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Abstract
The non-uniform ground state of the two-dimensional three-band Hubbard
model for the oxide high-Tc superconductors is investigated using a variational
Monte Carlo method. We examine the effect produced by holes doped into
the antiferromagnetic (AF) background in the underdoped region. It is shown
that the AF state with spin modulations and stripes is stabilized due to holes
travelling in the CuO plane. The structures of the modulated AF spins are
dependent upon the parameters used in the model. The effect of the boundary
conditions is reduced for large systems. We show that there is a region where
incommensurability is proportional to the hole density. Our results give a
consistent description of stripes observed by the neutron-scattering experiments
based on the three-band model for the CuO plane.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A mechanism of superconductivity of high-Tc cuprates is not still clarified after the intensive
efforts over a decade. An origin of the anomalous metallic properties in the underdoped
region has also been investigated by many physicists as a challenging problem. In order to
solve the mysteries of high-Tc cuprates, it is important to examine the ground state of the
two-dimensional CuO2 planes that are usually contained in the crystal structures of high-
Tc oxide superconductors [1]. A basic model for the CuO2 plane is the two-dimensional
three-band Hubbard model with d and p orbitals, which is expected to contain essential
features of high-Tc cuprates [2, 3]. The undoped oxide compounds exhibit a rich structure
of antiferromagnetic (AF) correlations over a wide range of temperatures described by the
two-dimensional quantum antiferromagnetism [4–8]. It is also considered that a small
number of holes introduced by doping are responsible for the disappearance of long-range
AF ordering [9–12]. Recent neutron-scattering experiments have suggested an existence of
incommensurate ground states with modulation vectors given by Qs = (π ± 2πδ, π) and
Qc = (±4πδ, 0) (or Qs = (π, π ± 2πδ) and Qc = (0,±4πδ)) where δ denotes the hole-
doping ratio [13]. We can expect that the incommensurate correlations are induced by holes
moving around in the CuO plane in the underdoped region.
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The purpose of this paper is to investigate the effect of hole doping in the ground state
of the three-band Hubbard model in the underdoped region using a variational Monte Carlo
method [14–16] which is a tool to control the correlation from weakly to strongly correlated
regions. It is shown that AF long-range ordering disappears due to extra holes doped into the
two-dimensional plane. With respect to the initial indications given by the neutron-scattering
measurements, the possibility of incommensurate stripe states is examined concerning any
dependencies on the hole density δ, especially regarding the region of 1/8 doping. Although
the possible incommensurate states are sensitively dependent upon the boundary conditions in
small systems, the effect of the boundary conditions is reduced for larger systems.

The paper is arranged as follows. In section 2 the wavefunctions and the method for the
three-band Hubbard model are described. In section 3 the results are shown and the last section
summarizes the study.

2. The two-dimensional three-band Hubbard model and wavefunctions

The three-band Hubbard model has been investigated intensively with respect to
superconductivity (SC) in cuprate high-Tc materials [17–30]. However, a non-uniform AF
ground state for the three-band model has not yet been examined as intensively [31]. The
three-band Hubbard model is written as [19, 32, 33]

H = εd
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∑
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†
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i−ŷ/2,σ pi−x̂/2,σ + h.c.] (1)

where x̂ and ŷ represent unit vectors in the x andy directions, respectively, p†
i±x̂/2,σ andpi±x̂/2,σ

denote the operators for the p electrons at the site Ri ± x̂/2 and in a similar way p
†
i±ŷ/2,σ and

pi±ŷ/2,σ are defined. U(≡ Ud) denotes the strength of Coulomb interaction between the d
electrons. For simplicity we neglect the Coulomb interaction among the p electrons. Other
notations are standard and energies are measured in tdp units. The number of cells which
consist of d, px and py orbitals is denoted as N .

The wavefunctions are given by the normal state, spin density wave (SDW) and modulated-
SDW wavefunctions with the Gutzwiller projection. For the three-band Hubbard model the
wavefunctions for the normal and SDW states are written as

ψn = PG

∏
|k|�kF,σ

α
†
kσ |0〉, (2)

ψSDW = PG

∏
|k|�kF,σ

β
†
kσ |0〉 (3)

where αkσ is the linear combination of dkσ , pxkσ and pykσ constructed to express an operator
for the lowest band of a non-interacting Hamiltonian in the hole picture. PG is the Gutzwiller
operator given by

PG =
∏
i

(1 − (1 − g)ndi↑ndi↓) (4)
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for ndiσ = d
†
iσ diσ . For tpp = 0, αkσ is expressed in terms of a variational parameter ε̃p − ε̃d as

follows:
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where wxk = 2tdpsin(kx/2), wyk = 2tdpsin(ky/2), wk = (w2
xk + w2

yk)
1/2 and Ek =

[(ε̃p − ε̃d)
2/4+w2

k ]1/2. For the commensurate SDW βkσ is given by a linear combination of dkσ ,
pxkσ , pykσ , dk+Qσ , pxk+Qσ andpyk+Qσ forQ = (π, π). PG is the Gutzwiller projection operator
for the Cu d site. We can easily generalize it to the incommensurate case by diagonalizing the
Hartree–Fock Hamiltonian. The wavefunction with a stripe can be taken to be Gutzwiller, i.e.

ψstripe = PGψ
0
stripe. (6)

Here ψ0
stripe is the Slater determinant made from solutions of the Hartree–Fock Hamiltonian

given as

Htrial = H 0
dp +

∑
iσ

[δndi − σ(−1)xi+yimi]d
†
iσ diσ (7)

where H 0
dp is the non-interacting part of the Hamiltonian H with the variational parameter ε̃p

and ε̃d. The Slater determinant is constructed from wavefunctions of Ne/2 lowest eigenstates
after diagonalizing Htrial in k-space for each spin, where Ne is the number of electrons. δndi

and mi are expressed by the modulation vectors Qs and Qc representing the spin and charge
parts, respectively. In this paper δndi and mi are assumed to have the form [33, 34]

δndi = −
∑
j

α/cosh((xi − xstr
j )/ξc), (8)

mi = "incom

∏
j

tanh((xi − xstr
j )/ξs), (9)

with the parameters α, "incom, ξc and ξs, where xstr
j denotes the position of a stripe.

A Monte Carlo algorithm developed using auxiliary-field quantum Monte Carlo
calculations is employed to evaluate the expected values for the wavefunctions shown
above [16,35]. Using the discrete Hubbard–Stratonovich transformation, the Gutzwiller factor
is written as
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(10)

where α = log(1/g) and cosh(2a) = eα/2. The Hubbard–Stratonovich auxiliary field si takes
the values ±1. The norm 〈ψstripe|ψstripe〉 is written as

〈ψstripe|ψstripe〉 = const.
∑

{ui }{si }

∏
σ

det (φσ†
0 exp (V σ (u, α))exp (V σ (s, α))φσ

0 ) (11)

where V σ (s, α) is a diagonal 3N × 3N matrix corresponding to the potential

hσ (s) = 2aσ
∑
i

sindiσ − α

2

∑
i

ndiσ . (12)

V σ (s, α) is given by V σ (s, α) = diag(2aσs1 − α/2, . . . , 2aσsN − α/2, 0, . . .) where
diag(a, . . .) denotes a diagonal matrix with its elements given by the arguments a, . . . .
V σ (s, α) has non-zero elements only for the d-electron part. The elements of (φσ

0 )ij
(i = 1, . . . , 3N; j = 1, . . . , Ne/2) are given by linear combinations of plane waves

(φσ
0 )ij =

∑
)

exp (iri · k))w
d
)j (13)
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Figure 1. Uniform SDW energy gain per site with reference to the normal-state energy as a function
of the hole density δ. Data are from 8 × 8, 10 × 10, 12 × 12 and 16 × 12 systems for εp − εd = 2.
For solid symbols U = 4 (circles), U = 8 (squares), U = 12 (triangles) and U = 20 (diamonds)
for tpp = 0.2. For open squares U = 8 and tpp = 0 and for open squares with a slash U = 8 and
tpp = 0.4. The lines are a guide to the eye. The Monte Carlo statistical errors are smaller than the
size of the symbols.

for the d-electron part (i = 1, . . . , N) where wd
)j is the weight of d electrons for the )th

wavevector and the j th lowest level from below obtained from the diagonalization of Htrial.
The p-electron parts are similarly defined. Thus

(φσ
0 )ij =

∑
)

exp (iri · k))w
x
)j (i = N + 1, . . . , 2N, j = 1, . . . , Ne/2), (14)

(φσ
0 )ij =

∑
)

exp (iri · k))w
y

)j (i = 2N + 1, . . . , 3N, j = 1, . . . , Ne/2), (15)

where wx
)j and w

y

)j denote the weight of px and py electrons, respectively. Then we can apply
the standard Monte Carlo sampling method to evaluate the expected values [16, 35]. In order
to perform a search for optimized values of the parameters included in the wavefunctions, we
employ a correlated-measurements method to reduce the cpu time needed to find the most
descendent direction in the parameter space [36]. In one Monte Carlo step all the Hubbard–
Stratonovich variables are updated once following the Metropolis algorithm. We perform
several 5×104 Monte Carlo steps to evaluate the expected values for the optimized parameters.

3. Antiferromagnetism and stripes in the underdoped region

We show the energy gain "EAF for the uniform SDW state in reference to the normal state
for the optimized parameters g and ε̃p − ε̃d and the AF-order parameter "AF in figure 1. The
energy is lowered considerably by AF long-range ordering up to about 20% doping for the
intermediate values of U ≈ 8–12.

"EAF decreases monotonically as tpp increases and increases as U increases. One should
note that "EAF is larger than the energy gain for the d-wave pairing state in the low-doping
region near the doping ratio δ ∼ 0.1 by two orders of magnitude [29]. The boundary of the
AF state in the plane of U and the hole density is shown in figure 2 where AF denotes the AF
region and P denotes the paramagnetic region. The doped holes are responsible for reducing
the AF correlations which leads to an order–disorder transition.
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Figure 2. AF region in the plane of U and the hole density for tpp = 0 and εp − εd = 2. P denotes
the normal paramagnetic state.

Let us now look at doped systems on the two-dimensional plane with respect to modulated
spin structures. Recent neutron-scattering measurements have revealed incommensurate
structures suggesting stripes [37–44]. The AF states with spin modulations in space have
been studied for the one-band Hubbard model [34, 45–48] and the t–J model [49–51] where
various stripe structures are proposed. Our purpose is to examine possible stripe structures
and their parameter dependence based on the realistic three-band Hubbard model. We can
introduce a stripe in the uniform spin density state so that doped holes occupy new levels close
to the original Fermi energy keeping the energy loss of the AF background to a minimum.

In the calculations we set ξc = 1 and ξs = 1 in (8) and (9) since the expected values are
mostly independent of ξc and ξs. We optimize α in (8) instead of fixing it in order to lower
the expected energy value further because any eigenfunction of Htrial can be a variational
wavefunction. It is also possible to assume that δndi and mi oscillate according to the cosine
curves cos(4πδxi) and cos(2πδxi), respectively, where δ is the doping ratio. Both methods
give almost the same results within Monte Carlo statistical errors. Let us define the n-lattice
stripe as an incommensurate state with one stripe per n ladders for which the incommensurate
wavevector is given by Qs = (π ± π/n, π) and Qc = (±2π/n, 0) for the spin and charge
parts, respectively. The incommensurate state predicted by neutron experiments at δ = 1/8 is
a four-lattice stripe for which Qs = (π ± π/4, π) and Qc = (±π/2, 0). In figure 3 we show
the energy for commensurate and incommensurate SDW states on the 16 × 16 lattice at the
doping ratio δ = 1/8, where the incommensurability is given by π/4(= 2πδ) for four-lattice
stripes and π/8 for eight-lattice stripes, respectively. The four-lattice stripe is stable in the
range of 0.2 � tpp � 0.4. Figure 3 shows the energy for two types of boundary conditions,
which indicates that the effect of boundary conditions is not crucial for the 16 × 16 system,
whilst the boundary conditions change the ground state completely for small systems such as a
16×4 lattice. The spin-correlation function exhibits an incommensurate structure as shown in
figure 4 and the hole-density function oscillates corresponding to a formation of stripes. The
spin structures are illustrated in figure 5. The energy at δ = 1/16 is shown in figure 6 where the
four-lattice stripe state has a higher energy level than for the eight-lattice stripe for all values
of tpp. The energy gain of the incommensurate state per site in reference to the uniform AF
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Figure 3. Energy per site in reference to the normal state as a function of tpp for 16 × 4 and
16 × 16 lattices at δ = 1/8. Circles, triangles and squares denote the energy for four-lattice
stripes, eight-lattice stripes, and commensurate SDW, respectively, where the n-lattice stripe is the
incommensurate state with one stripe per n ladders. In (a) the boundary conditions are antiperiodic
in the x-direction and periodic in the y-direction, and in (b) they are periodic in the x-direction and
antiperiodic in the y-direction. The Monte Carlo statistical errors are smaller than the size of the
symbols.
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Figure 4. Spin density (−1))−1Sz()) (a) and hole density (b) functions at δ = 1/8 where
Sz()) = nd)↑ − nd)↓. Solid symbols are for the 16 × 16 square lattice and open symbols are
for the 16 × 4 rectangular lattice. The boundary conditions are antiperiodic in the x-direction and
periodic in the y-direction, respectively.

state denoted as "Ec−in is shown in figure 7 for tpp = 0.2, 0.25 and 0.3.
The incommensurability "q/(2π) for tpp = 0.3 is also shown in figure 8 by solid

circles, which is proportional to the doping ratio and is consistent with the neutron-scattering
experiments for incommensurability [40]. This should be compared with the variational Monte
Carlo evaluations for the one-band Hubbard model [34] where the stripe states with large
intervals are shown to be stable. In order to explain the linear dependence of "q/(2π) on the
hole density, the effect of tpp should be taken into account. The energy gain due to a formation
of stripes is approximately proportional to the number of stripes. The size dependence of
"Ec−in is presented in figure 9; we observe the tendency that "Ec−in increases as the system
size N increases. The energy gain in the bulk limit is given by 0.002tdp ≈ 3 meV for tpp = 0.3
where tdp = 1.5 eV [52–54].

We present typical energy scales obtained from variational Monte Carlo calculations
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Figure 5. Spin structure in the incommensurate stripe state at δ = 1/8. The boundary conditions
are the same as in figure 4.
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Figure 6. Energy per site in reference to the normal state as a function of tpp for a 16 × 16 square
lattice at δ = 1/16. Circles, triangles and squares denote the energy for four-lattice stripes, eight-
lattice stripes, and commensurate SDW, respectively. For solid symbols the boundary conditions
are antiperiodic in the x-direction and periodic in the y-direction, and for open triangles they are
periodic in the x-direction and antiperiodic in the y-direction, respectively. The Monte Carlo
statistical errors are smaller than the size of the symbols.

in terms of tdp in table 1. The energy scales for superconductivity are consistent with
the experimental suggestions and the energy difference "Ec−in between commensurate and
incommensurate states are greater than the SC-condensation energy by one order of magnitude.
The commensurate AF energy gain in reference to the normal state (denoted as "EAF) is larger
than "EAF by one order of magnitude in the low-doping region.

4. Summary

We have presented our evaluations for the two-dimensional three-band Hubbard model using
the variational Monte Carlo method. We have examined an effect produced by holes doped
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Figure 7. Energy difference between the commensurate and incommensurate states at δ = 1/16
(16×16 lattice), δ = 1/12 (24×12 lattice) and δ = 1/8 (16×16 lattice). tpp = 0.2, tpp = 0.25 and
tpp = 0.3 (top to bottom). The boundary conditions are periodic in the x-direction and antiperiodic
in the y-direction, respectively.
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Figure 8. Solid circles denote incommensurability "q/(2π) for tpp = 0.3 where the
incommensurability is proportional to the hole density. For large tpp values the incommensurability
equals zero as shown by the open circles. The boundary conditions are the same as in figure 7.

into the AF state in the low-doping region. The boundary of the AF phase is dependent on U as
shown in the phase diagram in figure 2. The inhomogeneous states with stripes are stabilized
due to hole doping so that the energy loss of the AF background is kept to a minimum with
the kinetic-energy gain of holes compared to the uniform (commensurate) AF state. In large
systems the effect of boundary conditions is reduced in our evaluations. The distance between
stripes is dependent upon the transfer integral tpp between oxygen orbitals in the three-band
model. There is a region where incommensurability is proportional to the doping ratio δ when δ

is small and the energy gain due to a stripe formation is approximately proportional to the num-
ber of stripes. The linearity of the incommensurability is consistent with neutron-scattering
measurements [43]. It is expected that inhomogeneity plays an important role in the under-
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state is assumed to be the four-lattice stripe state. The boundary conditions are periodic in the
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Table 1. Typical energy scales obtained from variational Monte Carlo calculations for U = 8,
tpp ≈ 0.3 and εp − εd = 2. "AF and "EAF denote the magnitude of AF order parameter and the
AF energy gain compared to the normal state at half-filling δ = 0, respectively. "SC and "ESC
represent the optimized SC-order parameter and SC-energy gain at δ ∼ 0.2, respectively. The last
column indicates experimental suggestions.

Energy (tdp) Exp.

"SC 0.01 ∼ 0.015 (= 15 ∼ 20 meV) 10 ∼ 20 meV [55, 56]
"ESC ∼ 0.0005 (= 0.75 meV) [29, 33] 0.17 ∼ 0.26 meV [57, 58]
"AF (δ = 0) ∼0.6 (= 900 meV)

"EAF (δ = 0) ∼0.06 (= 90 meV)

"AF (δ = 1/8) ∼0.4
"incom (δ = 1/8) ∼0.6
"Ec−in (δ = 1/8) ∼0.002 (= 3 meV)

doped region with respect to anomalous metallic properties in high-Tc superconductors. We
have also shown the typical energy scales obtained from variational Monte Carlo calculations.
It has been already been established that the condensation energy "ESC and the magnitude
of order parameter for superconductivity are in reasonable agreement with the experimental
results [29]. The energy gain due to AF ordering is larger than "ESC by about two orders of
magnitude and the energy difference between the commensurate and incommensurate states
is larger than "ESC by one order. The order of AF energy gain in reference to the normal state
approximately agrees with that for the t–J model [59]. Our evaluations seem to overestimate
AF energy because of the simplicity of the Gutzwiller wavefunctions, which may give a starting
point for more sophisticated evaluations such as Green function Monte Carlo approaches.
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[53] Hybertson M S, Stechel E B, Schlüter M and Jennison D R 1990 Phys. Rev. B 41 11 068
[54] McMahan A K, Annett J F and Martin R M 1990 Phys. Rev. B 42 6268
[55] Kirtley J R, Tsuei C C, Park S I, Chi C C, Rozen J and Shafer M W 1987 Phys. Rev. B 35 7216
[56] Kashiwaya S, Ito T, Oka K, Ueno S, Takashima H, Koyanagi M, Tanaka Y and Kajimura K 1998 Phys. Rev. B

57 8680
[57] Loram J W, Mirza K A, Cooper J R and Liang W Y 1993 Phys. Rev. Lett. 71 1470
[58] Anderson P W 1998 Science 279 1196
[59] Yokoyama H and Ogata M 1996 J. Phys. Soc. Japan 65 3615


