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The possibility of superconductivity in the ground state of the two-dimensional Hubbard model
was investigated by means of the variational Monte Carlo method. With slight hole doping on the
6 x 6 and 10 x 10 lattices, a clear minimum was obtained on the curve of the total energy versus
the amplitude of the d-wave gap function for large on-site Coulomb energies. Superconducting
pair correlations were observed to be well developed. The-next-nearest-neighbor transfer was
found to appreciably affect the minimum depth.
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Recently the mechanisms of superconductivity in high-
temperature cuprate superconductors and organic super-
conductors have been extensively studied using various
two-dimensional models of electronic interactions. The
two-dimensional Hubbard model is the simplest and one
of the most fundamental ones among such models. Early
numerical studies of this model showed the existence of
an attractive interaction for an anisotropic pairing.’?)
However, by means of further numerical investigations
using quantum Monte Carlo (M.C.) methods, some au-
thors concluded that the enhanced superconducting cor-
relation does not develop into the predominant one at low
temperatures or in the ground state in this model.3"5)
However, since the investigated parameter space, e.g.,
the ranges of on-site: Coulomb energy U and tempera-
ture, was restricted due to the methods, whether or not
this model has a ground state with predominant super-
conducting correlation in any parameter region is still a
fundamental problem. Although for the ¢-J model ev-
idence of the occurrence of superconductivity has been
obtained,®® the transformation of the Hubbard model
to the ¢-J model is only valid at the first expansion term
in the canonical transformation, so it is highly desirable
to investigate this problem directly.

In the above-mentioned studies concerning this model,
the most severe restriction was that to I/. U had to be, at
most, half the bandwidth in the quantum M.C. calcula-
tions. The cluster size was rather small. We have applied
the variational Monte Carlo method, which is more flexi-
ble concerning these restrictions, for the search of super-
conductivity in the mode! of the title. Very recently there
appeared two preprints suggesting the occurrence of the
d-wave superconductivity in this model.1%11) However,
these projection M.C. studies are still restricted to U
less than half the bandwidth. The present study gives
much clearer indications of d-wave superconductivity in
the strong correlation region where the above-mentioned
studies could not access. Because we consider that next-
nearest-neighbor (n.n.n) transfer energy ¢’ affects the oc-
currence of superconductivity for a reason given later, we
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have included it in our model and confirmed the effect.
Our model is the two-dimensional Hubbard model de-
fined by

H=-t Z (cj-acla +He)+ UZC}chTc}Lch, (1)
(1) J

where CL (¢jo) is the creation (annihilation) operator of
an electron with spin ¢ at the jth site; the sites form a
rectangular lattice; £ is the transfer energy between the
nearest-neighbor (n.n.) sites; ¢ is our energy unit; (jI)
denotes summation over all the n.n. bonds. U is the
on-site Coulomb energy. Later on in this paper, we also
study the effect of ¢’ between n.n.n. sites by including

Honn = —t' Z (c;acla + HC) (2)
((G)).e

in the Hamiltonian; in the above equation ({jI)) means
summation over the n.n.n. pairs.

Our trial wavefunction is a Gutzwiller-projected BCS-
type wavefunction defined as:

®3)
4)

¥, = PyFoines,
¢pes = | [(uk + UkCLTCT_ki)IU%
k
where PG is the Gutzwiller projection operator given by
Po =[]0 - (1~ g)njrny); (5)

7

g is a variational parameter in the range from 0 to unity
and j labels a site in the real space. Py is a projection
operator which extracts only the states with a fixed total
electron number V. Coeflicients u and v, appear in our
calculation only in the ratio defined by

vr/ur = A/ + /&G + 43), (6)
£k = —2t(cos k, + cos k) — 4t cos k, cosk, — p, (7)

where p is the chemical potential and Ap is a k-
dependent gap function defined later; ¢y, is the Fourier
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transform of ¢;,. Neglecting constant factors, ¥ can be
rewritten as

Y ~ PyPg eXp(Z('”k/uk)chcikl)l())y (8)
k
= PnPoexp(y_ a(j,)cl.c]))]0), (9)
3l
~ Pa(d_a(s,Dckcf )N?0), (10)
7l

= Pg >

Jts-dng2stiyolnge

a0 T i1 ]
X C511Cht - CingatCiiCiay - clN/le())’

A1, - dnvgzs by e lvg2)

(11)
where a(7,1) is defined by
a(j, 1) = (1/Ne) Y _(vi/u) expfik - (R — R;)}, (12)

k
with N being the number of sites and
A(jl)j?a T :jN/Q; ll7l27 Tt lN/Q) =
a(j1,11) a(j1,1lz) a(j1,In/2)
a(ja, 1) a(fa, l2) a(j2,lny/2) (13)
a(fnya.l1)  a(inge,lz2) a(dns2Ing2)
Then the ground state energy
Eg = (H) = (W |H|Ws) /(s |¥s) (14)

is obtained using a M.C. procedure.!?:13) We optimize

this energy with respect to g, Ag and u. Our programs
were made by modifying previous ones used for the two-
chain Hubbard model.}Y) We tested our programs using
exact diagonalization results for small systems.

We studied the cases of the d-, extended s- (s*-) and
s-wave gap functions as follows.

d Ar = Acosks —cosky),
st A = Acosk, +cosky), (15)
s Ay = 4

The sizes of the lattice we treated are 6 x 6 and 10 x 10
having electron density close to unity with slight hole
doping to the half-filled state.

Results indicating the occurrence of the d-wave super-
conductivity were obtained even for the case of electron
number N = 32 on a 6 x 6 lattice with the periodic and
the antiperiodic boundary conditions (b.c.’s) for the z-
and the y-direction, respectively. This set of b.c.’s was
chosen so that A does not vanish for any k points. pos-
sibly occupied by electrons. The result is shown in Fig.
1 with U = 8 and ¢’ = 0. Ground state energy F, di-
vided by site number N; is plotted as a function of A
defined in eq. (15). g and y are optimized for each value
of A by turns until optimization is sufficient. The value
of E; was obtained as the average of ten independent
M.C. calculations each with 5 x 107 M.C. steps for the
optimized g and p. The error bar shows the standard de-
viation. Clearly E,/N; is minimized at A ~ 0.10. Here
g = 0.3038 and p = —0.48. We can estimate the energy
gain due to the gap formation as ~ 0.00028/site from the
difference between the minimum and the intercept of the
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Fig. 1. Computed ground state energy per site Eg/N; is plotted

against A, amplitude of the d-wave superconducting gap func-
tion, for the case of 32 electrons on the 6 X 6 lattice with periodic
and antiperiodic b.c.’s for the z- and the y-direction. U = 8 and
t/ = 0. The unit of energy is transfer energy t.
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Fig. 2. Doubly occupied & points are shown by filled circles in
the two-dimensional k space for the case of 32 electrons on the
6 x 6 lattice with periodic and antiperiodic b.c.’s for the z- and
the y-direction, respectively, in the limit of U = 0 with ¢/ = 0.
Open circles are empty k points. Dotted open circles at kz = —7
are equivalent to open circles at k» = 7. Here the unit of length
is the lattice constant.

curve with the ordinate.

The normal state value of E;/N; was also calculated
by a similar variational M.C. procedure. We obtained
£y, = —0.6535 at g = 0.30. In the case of s-wave
pairing in eq. (15), the Ez/Ns-vs-A curve was found
to have a sharp positive slope, and was extrapolated to
~ —0.65351 for A = 0, which is very close to the normal
state value, as expected. The extrapolated value of the
d-wave state Eg /Ny ~ —0.65495 for A = 0 is lower by
~ 0.0014 than the above values. This difference is un-
derstood to be due to a size effect in the following way.
At the minimum of the d-wave curve u = —0.48 lies be-
tween the filled and the empty k-point energies in the
U = 0 picture. For A = 0.01 ~ 1079, y increased to
~ —0.20 which slightly exceeds the energy of the lowest
empty k points, i.e., point A and its equivalents in Fig. 2.
Therefore, in the limit of small A, coefficient v, is dom-
inatant over uy even for k belonging to the A group, as
for the occupied k points shown by filled circles in Fig.
2, and the part of the d-wave wavefunction excluding
the Gutzwiller projector in eq. (8) does not satisfy the
closed shell condition. It contains components in which
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Fig. 3. Computed ground state energy per site Fg/Ns is plotted
against A for the case of 84 electrons on the 10 x 10 lattice with
periodic and antiperiodic b.c.’s for the z- and the y-direction.
U = 8 and t/ = 0. Filled circles are for the d-wave gap function
with g and p optimized for each A. Filled squares and trian-
gles are for the s*- and s-wave gap functions, respectively. The
diamond shows the normal state value.

a BCS-like pair of electrons are excited to the A-group &
points from the C and equivalent k points in Fig. 2. The
ratios of these components to the closed shell component
are finite even in the limit of A = 0. These components
lower E, given by eq. (14) since their coefficient has a
sign opposite to that of the main component. If we ne-
glect the effect of the Gutzwiller projection, we get the
energy gain of about 0.0013/site which is in a good agree-
ment with the above-mentioned difference. This gain of
E, occurred due to the k-dependent sign of v /ug with
the asymmetrical distribution of discrete k points. This
effect does not occur for the s- or s*-wave wavefunctions.
The calculation was extended to the 10 x 10 lattice.
The results for N, = 84 on this lattice with periodic and
antiperiodic b.c.’s for the 2- and y-directions are shown
in Fig. 3 for the case of U = 8 and t' = 0. Here Ez/N;
is plotted as a function of A for the three types of gap
functions given in eq. (15). At each value of A shown
in Fig. 3, g = 0.30 was chosen as the initial value of g,
on the basis of preliminary survey, and then the optimal
value of ;1 was found by the least squares fit of E; as a
function of u to a parabola. Using this value of u, g was
optimized again. Since F; was a smooth function of g,
the obtained optimal g and p are sufficiently accurate.
Using these values, E; was obtained as the average of the
results of eight M.C. calculations each with 5 x 107 steps
at A = 0.01, 0.04 and 0.08 for the d-wave. The standard
deviations were less than 0.00011. At other points, the
numbers of M.C. calculations and steps were different
but their error bars were within 0.00015. The diamond
shows the normal state value, —0.73585 + 0.00024, ob-
tained from 20 M.C. calculations each with 107 steps.
Clearly, F4/N. is minimum at a finite value of A =~
0.08 in the case of the d-wave gap parameter. The op-
timal parameter values at A = 0.08 are g = 0.3037 and
u = —0.4263. The least squares fit of d-wave data points

to a parabola gave the minimum position at A 22 0.0766.
The curves of Eg/Nj for the s- and s*-wave gap functions
have definite positive slopes at small A and are extrap-
olated to ~ —0.7354 and ~ —0.7353, respectively, which
are practically equal. Again these values are slightly
higher than the extrapolated value ~ —0.73605 for the
d-wave. The normal state value of Eg/N; = —0.73585
lies between the two groups of extrapolated values. This
value was obtained from the Gutzwiller-projected Fermi
sea in which (7/6,77/10) and (—7/6, —7%/10) are fully
occupied but (r/6,—7x/10) and (—=/6,77/10) are un-
occupied. The differences are explained as follows. In
the limit of A = 0 the four points are equally occupied
in the s-, s*- and d-state wavefunctions. These wavefunc-
tions give an expectation value of the on-site Coulomb
term that is larger than the normal state wavefunction.
This difference is equal to 4U/N2 per site. It would be
diminished by the effect of the Gutzwiller projection in
the variational calculation, and become closer to the ob-
served difference between the normal state value and the
s- and s*-state values in the limit of A = 0. Further-
more, for the same reason as in the case of Ny = 6 x 6,
Eg/Ns of the d-wave state becomes lower than that of
the s- and s*-state values in the limit of A = 0. In this
d-state, low-energy BCS pairs are excited to the four par-
tially occupied k points. The calculated energy gain was
in fair agreement with the difference between the E; /N
values of the d-state and the s- and s*-states in the limit
of A=0.

The energy gain in the d-wave state is ~ 0.0015/site.
This gain per site is nearly equal to the expected super-
conducting condensation energy ~ (state density) x A2
It is five times larger than that for IV, = 32 and N = 36.
This suggests that the size effect is still appreciable in the
latter system and that the energy gain per site would re-
main finite in the bulk limit.

In order to check the superconducting nature of the
ground state with a finite value of A, the correlation
functions of BCS pair operators were calculated. Super-
conducting pair correlation functions Dyg(l), o, 8 = z, v,
are defined as:

Dop(l) = (AL (i +1,7)Ap(i, 1)),

where A,(¢,7),« = z,y, denote the annihilation opera-
tors of singlet electron pairs staying on n.n. sites as:

(17)
(18)

(16)

Ag(3,5) = Cij)Cit1,4t — CijtCit1,5ls

Ay(4,5) = CigLCijrit = CijtCij+ils
where ¢;;, means the annihilation operator at site (4, 7).
The average (...) is defined in eq. (14). The result for a
state close to the minimum E,; point in Fig. 3, ie., A =
0.078, i = —0.428 and g = 0.30, is shown in Fig. 4. The-
long range parts are enlarged. The correlation extends
over the lattice as expected, showing a clear contrast
to the normal state. The d-wave nature appears in the
negative sign of Dy, (1) for [ = 2 ~ 5.

In the case of U = 4 the minimum of the E;-vs-A
curve lies at A ~ 0.01 — 0.02 and is much shallower for
both 6 x 6 and 10 x 10 lattices. In the case of U = 16
the minimum of around A ~ 0.12 is as deep as that for
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Fig. 4. Parts of the correlation functions of superconducting pair

operators for the case of 84 electrons on the 10 x 10 lattice with
periodic and antiperiodic b.c.’s for the z- and the y-directions.
The abscissa is the distance [ between the z-coordinates of the
positions of two pair operators. U = 8 and ¢’ = 0. The closed
symbols denote the superconducting pair correlations in the en-
ergy minimum state. They are the average of four M.C. calcula-
tions each with 3 x 107 M.C. steps. The error bars are standard
deviations. The open symbols are for the normal state. Since we
focus on the long-range parts, the parts for [ = 1 are omitted.

U = 8. However, U = 16 is much larger than bandwidth
8 and may be too large for the Gutzwiller wavefunction
to be justified.

The A-dependence of E,/N; for the d-wave state in
the case of the periodic b.c.’s for both directions were
found to have similar features as those in the preceding
case of the periodic and the antiperiodic b.c.’s. In the
present case, the d-wave Ay is zero for some k values,
which gives rise to a difficulty related to the factor vy /ug
in eq. (6). To prevent this difficulty, we replaced Ay
with A, = 1077 when |Az| < A.. In the range of A,
from 1079 to 1073, no dependence of resulting E, on
A¢ was found beyond data scattering. The depth of the
minimum in the E,/N-vs-p curve for d-wave pairing in
the case of Ny = 10 x 10 and N, = 86 was close to
that in the case of periodic and antiperiodic b.c.’s with
Ns =10 x 10 and N, = 84 mentioned above. The depth
of the minimum in the case of these b.c.’s with Ny = 6 x6
and N, = 30 was ~ 0.00069, which is twice as large as
that in the preceding case with N = 6 x 6 and N, = 32.

In the two-dimensional Hubbard and d-p models, the
state density around the van Hove singularities located in
the neighborhood of (0, ) and (7, 0) is known to develop
with the increase of electron correlation, as the single-
particle dispersion along the lines from these points to
(0, 0) becomes anomalously weak.'®) The increased state
density around the singularity has been argued to en-
hance the 7, of the d-wave superconductivity.'®) When
t' is negative, the van Hove singularity moves toward the
Fermi energy in the hole-doped systems, which should
further increase 7,. We have examined the t'-dependence
of the minimum of the Eg-vs-A curve, including Hppy, in
(2) in our model. In the case of N, = 32 on the 6 x 6 lat-

tice with the periodic and antiperiodic b.c.’s, the energy
minimum became slightly deeper with the change of ¢’
from zero to —0.25, but at ¢’ = 0.25 the minimum be-
came shallower by a factor of 2. In the case of N, = 84
on the 10 x 10 lattice with the same b.c.’s, the mini-
mum clearly became deeper with the increase of ¢ in the
negative direction from zero to —0.1 and —0.25. With
a positive value of ¢’ = 0.1, the minimum became shal-
low. It nearly vanished when ¢’ = 0.25. Thus, a negative
value of ¢’ stabilizes the d-wave superconductivity in the
hole-doped case in the Hubbard model, at least up to
t' = —0.25, which is in qualitative agreement with ref.
17.

In summary, the variational M.C. calculation on the
two-dimensional Hubbard model gave a clear minimum
of the total energy as a function of the amplitude of the
d-wave gap function. In this energy minimum state, the
superconducting correlation extends over finite-size sys-
tems. The energy gain increases with increase of U up to
8t ~ 16t. The preceding negative results are considered
to mainly be due to the restriction of the computation
method to small or moderate values of U. Next-nearest-
neighbor . transfer ¢ increases the energy gain with in-
crease of |¢'| when t’ is negative.
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