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Superconductivity of the Two-Dimensional Hubbard Model with a Small U
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Superconductivity of the two-dimensional Hubbard model with t′ = 0 has been examined
in the small U limit, where the matrix element of pair scattering is expressed as Vkk′ =
U+U2χ(k+k′). The susceptibility χ(k) of the unperturbed band has been evaluated accurately
and the gap equation, which reduces to a seqular equation, has been solved precisely. The gap
is found to be of the form ∝ exp(−2t2/xU2), where x is the eigenvalue of the seqular equation.
We have found the largest eigenvalue x is always positive (superconductive). The symmetry
of the gap function is b1g for the electron density ne > 0.6 and b2g for ne < 0.6, depending
on the peak position of χ(k). It is roughly (π, π) for the former case and (π, 0) for the latter.
The superconductivity seems to prevail even for ne → 0. These results can be explained with
a simple criterion.
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§1. Introduction
There has been a controversy on whether the two-

dimensional Hubbard model leads to a superconduct-
ing state or not. Recent theoretical studies1–16) on
this model (and the d-p model) seem to indicate that
the answer is yes for some range of parameters. How-
ever, a definitive conclusion must be reserved, because
all of these studies invole some kind of approximation
as RPA,1,2) FLEX,3–5) variation method,6–8) finite sys-
tems,9–11) perturbation theory with large U ,12–14) and
1/N expansion.15,16) In this paper we rely on a pertur-
bation theory and limit ourselves to the small U limit
of the model and will give a definitive answer to this
question in this limit.
Our concern is how superconductivity is possible when

the interaction is repulsive. We set the problem in the
following way. Let us write the interaction energy of the
BCS theory as

〈H ′〉 = Σkk′Vkk′ukvkuk′vk′ ,

where Vkk′ is the matrix element for the pair transition
from k to k′ and uk and vk are variational parameters
of the theory. If one can make the above energy neg-
ative, then we regard the ground state of the model is
superconducting. When Vkk′ is negative, one may just
take ukvk positive. When it is positive, one must devide
the k-space into two regions, where ukvk is either posi-
tive or negative. Then the sum has contributions of both
signs. How can the negative contributions overcome the
positive ones? First we note that, when Vkk′ is indepen-
dent of k and k′, the sum is expressed as V (Σkukvk)

2,
which is positive or at best zero. Consequently, in order
to have a superconducting energy gain for the Hubbard
model, where the bare interaction U is independent of
k and k′, we must take account of the electron correla-
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tion and derive a k and k′ dependent interaction. There
have been three ways to do this. Anderson proposed the
t-J model which takes account of a strong correlation
effect.17) On the other hand, the spin fluctuation theory
takes account of the correlation perturbatively.18–20) A
variation method was used by Yamaji et al., who took a
BCS wave functon with a Gutzwiller projection.6–8)

Once we have a k and k′ dependent interaction Vkk′ ,
our next task is to find ukvk such that ukvk and uk′vk′

should have different signs when Vkk′ is larger than its
average and the same sign when Vkk′ is smaller than the
average. This task is not always successful. As we will
show in the following, however, the two dimensional Hub-
bard model with a small U is well suited for this purpose.
By taking the correlation effect correct up to the first or-
der of U , we find that Vkk′ is expressed by the wave num-
ber dependent susceptibility of the unperturbed band, as
the spin fluctuation theory indicated:18–20)

Vkk′ =
U

N
+
U2

N
χ(k + k′), (1)

χ(k) =
1

N

∑
q

fk+q − fq
εq − εk+q . (2)

We neglect the next-nearest-neighbour transfer t′ so that
εk = −2t(cos kx + cos ky) − µ. Evaluating the suscep-
tibility accurately for arbitrary k and solving the gap
equation precisely, we shall find that the ground state is
superconducting at least for the electron number per site
between 0.9 and 0.1. The symmetry of the gap function
changes from b1g to b2g at the electron number ≈0.6.
The superconductivity seems to prevail even for very
small electron number. This switch of the symmetry
and robustness of the superconductivity can clearly be
explained with the following criterion: In order to have a
superconducting energy gain for a repulsive interaction,
the gap functions ∆k and ∆k′ should have different signs,
when the interaction Vkk′ is larger than its average, and
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Fig. 1. Definition of the polar coordinates, ε and θ.

the same sign, when it is smaller than its average.

§2. Formulation
We take the BCS state Ψ = PNeΠ(uk+vka

†
k↑a

†
−k↓)|0〉

and find the average of the energy as

ES = Σk2εkv
2
k +Σkk′Vkk′ukvkuk′vk′ . (3)

Minimizing this energy with respect to vk we obtain the
gap equation

∆k = −1
2
Σk′Vkk′

∆k′

Ek′
, (4)

with Ek =
√
ε2k +∆2k. We consider the case of weak

coupling (small U) and set ∆k = ∆ ·zk, where ∆ denotes
the magnitude of ∆k and zk represents its k-dependence.
In the weak coupling limit the sum in eq. (4) involves a
log∆ term and terms that remain a constant as ∆→ 0.
In the approximation of retaining only the log∆ term,
we can rewrite eq. (4) as

zk = log∆ · Σk′Vkk′δ(εk′)zk′ . (5)

This is a linear homogeneous equation for the gap func-
tion zk, the eigenvalue being 1/ log∆.
In order to solve this equation we use polar coordinates
ε, θ instead of kx, ky, where ε = εk and θ is the angle
between k and the kx axis (see Fig. 1), and express zk
as zk = z(ε, θ). We also express Vkk′ with the polar

coordinates as Vkk′ = Ṽ (ε, θ, ε
′, θ′). Then eq. (5) reads

z(ε, θ) = log∆ ·N
∫∫
ρ(ε′, θ′)Ṽ (ε, θ, ε′, θ′)

× δ(ε′)z(ε′, θ′) dε′ dθ′, (6)

where the sum over k has been replaced by the integral
over ε and θ with the use of the density of states ρ(ε, θ).
One may be interested only in the gap function on the
fermi surface z(0, θ), which we decompose as

z(0, θ) = Σlzl e
ilθ, (7)

and express eq. (6) for ε = 0 as

zl = log∆ · Σl′Hll′zl′ , (8)

where

Hll′ =
N

2π

∫∫
ṼF(θ, θ

′)ρF(θ′) eil
′θ′−ilθ dθ dθ′, (9)

with ṼF(θ, θ
′) ≡ Ṽ (0, θ, 0, θ′) and ρF(θ) ≡ ρ(0, θ). Al-

though the absolute magnitude of zl is not fixed by
eq. (8), zl fixes the angular dependence of the gap func-

tion. Note that ṼF(θ, θ
′) is the interaction strength for

the transition of the pair from θ-direction to θ′-direction
and is the most important quantity in the following ar-
gument. Since the matrix Hll′ is not hermitian, one may
wonder if its eigenvalue is real or not. However, one can
easily show that it is real.

§3. Irreducible Representations of Even Parity
We now concentrate on superconductivity of even par-

ity in the square lattice. The eigenfunction of the gap
equation (8) is specified by one of the irreducible rep-
resentations, a1g, a2g, b1g and b2g, of the square lattice.
Symmetry requirements of each representation pose con-
straints on the form of the gap function:

z(0, θ) = ΣL=1z4L cos 4Lθ a1g, (10)

z(0, θ) = ΣL=1z4L sin 4Lθ a2g, (11)

z(0, θ) = ΣL=1z4L−2 cos(4L− 2)θ b1g, (12)

z(0, θ) = ΣL=1z4L−2 sin(4L− 2)θ b2g, (13)

The L = 0 term of the a1g representation was omitted to
suppress a strong s-type repulsive term U/N in eq. (1).

We now express ṼF(θ, θ
′) in terms of χ(k + k′) using

eq. (1). We define χF(θ, θ
′) by the value of χ(k + k′),

where k and k′ are on the fermi surface and θ and θ′ are
their polar angles:

χF(θ, θ
′) = χ(kF(θ) cos θ + kF(θ′) cos θ′,

kF(θ) sin θ + kF(θ
′) sin θ′), (14)

where kF(θ) is the magnitude of k on the fermi surface
with the polar angle θ. Since the U term vanishes, we
expect an attractive interaction occurs at U2 and set

log∆ = −2t2/xU2, (15)

where x is to be determined. With these definitions the
seqular equation reads

xzl =
∑
l′
Gll′zl′ , (16)

Gll′ = − 1

π

∫∫
χF(θ, θ

′)ρF(θ′) eil
′θ′−ilθ dθ dθ′. (17)

The solution of eq. (16) is specified by one of the four
types of the symmetry. When the eigenvalue x for one of
them is positive, the superconductivity of that symmetry
is stable and what has the largest eigenvalue x is the most
stable one.
We have first made a computer program to calculate
χ(kx, ky) for arbitrary kx and ky. Using this program we
calculated χF(θ, θ

′) for 200× 200 points in the intervals
of 0 ≤ θ ≤ π and −π/2 ≤ θ′ ≤ π/2. With these data
the double integral was evaluated using an interpolation
method. Finally the result is multiplied by 4 to obtain
the integral in eq. (17), in which the integration ranges
are 0 ≤ θ ≤ 2π and 0 ≤ θ′ ≤ 2π. This is allowed by
symmetry properties of χF(θ, θ

′). We note that, when
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Fig. 2. Logarithm of x vs ne for the four symmetry types.

Fig. 3. χ(kx, ky) for ne = 0.9.

Fig. 4. χ(kx, ky) for ne = 0.4.

we take 160 × 160 points instead of 200× 200, the final
results of x and zl differ only less than 1%.

§4. Results
As we solve eq. (16), we first take account of con-

straints on the value of l (l = 4L or 4L − 2 with L = 1,
2,· · · ). In the usual case we took L up to 10 and in some
cases to 25. Figure 2 shows the logarithm of the largest
eigenvalue x vs the electron density ne for the four sym-
metries of the gap function. One sees that the b1g state
is the most stable for ne = 0.9 to 0.6 but the b2g state
takes place for ne less than 0.6. It is remarkable that the
ground state of the Hubbard model is superconducting
down to ne = 0.1, where the fermi surface is almost a
circle as in the jellium model.

Fig. 5. The peak of χ is at the center of the nesting fermi surface
(a) ne = 0.9 (b) ne = 0.4.

Fig. 6. χF(θ, θ
′) for ne = 0.9.

Figures 3 and 4 show the susceptibility χ(kx, ky) as a
function of kx and ky for ne = 0.9 and 0.4, respectively.
The peaks near (π, π) in the case of ne = 0.9 and the flat
ones near (π, 0) or (0,π) for ne = 0.4 are the result of the
nesting of the fermi surface (see Fig. 5). Figure 6 shows
χF(θ, θ

′) for ne = 0.9. One sees that a very sharp ridge
runs along the line from (π/2, 0) to (0,π/2) or along
equivalent lines, the highest point being at (π/4, π/4)
and equivalent points. Point (0,π/2) in the θ-θ′ plane,
for example, represents transition from k on the kx axis
to k′ on the ky axis. Then k + k′ is very close to the
peak in Fig. 3, where the susceptibility is the largest. For
point (θ, θ′) on the line from (π/2, 0) to (0,π/2), one has
θ+θ′ = π/2 and the corresponding k+k′ is also close to
the peak. On the other hand, along the line from (π, 0) to
(0,−π) or along equivalent lines k+k′ is zero (backward
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Fig. 7. χF(θ, θ
′) for ne = 0.4.

Fig. 8. The signs of (a) cos 2θ × cos 2θ′ and (b) sin 2θ × sin 2θ′.
The sign is plus (shaded) or minus (open).

Fig. 9. The gap function z(0, θ) of b1g symmetry for ne = 0.9.

scattering), so the susceptibility is the smallest there.
One may notice deep valleys running along these lines in
Fig. 6. In Fig. 7, which shows χF(θ, θ

′) for ne = 0.4, one
sees mesas centered at (0, 0) and (±nπ/2, ±nπ/2). The
origin of the mesas is seen from Fig. 4. Point (0, 0), for
example, implies that both k and k′ are on the kx axis.
Since kF(θ = 0) is about 0.51π for ne = 0.4, k + k′ is
close to (1.02π, 0), where the susceptibility is the largest.
On the other hand, point (π/4, π/4) implies k+ k′ is at
45 degrees from the kx axis, where the susceptibility is
smaller than that on the principal axes. As one goes to
ne = 0.3, one still finds ruined mesas along the diagonal
(not shown). Weak undulation (maxima at (0, 0) and
(±π/2, ±π/2), etc. and mimima at (±π/4, ±π/4), etc.)
also comes from the fact that the susceptibility is larger
on the principal axes than on the lines at 45 degrees from
them. We have found such undulation even for ne = 0.1.
We now present the results of diagonalization of

Fig. 10. The gap function z(0, θ) of b2g symmetry for ne = 0.4.

eq. (16). We first discuss the case of ne = 0.9, for which
the gap function with the b1g symmtry gives us the most
stable superconducting state. In Fig. 8(a) we show the
signs of cos 2θ × cos 2θ′ on the θ-θ′ plane. Our criterion
to obtain an energy gain for the superconducting state is
that the product of the gap functions, z(0, θ)× z(0, θ′),
should be negative where the susceptibility χF(θ, θ

′) is
large and vice versa. Watching Fig. 6 and Fig. 8(a), we
find that the gap function cos 2θ really satisfies this crite-
rion. In fact we find G22 = 0.0187, which is positive and
implies a superconducting energy gain. By taking terms
up to L = 10 (l = 38) we find the largest eigenvalue of
eq. (16) is x = 0.0204. The gap function, eq. (12), with
L summed up to 10 is shown in Fig. 9, which is basically
of cos 2θ type.
In contrast to the case of ne = 0.9 the susceptibility
χF(θ, θ

′) for ne = 0.4 is now small at (±π/4, ±π/4)
and equivalent points on diagonals (Fig. 7). This fits
to the gap function sin 2θ. In fact, the undulation of
sin 2θ × sin 2θ′ along the diagonal axis (θ = θ′) is 180
degrees out of phase from that of χF(θ, θ

′) along the
same axis (see Fig. 7 and Fig. 8(b)). This is favorable
for a superconducting energy gain. By diagonalizing the
seqular equation for the b2g symmetry with L up to 10
(l = 38) we find the largest eigenvalue x = 0.00039 and
the gap function as shown in Fig. 10.
As ne becomes smaller further, χF(θ, θ

′) shows undu-
lation of a smaller amplitude along the diagonal with
maxima at (0, 0), (±π/2, ±π/2) etc. and mimima at
(±π/4, ±π/4) etc. and the gap function is better repre-
sented by a single sin 2θ term. Such a small undulation
of χF(θ, θ

′) is the result of χ(k) having the symmetry
of the square lattice even for very small ne, being larger
on the principal axes than on the lines 45 degrees from
them. Since this undulation is out of phase from that
of sin 2θ × sin 2θ′ along the diagonal, the gap function
sin 2θ picks up such a small undulation and gives rise to
a superconducting energy gain.

§5. Discussion
Superconductivity arising from a short-ranged repul-

sive interaction was first pointed out by Kohn and Lut-
tinger for the three dimensional electron gas.21) Their
result is correct within the second order perturbation
theory for low electron density and they stated that
the superconductivity originates from the sharpness of
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the fermi surface. Chubukov22) applied their theory to
the two dimensional fermi liquid and predicted that a
(triplet) pairing instability should occur only at the third
(or higher) order perturbation calculation. In this paper
we have shown that a singlet pairing should occur at the
second order of the interaction U for the electrons in a
lattice. It originates from the square lattice symmetry of
the wave number dependent susceptibility of the unper-
turbed band.
In this paper we have tried to visualize how the su-

perconducting energy gain arises from a repulsive inter-
action. The idea of deviding the k-space into two re-
gions where the gap function is either positive or nega-
tive is similar to that of the two-band superconductivity,
where the sign of the gap function is different for different
bands.23) In order to have a net energy gain the interac-
tion must have an appropriate wave number dependence.
In this respect we have found that the two-dimensional
Hubbard model is ideal. At least for a small U one can
say that the ground state is superconducting with some
symmetry without worrying about SDW. We have also
seen that the wave number dependence of the interac-
tion in the Hubbard model arises from the electron cor-
relation, which may be taken into accounnt either by a
perturbation theory or by a Gutzwiller projection. For
a large U limit it may also be taken by another per-
turbation theory, which gives us the t-J model. We have
limited our study to the second order of U . The spin fluc-
tuation theory is a way to take account of higher-order
terms in U . It is not certain, however, that the effect
of the electron correlation is fully taken into account by
the wave number dependent susceptibiliy. Hotta12) and
Jujo, Koikegami and Yamada13) showed that the vertex
correction has an important effect to reduce the Tc.
In this paper we have been concerned only with the

even parity superconductivity. To treat the case of the
triplet superconductivity in the small U limit one just
replaces χ(k+ k′) by −χ(k − k′).19,20) Then it is easily
seen that the triplet superconducting state is not sta-
ble in this limit for any electron density. That a triplet
pairing in two dimension occurs at the third order of the
interaction has been shown by Chubukov22) for the low

density fermi liquid and by Nomura and Yamada14) for
the Hubbard model away from the half-filling.
A detailed account of this study has been published

in Bulletin of the Electrotechnical Laboratory (special
issue) vol. 64 (2000) 67.
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