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We study the behavior of the dHvA oscillation from the two-dimension to the three-dimension
by changing the interlayer hopping ¢,. We show that the oscillation of the chemical potential

is gradually suppressed as t. increases.
Landau level.

It results from the broadening of the width of the
In the quasi-two-dimensional magnetic breakdown system such as k-(BEDT-

TTF)2Cu(NCS)2, the quantum interference oscillation such as (-« oscillation is suppressed,
while the amplitude of the S+« oscillation has a maximum as a function of ¢,. This interesting
dependence on the dimensionality can be observed in quasi-two-dimensional metals under the

uniaxial pressure.
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Introduction

§1.

In the metal, the magnetization (M) periodically os-
cillates as a function of the inverse of the magnetic field
(H), which is known as the de Haas-van Alphen (dHvA)
oscillation.)) The experiment of the dHvA oscillation has
been conventionally examined by the Lifshitz-Kosevich
(LK) formula.?) When we neglect the impurity scatter-
ing in the spinless case and at T' = 0, the LK formula is

written as
)) (1)
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where f; = A;(ch/2me) and A; is the area of the ex-
tremal closed Fermi surface for each orbit (7). As the
three-dimensionality and the value of p increase, a;(p, H)
becomes small. This LK formula is derived from the
oscillatory part of M (u,H) —0Q(p, H)/OH, where
Q(u, H) is the thermodynamic potential obtained under
the condition of the fixed chemical potential (). How-
ever, indeed, M should be calculated as M (N, H)
—OF(N,H)/OH by using of the Helmholtz free energy,
F(N, H), obtained under the condition of the fixed elec-
tron number (N). In the three-dimensional system, as
the width of the Landau level broadens (see Fig. 1(a)),
the oscillation of p as a function of H becomes very small,
so that the LK formula treating p independent of H is

justified.

However, in the two-dimensional system, the LK for-
mula is not appropriate because u oscillates as a function
of H due to the pinning of y at the very sharp Landau
level (see Fig. 1(b)). Thus, the calculation under the
condition of the fixed N is needed. In fact, in the one-
band system, Shoenberg!?) has showed that the oscilla-
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tory part of M (N, H) for the fixed N is given by
M32P ; 2—1) sin (27rp£) ,

where the spin and the impurity scattering are neglected
at T = 0. This M2P is not in agreement with the LK
formula (M™¥) in which the three-dimensionality is re-
duced.

In the two-dimensional magnetic breakdown sys-
tem,>® it has been shown that the S-a oscillation
(so-called the quantum interference oscillation ) ex-
ists in M(N,H) under the condition of the fixed
N.5-20)  Experimentally, the $-a oscillation was con-
firmed in the quasi-two-dimensional oraganic conduc-
tors?!) such as k-(BEDT-TTF),Cu(NCS)22%2%) and a-
(BEDT-TTF),KHg(SCN)4? with the magnetic break-
down Fermi surface. The conventional FS theory based
on the LK formula could not explain the -a oscillation.

Next, we consider the quasi-two-dimensional system
with the weak k,-dispersion given as —t, cos ck,.2%) We
introduce 2t,/hw as a parameter which determines the
dimensionality under the magnetic field applied to k.-
axis. Then, two limits can be understood as follows;
(1) When 2t, /hw % 1.0, the oscillation of y is very small
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Fig.1. Schematic density of the states in the magnetic field
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Fig.2. p(N,h) (upper figure) and M(N,h) (lower figure) as a
function of 1/h in the one-band model.

since the density of states becomes nearly the continuum.
We regard this case as the effective three-dimensional
system, where the LK formula is valid.

(2) For 2t,/hw =~ 0, we can neglect the three-
dimensionality. Thus, the theory for two-dimensional
system®%720) is appropriate.

However, the theoretical and experimental studies of
the dHvA oscillation from the two- to the effective three-
dimensional system (that is, in 0 < 2t,/hw ~ 1) have
never been done.26:2") This study is very important to
understand the experiments of the dHvA oscillation of
the actual quasi-two-dimensional materials such as k-
(BEDT-TTF),Cu(NCS)228:2% and SroRuO,.

In this paper, by the numerical calculations under the
condition that N is fixed, we show p and M in the di-
mensional crossover region, where the oscillation of y is
gradually suppressed and M is smoothly changed (see
Fig. 2). In the magnetic breakdown system, we find the
anomalous enhancement of the amplitude of the G+«
oscillation as a function of ¢, (see Fig. 5).

§2. Formulation

We use a tight binding model. In the z-y plane, the
nearest neighbor transfer integrals (t; and t,) with the
lattice spacing (a and b) and an on-site potential (V') are
considered. For V = 0, a closed Fermi surface exists,
and we call it as B orbit and define its area as f3 in
the unit of 472 /ab (see Fig. 3 (a)). For small V, there
exit a small closed Fermi surface (called as « orbit) and
the quasi-one-dimensional open Fermi surface, where the
large [ orbit is possible due to the magnetic breakdown
(see Fig. 3 (b)). From this model, we can study both the
one-band system (V' = 0) and the magnetic breakdown
system (V' # 0). In the z-axis, we consider the weak
interlayer hopping (t,) with the lattice spacing (c).

For simplicity, we take t; = t, = t and ignore the spin
of the electrons to avoid additional complications. The
magnetic field is applied in the z-direction.
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Fig.3. (a) The Fermi surface at k., = 0 for the one-band model
(V =0). (b) for magnetic breakdown model (V' # 0).

The Hamiltonian is written as

H(h) = K(h) + V. (2.1)
Without magnetic field in k-space representation,
Z CT(k)EK)C(K), (2.2)

vzvzxéwm@+mmm+M&,@@
k

E(k) = —t (cosaky + cosbky) —t,cosck,, (2.4)

where g = 7/b.

The electron filling (N/N;) is set to about 1/3 and
7/18 for V = 0 and V # 0, where N, is the total site
number. In this case, fg ~ 1/3for V =0, and f, ~ 1/18,
fa=~=T7/18 and fgta = fa £ fo for V #0.

We introduce the magnetic field by the Peierls substi-
tution k — k + eA/# in £(k), taking the Landau gauge
A=(Hy, 0, 0). The resultant kinetic energy operator is

K(h) = —g S {expliaka)C (ke by — 9)C(K) + e}
k

+ 3 (~tcos(bky) — t. cos ckz) CT(K)C(k), (2.5)
k

where § = ,‘ff —¢—2W h27r ¢ = abH is the flux

passing through a unit cell ¢o = 2wh/e is the unit flux
quantum, and h = ¢/¢o is the number of the flux quan-
tum per unit cell. Since the total band width is about 4¢,
hw o~ 4th = 4h, and 2t,/hw ~t,/2h. When t,/t = 0.05,
2t,/hw ~ 1 at h ~ 1/40. We describe the magnetic field
as h, hereafter. In this study, h is changed from 1/60 to
1/8, which corresponds to 20 Sns 3, where n is the
number of the highest occupied Landau level.

From the eigenvalue (F;(h)) obtained by diagonalizing
H(h), the chemical potential is given by

u(N, k) = Ex(h). (2.6)
The free energy, F(N,h), at T = 0 is given by
1 &
= ]—V—ZEi(h). (2.7)
S =1
The magnetization is obtained from
M(N,h) = —9F(N,h)/0h. (2.8)
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Fig.4. M(N,h) (lower figure) and its FTA (upper figure). The
region of the Fourier transform is 12 < 1/h < 62.

§3. Results and Discussions

3.1 One-band Model

In Fig. 2, we show u(N,h) and M(N,h) under the
condition of the fixed N as a function of 1/h by changing
t, continuously. The period of the oscillation of u(N, k)
and M (N, h) is 1/3, which is consistent with the period
of fg. The effective three-dimensionality due to the larger
t, and/or the lower h results in the smooth damping
of the oscillation of u(N,h) and the smooth decreasing
of the amplitude of the oscillation of M(N,h). When
the three-dimensionality becomes large (see the case of
t./t = 0.05 in Fig. 2), the oscillation of (N, h) is very
small at the low field (1/h < 30), i.e. 2t,/hw < 1.0.

3.2 magnetic breakdown Model

In the magnetic breakdown system (V/t = 0.1),
M(N,h) and its Fourier transform amplitudes (FTAs)
are shown in Fig. 4. From the overall behavior of
M(N,h), we can see that the amplitudes of the oscil-
lations of o (3) are smaller (larger) as h increases, which
is due to the magnetic breakdown.

In the FTAs of M(N,h) there exit the (-a oscilla-
tion and a small peak of S+« oscillation in addition to
the large peaks of a and f oscillations at t, = 0. In
Fig. 5, we show the t,-dependence of these FTAs. As
t, increases, the a, B8 and (-« oscillations are strongly
suppressed. The three-dimensionality plays a role of the
decreasing amplitude of the oscillation. Nevertheless, the
B+« oscillation is enhanced clearly and has a maximum
at t,/t ~ 0.025. The damping of the oscillation of y is
closely related to this maximum of the 8+ o oscillation.

84. Conclusion

We have studied the dHvA oscillation in the quasi-
two-dimensional system. In the intermediate region
(0 < 2t,/hw < 1.0), the effect of the smooth damping of
the oscillation of y appears in the dHvA oscillation. This
interesting physical picture has never been shown until
now. One can see an anomalous maximum of the ampli-
tude of the B+« oscillation in the quasi-two-dimensional
magnetic breakdown system. It will be observed in k-
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Fig.5. Main FTAs of M(N,h) as a function of t;/t. An arrow
indicates a maximum.

(BEDT-TTF),Cu(NCS); by the experiments under the
uniaxial stress.30)
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