

¼
1

N

X
n��0

h�0
��

n
�0 j�

0
��

n
�0 i

�����
X
lk

eik�Rn 	���l ðkÞ�
�0

l ðkÞulk�lk

�����
2

þ
1

N

X
n��0

0
h�0
��

n
�0 j�

n
�0�

0
�i

�����
X
lk

eik�Rn 	���l ðkÞ�
�0

l ðkÞulk�lk

�����
2

þ
1

N

X
n��0

0
h�0
��

0
�j�

n
�0�

n
�0 i

X
lk

j��l ðkÞj
2ulk�lk �

X
lk

j��
0

l ðkÞj
2ulk�lk: ð11Þ

The first two terms, the coulomb term and the exchange
term, are positive definite and superconductivity is not
expected with only these terms, but the third therm, the
exchange-like term, may be negative and its negative
contribution to the energy may overcome the positive ones
of the first two terms and result in superconductivity. We
will study the condition for this scenario to be realized.

Before starting calculation, we rewrite eq. (11) as

hH0
redi ¼ E0

0 þ
1

N

X
n��0

0
½h�0

��
n
�0 j�

0
��

n
�0 i þ h�0

��
n
�0 j�

n
�0�

0
�i�

�

�����
X
lk

eik�Rn 	���l ðkÞ�
�0

l ðkÞulk�lk

�����
2

; ð12Þ

where

E0
0 ¼ N

X
��0

c��0X�X�0 ; ð13Þ

X� ¼
1

N

X
lk

j��l ðkÞj
2ulk�lk;

c��0 ¼
X
n

h�0
��

0
�j�

n
�0�

n
�0 i ¼ c�0�: ð14Þ

In a simple and useful approximation, we keep only E0
0. It is

a quadratic form and will be indefinite in sign when there is
at least one negative eigenvalue of the matrix c��0 . We will
later study this problem for a simple example.

Let "lk be the one-particle energy of each band measured
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from the fermi level . (We consider the ground state of the
system.) Then the total energy with this energy included is
written as

E ¼ 2
X
lk

"lk�
2
lk þ

X
lkl0k0

Vlkl0k0ulk�lkul0k0�l0k0 : ð15Þ

Minimization of this expression determines the variation
parameters ulk and �lk as

u2
lk ¼

1

2
1 þ

"lk

Elk

� �
; ð16Þ

�2
lk ¼

1

2
1 �

"lk

Elk

� �
; ð17Þ

2ulk�lk ¼
�lk

Elk

; ð18Þ

Elk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"2
lk þ �2

lk

q
; ð19Þ

with the self-consistency equation

�lk ¼ �
1

2

X
l0k0

Vlkl0k0
�l0k0

El0k0
: ð20Þ

We set �lk ¼ � � zlk, where � represents the magnitude
of the gap (� > 0) and zlk its angular dependence. We
concentrate on the case of small �, when the following
relation holds1,2)

X
k

FðkÞ
Elk

¼ �2 log � �
X
k

FðkÞ�ð"lkÞ

þ ðterms non-divergent as � ! 0Þ:

Keeping only the first contribution, we find the self-
consistency equation now reads

1

log �
zlk ¼

X
l0k0

Vlkl0k0 � �ð"l0k0 Þ � zl0k0 : ð21Þ

This is a homogenous linear equation with the eigenvalue
being 1= log � � �. It is not an Hermitian equation and one
might wonder if the eigenvalue is real or not. That it is real
can be seen by multiplying both sides of eq. (21) by 	zzlk�ð"lkÞ
and summing over l and k:

1

log �

X
lk

jzlkj2�ð"lkÞ ¼
X
lkl0k0

Vlkl0k0 	zzlkzl0k0�ð"lkÞ�ð"l0k0 Þ:

Since both sums are real and the one on the left hand side
does not vanish, we can conclude 1= log � � � must be real.
Since we are restricting ourselves to the weak coupling limit,
a negative eigenvalue � assures a superconducting ground
state.

We will obtain the expression for Vlkl0k0 from eq. (11) or
eq. (12), but with E0

0 we simply find

Vlkl0k0 ¼
1

N

X
��0

c��0 j��l ðkÞj
2j��

0

l0 ðk
0Þj2: ð22Þ

Hereafter we will tell about the results of keeping only E0
0,

but treatment of a more general case is straightforward and
the results of that case will be mentioned when it is
necessary. Since eq. (22) is the sum of the products of two
functions depending only on k and k0, the summation over k0

in eq. (21) gives us a k-independent factor, which we denote
by x�:

x� ¼
1

N

X
lk

j��l ðkÞj
2�ð"lkÞzlk: ð23Þ

Then eq. (21) reads

�zlk ¼
X
��0

c��0 j��l ðkÞj
2x�0 : ð24Þ

Insertion of this expression into eq. (23) gives us

�x� ¼
X
�0

a��0x�0 ; � ¼ 1; � � � ;L ð25Þ

with

a��0 �
X
�00

b��00c�00�0 ð26Þ

and

b��0 �
1

N

X
lk

j��l ðkÞj
2j��

0

l ðkÞj
2�ð"lkÞ: ð27Þ

The dimension of the seqular equation has been reduced to
L. We note that b��0 involves only the band parameters,
whereas c��0 only the coulomb parameters. When eq. (25)
has a negative eigenvalue, we conclude that a super-
conducting state is stable. The condition for a negative
eigenvalue is closely related to the condition that the matrix
c��0 has a negative eigenvalue and so E0

0 is indefinite. This
correlation is brought about by eq. (26). We will see an
example of this correlation in the next section. After solving
eq. (25) and finding x� within an arbitrary factor, we obtain
angular dependence of the gap function from eq. (24).
Without knowing details of the solution we see that the
symmetry of the gap function is a1g, because so is the
symmetry of j��l ðkÞj

2.

3. An Example of a Bipartite Square Lattice

As an example we consider a two-dimensional two-
sublattice model as shown in Fig. 1, where L ¼ 2. The
LCAO’s on sublattice 1 and 2 are

uk1 ¼
1ffiffiffiffi
N

p
X
n

eik�Rn�1ðr�RnÞ; ð28Þ

uk2 ¼
1ffiffiffiffi
N

p
X
n

eik�Rn�2ðr�Rn � �Þ; ð29Þ

Fig. 1. Parameters of a two-dimensional bipartite lattice. U1 and U2 are

on-site coulomb integrals and V1 and V2 are inter-site coulomb integrals
on each sublattice, whereas t1 and t2 are transfer integrals in each

sublattice. V0, J and K are the coulomb, exchange and exchange-like

integrals between the sublattices.
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where � ¼ ð1=2; 1=2Þ. The lattice constant has been set to
unity. The one particle energy of these LCAO’s are

�1k ¼ e1 þ 2t1ðcos kx þ cos kyÞ � ; ð30Þ

�2k ¼ e2 þ 2t2ðcos kx þ cos kyÞ � ; ð31Þ

where t1 and t2 are the transfer integral in each sublattice and
e1 and e2 are the energy level of �1 and �2, respectively.

We also consider transfer between nearest nighbouring �1

and �2: Z
	uuk1H0u

k
2d� ¼ �0ke

�i’k ; ð32Þ

�0k ¼ 4t0 cosðkx=2Þ cosðky=2Þ; ð33Þ

’k ¼ ðkx þ kyÞ=2; ð34Þ

where t0 is the relevant transfer integral (see Fig. 1).
The eigenstates, eq. (3), are now expressed by

 k
1 ¼ �1

1ðkÞu
k
1 þ �

2
1ðkÞu

k
2; ð35Þ

 k
2 ¼ �1

2ðkÞu
k
1 þ �

2
2ðkÞu

k
2; ð36Þ

with

�1
1ðkÞ ¼ cos �k; �2

1ðkÞ¼ �ei’k sin �k; ð37Þ

�1
2ðkÞ ¼ e�i’k sin �k; �2

2ðkÞ¼ cos �k; ð38Þ

tan 2�k ¼ ��0k=��k; ��k ¼ ð�1k � �2kÞ=2; ð39Þ

whereas the eigenvalues by

"1k ¼
1

2
ð�1k þ �2kÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð��kÞ2 þ �2

0k

q
; ð40Þ

"2k ¼
1

2
ð�1k þ �2kÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð��kÞ2 þ �2

0k

q
: ð41Þ

From now on we retain only the following integrals and
equivalent ones:

U1 ¼ h�0
1�

0
1j�

0
1�

0
1i; U2 ¼ h�0

2�
0
2j�

0
2�

0
2i;

K ¼ h�0
1�

0
1j�

0
2�

0
2i:

ð42Þ

We then have c11 ¼ U1, c22 ¼ U2, c12 ¼ c21 ¼ zK, where
z ¼ 4 is the number of the nearest neighbours. We also find
from eqs. (26) and (27)

a11 ¼ b11U1 þ b12zK; a12 ¼ b11zK þ b12U2;

a21 ¼ b21U1 þ b22zK; a22 ¼ b21zK þ b22U2; ð43Þ

where

b11 ¼
1

N

X
k

½cos4 �k�ð"1kÞ þ sin4 �k�ð"2kÞ�; ð44Þ

b22 ¼
1

N

X
k

½sin4 �k�ð"1kÞ þ cos4 �k�ð"2kÞ�; ð45Þ

b12 ¼ b21 ¼
1

N

X
k

sin2 �k cos2 �k½�ð"1kÞ þ �ð"2kÞ�: ð46Þ

From eq. (43) or eq. (26) one has

a11a22 � a12a21 ¼ BC; ð47Þ

where

C � c11c22 � c12c21 ¼ U1U2 � ðzKÞ2; ð48Þ

B � b11b22 � b12b21 ¼
1

N2

X
kk0

ðcos2 �k � sin2 �k0 Þ2 � �ð"1kÞ�ð"2k0 Þ

þ
1

2N2

X
kk0

ðsin2 �k � sin2 �k0 Þ2 � ½�ð"1kÞ�ð"1k0 Þ þ �ð"2kÞ�ð"2k0 Þ� � 0: ð49Þ

When B > 0, the condition that eq. (25) has a negative eigenvalue, namely a11a22 � a12a21 < 0, is equivalent to the
condition that the E0

0 is indefinite in sign, namely C < 0, or

ðzKÞ2 � U1U2 > 0: ð50Þ

On the other hand, when B ¼ 0, the smallest eigenvalue of eq. (25) is zero and so the superconducting state cannot be stable.
From eq. (49) we see that B ¼ 0 when (i) there exists only a single fermi surface and (ii) sin2 �k is a constant on that surface.
This criterion is very useful for later arguments. The negative eigenvalue of eq. (25) is obtained for BC < 0 as

� ¼ ð1=2Þ
	
U1b11 þ U2b22 þ 2zKb12 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU1b11 þ U2b22 þ 2zKb12Þ2 � 4BC

q 

ð51Þ

When V0 ¼ h�0
1�

0
2j�0

1�
0
2i and J ¼ h�0

1�
0
2j�0

2�
0
1i are also kept, the second term of eq. (12) is found as

4ðV0 þ JÞ
N

"X
k

cosðkx=2Þ cosðky=2Þ sin 2�kðu1k�1k � u2k�2kÞ

#2

þ
4ðV0 þ JÞ

N

"X
k

sinðkx=2Þ sinðky=2Þ sin 2�kðu1k�1k � u2k�2kÞ

#2

ð52Þ

Here we naturally assumed that u1k�1k and u2k�2k have the same even or odd parity. When the symmetry of the gap function
is a1g, the second line vanishes, but the first line does not because cosðkx=2Þ cosðky=2Þ sin 2�k is also of the a1g-symmetry.
With the V0 þ J term included we introduce
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�1¼
1

2N

X
k

cosðkx=2Þ cosðky=2Þ sin 2�k½z1k�ð"1kÞ� z2k�ð"2kÞ�

beside x1 and x2 and solve the 3-dimentional eigenvalue
problem. A term 4ðV0 þ JÞ cosðkx=2Þ cosðky=2Þ sin 2�k�1

should be added to the right hand side of eq. (24) for
l ¼ 1 and subtracted from that for l ¼ 2.

4. Results

The results depend strongly on the band structure, which
is determined by t0, t1, t2, e1, e2. We discuss on two typical
cases of the band parameters.

4.1 Case 1: t0 ¼ 0:5, t1 ¼ �1, t2 ¼ �1, e1 ¼ 1, e2 ¼ �1
This is the case of two paralel and displaced dispersion

curves, which are repelled by the mixing t0 between them.
The resulting dispersion "1k and "2k are shown in Fig. 2. The
bands are partially filled when the fermi level is between
�6:2 are 5.0. There are two fermi surfaces, when the fermi
level is between ea and eb of Fig. 2. Outside of this there is
only a single fermi surface.

We have considered three cases for the choice of the
interaction parameters:

A : ðU1 ¼ 5;U2 ¼ 0:4;K ¼ 0:5Þ;
B : ðU1 ¼ 5;U2 ¼ 0:4;K ¼ 0:5;V0 ¼ 1; J ¼ 0:5Þ;
C : ðU1 ¼ 5;U2 ¼ 0:4;K ¼ 0:5;V1 ¼ 2;V2 ¼ 3; J ¼ 0:5Þ;

in all of which �C ¼ 2. In Case C we consider the inter-site
coulomb integrals in the same sublattice, V1 and V2 (see
Fig. 1). Minus of the eigenvalue � is shown in Fig. 3, from
which we see that superconductivity exists only when the
fermi level is between ea and eb, namely only when there
exist two fermi surfaces. This is becasuse, outside of the
region between ea and eb, sin2 �k is nearly constant on the
fermi surface and so the second term of eq. (49) vanishes
(the first term naturally vanishes when there is only a single
fermi surface). The peaks at  ¼ �1 and  ¼ 1 are due to
the van Hove singularities. Cases B and C involve fairly
large coulomb integrals between sites, but still super-
conductivity is robust around the van Hove singularity, if
�C is not small (2 in this case).

We then discuss on the results of calculation of the gap
function based on eq. (24) or similar one including the �1

term. When the fermi level is between ea and �1:0 and not
close to the latter, the two fermi surfaces are nearly circular

and the gap functions are almost constant on them, but have
different signs for the different bands. This is what we
expected: different signs of the gap function for the different
bands and a positive scattering matrix element betwee them
give us a negative contribution to the interaction energy and
lead to superconductivity. We encounter a somewhat
different situation near the van Hove singularity  ¼ �1.
Fig. 4 shows the fermi surfaces for the fermi level  ¼ �1:1

and  ¼ �0:9. A and C are those of the lower band and B
and D those of the upper band. Fig. 5 shows the gap
functions on these fermi surfaces with an arbitrary scale for
Case B of the interaction parameters. One sees there are

Fig. 2. The dispersion curves for case of t0 ¼ 0:5, t1 ¼ �1, t2 ¼ �1,

e1 ¼ 1, e2 ¼ �1 drawn from (0,0) to (�; 0) and from (0,0) to (�; �). When

the fermi level is between ea and eb, there exist two fermi surfaces.

Fig. 3. Minus of the eigenvalue vs the fermi energy for the band
parameters of Fig. 2 and the three choices of the interaction parameters

(see text).

Fig. 4. The fermi surfaces for the dispersion curves of Fig. 2 for the fermi
energy  ¼ �1:1 and  ¼ �0:9. The van Hove singularity is at

 ¼ �1:0.

Fig. 5. The gap functions on A to D in Fig. 4 vs the angle � between the kx
axis and the radius vector drawn from (0,0) or (�; �). The interaction

parameters are Case B of §4.1.
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eight zeros of the gap on the larger fermi surface. This is also
the case for Case C but not the case for Case A, in which the
gap function is nearly constant even close to the van Hove
singularity.

4.2 Case 2: t0 ¼ 0:5, t1 ¼ �1, t2 ¼ 1, e1 ¼ 0, e2 ¼ 0

This is the case of the two crossing bands which are
mutually repelled by the mixing t0. The dispersion curves
are shown in Fig. 6, from which one sees that in the regions
between  ¼ �4:5 and �4 and between  ¼ 4 and 4.5 there
exists only a single fermi surface. Figure 7 shows minus of
the eigenvalue for the three cases of the interaction
parameters as before. One finds that superconductivity does
not exist in the regions mentioned above for the same reason
as in §4.1. The van Hove singularities are at  ¼ �0:97 and
 ¼ 0:97. When the fermi level is below �0:97, there are
two fermi surfaces, one centered at (0,0) and the other at
(�; �) (e.g., A and B of Fig. 8). The gap functions have a
constant sign on each of them, but have different signs from
each other as in the case of §4.1. As the fermi level goes up
above �0:97, a cross-over of the fermi surfaces results in C
and D surfaces of Fig. 8. As one naturally sees from Fig. 8,
each of the gap functions on C and D must have four zeros at
the four edges. The gap functions calculated based on eq.
(24) are shown in Fig. 9 for the interaction parameters of
Case A. Results for Case B and Case C are similar. In the
parts of the fermi surfaces A and C of the figure, e.g., which
are close to each other (denoted by+and+in Fig. 8), the

values of the gap are almost the same. This is not apparent in
Fig. 9, because the angle � is not the same when the radius is
drawn from the center of A and from that of C to a point on
the fermi surface.

5. Discussion

We have seen an important role played by an exchange-
like integral, such as h�0

��
0
�j�n�0�n�0 i, in leading to multi-band

superconductivity. Its effect is enhanced by the factor z, the
number of the nearest neighbours of a bipartite lattice as is
seen in eq. (50). The negative effect of the on-site coulomb
integrals is only cooperative, and if one of them is small, the
effect is small even when the other is large. Thus the
presence of a weakly correlated band favours for the
superconductivity due to inter-band transition. Another point
of interest of eq. (50) is that z is larger in three dimension
and may be 6 at least. We may expect a more enhanced
effect in three dimension. Superconductivity of MgB2 may
be a candidate to treat along this scheme.

We have not taken account of the electron correlation
caused by the interaction. Thus the eigenvalue � of the self-
consistency equation is linear in the interaction parameters.
More precisely, when all the interaction parameters are
multiplied by � and all the band parameters and the chemical
potential by �, the eigenvalue is multiplied by �=�. This is
easily seen in a special case, where only the parameter K is

Fig. 6. The dispersion curves for case of t0 ¼ 0:5, t1 ¼ �1, t2 ¼ 1,

e1 ¼ 0, e2 ¼ 0, drawn from (0,0) to (�; 0) and from (0,0) to (�; �). When
the fermi level is between �4:5 and �4:0 or between 4.0 and 4.5, there

exists only a single fermi surface.

Fig. 7. Minus of the eigenvalue � vs the fermi energy for the band
parameters of Fig. 6 and the same choices of the interaction parameters as

in §4.1.

Fig. 9. The gap functions on A to D in Fig. 8 vs the angle � between the kx
axis and the radius vector drawn from (0,0), (�; �), (�; 0) or (0; �). The
interaction parameters are Case A of §4.1.

Fig. 8. The fermi surfaces for the dispersion curves of Fig. 6 for the fermi

energy  ¼ �1:0 and  ¼ �0:93. The van Hove singularity is at

 ¼ �0:97 and  ¼ 0:97. The gap functions are positive on A and

negative on B, but change signs on C and D.
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retained. From eq. (51) we then have

� ¼ �zK
ffiffiffiffiffiffiffiffiffiffiffiffi
b11b22

p
� b12

� �
� 0

where b’s are inversely proportional to �.
The symmetry of the gap function is a1g in the example of

§4, so is essentially of the s-character. Then the effect of the
on-site coulomb integrals is not suppressed, but super-
conductivity still exists when inequality (50) is satisfied.
This is achieved by the gap function, which is positive in
some part of the fermi surface and negative in the other part
of it, while keeping the a1g symmetry. Such a gap function
takes advantage of the pair transition from the part of the
positive gap function to the part of the negative one. In most
cases such a gap function is realized when there are two
fermi surfaces, in one of which it is positive and in the other
it is negative. However it is also possible that the gap
function changes its sign on a single fermi surface with
several zeros, as we have seen in the example of §4.2. We
can expect that there are several types of the specific heat vs
temperature curve, when the present mechanism is relevant
to the superconductivity.

We have not taken account of the correlation between
electrons caused by the interaction. One of the important
consequences of this approximation is that it is not the
coulomb and exchange integrals but the exchange-like
integrals that are responsible for superconductivity.
Although this conclusion is quite general, the situation is
changed when one takes account of the correlation by a
perturbation theory or by a projection method. Even in this
case it is certain that the exchange-like integrals help to

enhance superconductivity.
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8) M. T. Béal-Monod, C. Bourbonnais and V. J. Emery: Phys. Rev. B 34

(1986) 7716.

9) T. Nakanishi, K. Yamaji and T. Yanagisawa: J. Phys. Soc. Jpn. 66

(1997) 294.
10) K. Yamaji, T. Yanagisawa, T. Nakanishi and S. Koike: Physica C 304

(1998) 225.

11) K. Yamaji, T. Yanagisawa and S. Koike: Physica B 284–288 (2000)

415.
12) J. Kondo: Prog. Theor. Phys. 29 (1963) 1.

13) P. Konsin, N. Kristoffel and T. Örd: Phys. Lett. A 129 (1988) 339.
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