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The ground state of the two-dimensional three-band Hubbard model in the oxide superconductors is

investigated by using the variational Monte Carlo method. The Gutzwiller-projected BCS and SDW

wave functions are employed in search for a possible ground state with respect to dependences on elec-

tron density. Antiferromagnetic correlations are considerably strong near half-filling. It is shown that

the d-wave state may exist away from half-filling for both the hole and electron doping cases. Overall

structure of the phase diagram obtained by our calculations qualitatively agrees with experimental in-

dications. The superconducting condensation energy is in reasonable agreement with the experimental

value obtained from specific heat and critical magnetic field measurements for optimally doped samples.

The inhomogeneous SDW state is also examined near 1/8 doping. Incommensurate magnetic structures

become stable due to hole doping in the underdoped region, where the transfer t pp between oxygen

orbitals plays an important role in determining a stable stripe structure.
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I. Introduction

In order to investigate the mechanism of supercon-
ductivity (SC) in cuprate high-Tc superconductors,1 we
examine the ground state of the two-dimensional three-
band Hubbard model for CuO2 planes which are con-
tained commonly in their crystal structures. It is be-
lieved that the CuO2 plane contains the essential fea-
tures of high-Tc cuprates.2,3 It is not an easy task to
clarify the ground state properties of the 2D three-band
Hubbard model because of strong correlations among d
and p electrons. We must treat the strong correlations
properly to understand the phase diagram of the high-Tc
cuprates. The quantum variational Monte Carlo method
(VMC) is a tool to investigate the overall structure of
phase diagram from weak to strong correlation regions.
In this paper we investigate possible ground states in the
three-band Hubbard model for CuO2 plane by employing
VMC.

Superconductivity in the one-band Hubbard model has
been studied by numerical4–13 and analytical14–19 calcu-
lations. The three-band Hubbard model has also been in-
vestigated with intensive efforts recently.20–29 The exact
diagonalization computations for the three-band model in
early stage of high-Tc research supported a possibility of
superconductivity by showing that holes can bind in small
systems.30,31 It is also reported that the attractive inter-
action works for both the d-wave and extended-s wave
channels based on finite temperature quantum Monte
Carlo (QMC) simulations.21 It has been shown recently
that one can predict finite Tc for the three-band Hub-
bard model based on perturbative calculations such as
generalized RPA treatments.26–28 In perturbative treat-

ments of the one-band and three-band Hubbard models,
the spin fluctuations induced by the on-site Coulomb in-
teraction promote anisotropic pairing correlations. QMC
evaluations with some constraints due to the fermion sign
problem are against a possibility of superconductivity in
the three-band Hubbard model.25

In order to investigate the possibility and origin of su-
perconductivity, the recent work by Kondo is important
where it has been shown that the d-wave state has lower
energy than the normal state for small U by employing
the perturbation theory in U for the one-band Hubbard
model.32 This indicates that the ground state is super-
conductive with d-wave symmetry for small values of U .
We can expect that this also holds for the three-band
model.33 It is then natural to expect that the d-wave
state is stable for finite U unless there occurs some or-
dering in the ground state. Among several possible long-
range orderings, antiferromagnetic one should be exam-
ined because the state with antiferromagnetic ordering is
considerably stable near half-filling. In fact, according to
VMC work for the one-band Hubbard model, the antifer-
romagnetic (AF) energy gain is larger than the SC energy
gain by almost two order of magnitude near half-filling.
Then the competition between SC and AF states is very
severe for the SC state.12,13 The SC region for the one-
band Hubbard model is considerably restricted and a pos-
sibility of pure superconducting state is very small.12 A
similar feature has been obtained by VMC evaluations for
Ud = ∞ three-band Hubbard model34 where antiferro-
magnetic region extends up to 50 percent doping and the
d-wave phase exists only in the infinitesimally small re-
gion near the boundary of antiferromagnetic phase. Thus
VMC results performed recently are consistent with the
constrained path QMC calculations25 in the sense that
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a possibility of d-wave phase for the one-band Hubbard
model and Ud = ∞ three-band Hubbard model is small
at present, although an attractive interaction works for
d-wave pairing.
We expect that the antiferromagnetic region will shrink

for the three-band Hubbard model if we adjust param-
eters contained in the model. The parameters of the
three-band Hubbard model are given by the Coulomb
repulsion Ud, energy levels of p electrons εp and d elec-
tron εd, and transfer between p orbitals given by tpp. A
purpose of this paper is to investigate the property of
antiferromagnetic state and a competition between anti-
ferromagnetism and superconductivity for finite Ud based
on the three-band model following ansatz of Gutzwiller-
projected wave functions.
It has also been argued that holes doped in the anti-

ferromagnetically correlated spin systems induce incom-
mensurate spin correlations in the ground state for the
one-band Hubbard model35–40 and three-band model41

within the mean field approximation. In the mean-
field treatment the energy scales appear to be extremely
large compared to values for real materials. Recent
neutron-scattering experiments revealed incommensurate

spin structures42–49 developed at low temperatures and
at low energies. The static incommensurate struc-
ture was reported on LSCO samples: La2−xSrxCuO4,
La1.6−xNd0.4CuO4 and La2−xSrxNiO4+y. The incom-
mensurate magnetic peaks have been also reported for
YBa2Cu3O7−δ by the inelastic neutron-scattering exper-
iments. This type of inhomogeneous state may possibly
provide a key concept to resolve the anomalous proper-
ties of high-Tc cuprates in the underdoped region. We
will examine a possible phase of incommensurate states
for the three-band Hubbard model by variational Monte
Carlo method.
The paper is organized as follows. In the next sec-

tion the wave functions are presented. The SC state and
uniform SDW state are discussed in Section III and a sta-
bility of incommensurate state is examined in the subse-
quent section. A summary is given in the last section.

II. Hamiltonian and Wave Functions

The Hamiltonian is given as25,34,50

H = εd
∑
iσ

d
†
iσdiσ + εp

∑
iσ

(p†i+x̂/2,σpi+x̂/2,σ + p
†
i+ŷ/2,σpi+ŷ/2,σ)

+ tdp
∑
iσ

[d†iσ(pi+x̂/2,σ + pi+ŷ/2,σ − pi−x̂/2,σ − pi−ŷ/2,σ) + h.c.]

+ tpp
∑
iσ

[p†i+ŷ/2,σpi+x̂/2,σ − p
†
i+ŷ/2,σpi−x̂/2,σ − p

†
i−ŷ/2,σpi+x̂/2,σ + p

†
i−ŷ/2,σpi−x̂/2,σ + h.c.]

+ Ud

∑
i

d
†
i↑di↑d

†
i↓di↓

= H0 + V, (1)

where

V = Ud

∑
i

d
†
i↑di↑d

†
i↓di↓. (2)

x̂ and ŷ represent unit vectors along x and y directions,

respectively. p
†
i±x̂/2,σ and pi±x̂/2,σ denote the operators

for the p electrons at site Ri ± x̂/2. Similarly p
†
i±ŷ/2,σ

and pi±ŷ/2,σ are defined. Other notations are standard
and energies are measured in units of tdp. For simplicity
we neglect the Coulomb interaction among p electrons.
We consider the normal state, BCS and SDW wave

functions with the Gutzwiller projection. These types of
functions are standard wave functions and well describe
the ground-state properties with several long-range order-
ings. They have been investigated intensively for the one-
band Hubbard model.11–13,51–55 In Refs.51,55 it has been
discussed that they can be improved systematically by
operating correlation factors e−λH0e−αV . For the model

shown above they are written as

ψn = PG

∏
|k|≤kF ,σ

α
†
kσ|0〉, (3)

ψSC = PGPNe

∏
k

(uk + vkα
†
k↑α

†
−k↓)|0〉, (4)

ψSDW = PG

∏
|k|≤kF ,σ

β
†
kσ|0〉, (5)

where αkσ is the linear combination of dkσ, pxkσ and
pykσ constructed to express an operator for the lowest
band of a non-interacting Hamiltonian in the hole picture.
For tpp = 0, αkσ is expressed in terms of a variational
parameter ε̃p − ε̃d:
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α
†
kσ =

[
1
2

(
1 +

ε̃p − ε̃d
2Ek

)]1/2

d
†
kσ + i

[
1
2

(
1− ε̃p − ε̃d

2Ek

)]1/2(
wxk

wk
p
†
xkσ +

wyk

wk
p
†
ykσ

)
, (6)

where wxk = 2tdpsin(kx/2), wyk = 2tdpsin(ky/2), wk =
(w2

xk + w2
yk)

1/2 and Ek = [(ε̃p − ε̃d)2/4 + w2
k]

1/2. The
Fourier transforms of d- and p- electron operators are
defined as

d
†
kσ =

1
N1/2

∑
i

d
†
iσe

ik·Ri , (7)

p
†
xkσ =

1
N1/2

∑
i

p
†
i+x̂/2σe

ik·(Ri+x̂/2), (8)

p
†
ykσ =

1
N1/2

∑
i

p
†
i+ŷ/2σe

ik·(Ri+ŷ/2), (9)

where N is the total number of cells which consist of d, px
and py orbitals. Coefficients uk and vk, appearing only
as a ratio, are given by the BCS form:

vk
uk

=
∆k

ξk + (ξ2
k +∆2

k)1/2
, (10)

for ξk = εk − µ where εk is the energy dispersion for the
lowest band. PG is the Gutzwiller projection operator
for the Cu d site and PNe is a projection operator which
extracts only the states with a fixed total electron num-
ber. The SC order parameter ∆k is assumed to have the
following dx2−y2 - and extended s-wave form:

d ∆k = ∆s(coskx − cosky), (11)

s∗ ∆k = ∆s(coskx + cosky). (12)

Equation (4) is written as

ψSC = PG

(∑
k

vk
uk

α
†
k↑α

†
−k↓

)Ne/2

. (13)

The wave function given by eq.(13) agrees with

ψBCS = PG

∏
k

(uk + vkα
†
k↑α

†
−k↓)|0〉, (14)

in the thermodynamic limit. For the commensurate
SDW state βkσ is given by a linear combination of two
wave numbers k and k+Q for the commensurate vector
Q = (π, π). We can also investigate the incommensurate
SDW state with incommensurate vector Q = (π±2πδ, π)
by diagonalizing the Hartree-Fock Hamiltonian with an-
tiferromagnetic long-range order. The system sizes are
given by 6×6 and 8×8 for the projected BCS wave func-
tion and 16×4, 24×6, 32×8, 40×10 and 16×16 for the
incommensurate SDW states. Our calculations are per-
formed with the periodic and the antiperiodic boundary
conditions for the x- and y-direction, respectively. This
set of boundary conditions was chosen so that ∆k does
not vanish for any k-points possibly occupied by elec-
trons.
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FIG. 1. Energy per site (Enormal − E)/N of the SDW state
as a function of hole density δ for tpp = 0.4 and Ud = 8. From
the top, εp − εd = 3, 2, 1.5 and 1. The results are for 6 × 6,
8 × 8, 10 × 10 and 16 × 12 systems. Antiperiodic and peri-
odic boundary conditions are imposed in x- and y-direction,
respectively. Monte Carlo statistical errors are smaller than
the size of symbols. Curves are guide for eyes.
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FIG. 2. Energy per site (Enormal − E)/N of the SDW state
as a function of hole density δ for tpp = 0.0, 0.2 and 0.4 where
εp−εd = 2 and Ud = 8. The results are for 6×6, 8×8, 10×10
and 16 × 12 systems. Curves are guide for eyes.

The expectation values are calculated following the
standard Monte Carlo procedure by using the Metropolis
algorithm. In the process of finding a minimum of en-
ergy, we should optimize many parameters included in
the wave functions. For such purpose we employ corre-
lated measurements method to reduce the required cpu
time.56

III. Condensation energy and phase diagram

First, let us discuss the SDW phase near half-filling
by evaluating the ground-state energy for optimized pa-
rameters g, ε̃p − ε̃d and AF order parameter ∆AF . We
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FIG. 3. (a) Energy per site (Enormal − E)/N of the SDW
state as a function of hole density δ for Ud = 8, 12 and 20
where εp − εd = 2 and tpp = 0.2. (b) Antiferromagnetic order
parameter as a function of hole density for Ud = 8, 12 and 20
where εp − εd = 2 and tpp = 0.2. The results are for 6 × 6,
8× 8, 10× 10 and 16× 12 systems. Curves are guide for eyes.

set εp = 0 throughout this paper. It is expected that
holes introduced by doping are responsible for the disap-
pearance of long-range antiferromagnetic ordering.57–59

We show the SDW energy gain ∆ESDW in Fig.1 as a
function of doping ratio for several values of εp − εd.
∆ESDW increases and the SDW region becomes large
as εp − εd increases. The figure 2 shows the SDW energy
gain for several values of tpp, where ∆ESDW is reduced
as tpp increases. In Figs.3(a) and 3(b) the dependence on
Coulomb repulsion Ud is shown; the SDW phase extends
up to 30 percent doping when Ud is large. Then it follows
that the SDW region will be reduced if εp−εd and Ud de-
crease or tpp increases. In fact, Fig.4 shows the boundary
of SDW phase in the tpp-δ plane for Ud = 8 where δ is
the hole density and negative density indicates electron
doping. Compared to the calculations for Ud = ∞ the
SDW region is reduced greatly.34

Next, let us turn to the projected-BCS wave function,
where the Gutzwiller parameter g, effective level differ-
ence ε̃p − ε̃d, chemical potential µ and superconducting
order parameter ∆s are considered as variational param-
eters. In Fig.5 we show the energy as a function of ∆s

where tpp = 0.0, Ud = 8 and εd− εp = 2 and doping ratio
is given by δ = 0.111 for (a) and δ = 0.333 for (b). The
d-wave superconductivity is most stable among various
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FIG. 4. Boundary of the SDW state in the plane of tpp-δ for
εp − εd = 2 and 1. We set Ud = 8.

possible states such as isotropic s-wave and anisotropic
s-wave pairing states. The squares in Fig.5 denote the
values for the normal state, which are estimated indepen-
dently by using an alternative Monte Carlo algorithm.
The finite SC energy gain indicates that the attractive
interaction works for d-wave pairing.
The SC energy gain (which is called the SC condensa-

tion energy in this paper) is also dependent on εp − εd,
as is shown in Fig.6 for tpp = 0.2, Ud = 8 and δ = 0.111
on 6× 6 lattice. This shows a tendency that the SC con-
densation energy increases as εp − εd increases, which is
consistent with calculations for Ud = ∞.34 It is noted
that the dependence on εp − εd for the SC energy gain is
rather weak compared to the SDW energy gain. We also
note that the SC energy gains for Ud = 8 are mostly of
the same order of those for Ud = ∞.34

From the calculations for the SDW wave functions, we
should set εp − εd and Ud small so that the SDW phase
does not occupy a huge region near half-filling. In Fig.7
we show energy gains for both the SDW and SC states for
Ud = 8, tpp = 0.2 and εp−εd = 2, where the negative delta
indicates the electron-doping case. Solid symbols indicate
the results for 8 × 8 and open symbols for 6 × 6. For
this set of parameters the SDW region extends up to 20
percent doping and the pure d-wave phase exists outside
of the SDW phase. The d-wave phase may be possibly
identified with superconducting phase in the overdoped
region in the high-Tc superconductors.
The superconducting condensation energy obtained by

our calculations is estimated as Econd � 0.0005tdp =
0.75meV per site in the overdoped region near the bound-
ary of SDW phase from the difference between the min-
imum and the intercept of the E/N − ∆s curve with
the vertical axis, where we set tdp = 1.5eV as esti-
mated from cluster calculations.60–62 We have also es-
timated Econd from several experiments such as specific
heat or critical field measurements for optimally doped
samples. They are given as 0.17 � 0.26meV from specific
heat data12,63,64 and 0.26meV from critical magnetic field
value H2

c/8π.
12,65 Our value is in reasonable agreement

with the experimental data as was already shown for the

4



-3 .4024

-3.4020

-3.4016

0.000 0.008 0.016 0.024

E
/N

∆
s

(a)

-3.8110

-3.8105

-3.8100

-3.8095

-3.8090

0.000 0.010 0.020 0.030

E
/N

∆
s

(b)

FIG. 5. Ground state energy per site as a function of ∆s

on 6 × 6 lattice for (a) δ = 0.111 and tpp = 0.0, and (b)
δ = 0.333 and tpp = 0.0. Parameters are given by Ud = 8 and
εp− εd = 2 in units of tdp. Squares denote the energies for the
normal state evaluated independently.
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FIG. 6. Superconducting (circles) and antiferromagnetic
(squares) energy gains per site as a function of εp − εd for
tpp = 0.2 and Ud = 8 on 6 × 6 lattice.
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FIG. 7. Condensation energy per site as a function of hole
density δ for tpp = 0.2, εp−εd = 2 and Ud = 8. Circles, squares
and diamonds denote the energy gain per site in reference
to the normal state energy for d-wave, SDW and extended-s
wave states, respectively. Solid symbols are for 8×8 and open
symbols are for 6 × 6. Curves are guide for eyes.

Hubbard model where the SC energy gain in the bulk
limit is given by 0.00117t/site=0.59meV/site.54 This
agreement between the theoretical and experimental con-
densation energy is highly remarkable. We expect that
this value is not far from the correct value according to
the evaluations for improved wave functions,51 where it
was shown that the energy gain is not changed so much
due to multiplicative correlation factors e−∆τH0 e−∆τV .
We cannot estimate the SC condensation energy in the
underdoped region because the SDW state is more stable
than d-wave state and the SC condensation energy is not
available experimentally due to a loss of entropy in the
underdoped region.63

The phase structure obtained by our calculations
agrees well with the available phase diagram indicated
by experiments qualitatively, which means that a large
SDW phase exists in the underdoped region and there
is a d-wave superconducting phase next to SDW phase
in the overdoped region. Our calculations for electron-
doping case predict d-wave symmetry away from half-
filling, which is consistent with recent experiments on
Nd1.85Ce0.15CuO4−y .66

IV. Incommensurate antiferromagnetism with spin
modulation

In this section let us discuss the underdoped region
where the SDW state is significantly stable as shown in
the previous section. Let us note that the SDW state
can be possibly stabilized further if we take into ac-
count a spin modulation in space, as has also been stud-
ied for the one-band Hubbard model35–40,67 and the t-J
model.68–71 We can introduce a stripe in the uniform spin
density state so that doped holes occupy new levels close
to the starting Fermi energy keeping the energy loss of
antiferromagnetic background minimum. The wave func-

5



- 6 . 0

- 5 . 0

- 4 . 0

- 3 . 0

- 2 . 0

- 1 . 0

0.0 0.1 0.2 0.3 0.4 0.5

E
-E

n
o

rm
a

l

t
pp

ε
p
- ε

d
= 2.4

2.0

1.2
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states on 16 × 4 lattice at δ = 1/8 for Ud = 8. Circles and
triangles are for 4-lattice and 8-lattice stripes, respectively.
Squares denote energy for commensurate SDW state. From
the top εp − εd = 1.2, 2.0 and 2.4. We impose antiperiodic
boundary condition in x-direction and periodic boundary con-
dition in y-direction. Monte Carlo statistical errors are within
the size of symbols.

tion with a stripe can be taken of the Gutzwiller type:
ψstripe = PGψ

0
stripe. ψ0

stripe is the Slater determinant
made from solutions of the Hartree-Fock Hamiltonian67

Hstripe =

H0
dp +

U

2

∑
iσ

[〈ndi〉 − σ(−1)xi+yi 〈mi〉]d†iσdiσ, (15)

where H0
dp is the non-interacting part of the Hamiltonian

H with variational parameter ε̃p− ε̃d. 〈ndi〉 and 〈mi〉 are
expressed in terms of modulation vectors Qs and Qc for
spin and charge part, respectively. Including the constant
part of 〈ndi〉 in the definition of variational parameter ε̃d,
we diagonalize the following one-particle Hamiltonian to
determine ψ0

stripe:

Hstripe = H0
dp +

∑
iσ

[δndi − σ(−1)xi+yimi]d
†
iσdiσ.

(16)

δndi and mi are assumed to have the form

δndi = −
∑
j

α/cosh((xi − xstrj )/ξc), (17)

mi = m
∏
j

tanh((xi − xstrj )/ξs), (18)

with parameters α, m, ξc and ξs. xstr
j denotes the posi-

tion of a stripe. In actual calculations we set ξc = 1 and
ξs = 1 since the energy expectation values are mostly in-
dependent of ξc and ξs. Since any eigenfunction of the
Hamiltonian H 0

dp can be a variational wave function, we
optimize α instead of fixing it in order to lower the energy
expectation value further. It is also possible to assume
that δndi and mi oscillate according to cosine curve given
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FIG. 9. Spin (a) and charge (b) densities for incommensurate
state at δ = 1/8 for tpp = 0.4, Ud = 8 and εp − εd = 2 on
16 × 4 lattice. The boundary conditions are same as in Fig.8
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set Ud = 8. The boundary conditions are same as in Fig.8.
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as cos(4πδxi) and cos(2πδxi), respectively. Both meth-
ods give almost the same results within Monte Carlo sta-
tistical errors.
Recent neutron scattering experiments suggested that

modulation vectors are given by Qs = (π ± 2πδ, π) and
Qc = (±4πδ, 0) in the underdoped region, where δ de-
notes the doping ratio. Here we define n-lattice stripe as
an incommensurate state with one stripe per n ladders
for which Qs is given by Qs = (π ± π/n, π). Then the
incommensurate state predicted by neutron experiments
for δ = 1/8 is given by 4-lattice stripe. For the three-band
model, the transfer tpp between oxygen orbitals plays an
important role to determine a possible SDW state. If tpp
is very large, the uniform SDW state is expected to be
stabilized because holes doped on oxygen sites can move
around on the lattice producing disorder effect on spin
ordering uniformly. For small tpp the stripe states are
considered to be realized.41 Our motivation to consider
non-uniform states for the three-band model lies in the
idea that the distance between stripes may be dependent
upon tpp, i.e. for small tpp the distance between stripes
is large, for intermediate values of tpp the 4-lattice stripe
state is realized and for large tpp the uniform state or
normal state is stable.
In Fig.8 we show the energies for commensurate and

incommensurate SDW states on 16× 4 lattice at δ = 1/8
as a function of tpp, where we impose the antiperiodic
and periodic boundary conditions in x- and y-direction,
respectively, so that the closed shell structure is followed
for doped holes. We assumed that εp − εd = 1.2, 2 and
2.4. The 8-lattice stripe state for small tpp changes into
uniform state as tpp increases. It shows that incommensu-
rate states become stable for large level difference εp−εd.
The spin and charge densities of incommensurate state
are shown in Fig.9 for tpp = 0.4 and εp − εd = 2 where
the charge density is a sum of hole numbers on d-, px-
and py-orbitals at site L. Spin density Sz(i) = ndi↑−ndi↓
vanishes at the positions of stripes associated with peaks
of hole density. The spin structure factor Sz(q) really
has incommensurate peaks as is shown in Fig.10. The
Figures 11(a) and 11(b) present the energies of incom-
mensurate states for 16× 16 lattice (which contains 768
atoms) where we set antiperiodic and periodic boundary
conditions in x- and y-direction, respectively, for (a) and
in y- and x- direction, respectively, for (b). Both figures
give almost the same results as an evidence that the ef-
fect of boundary conditions is small for 16 × 16 system.
As expected, the structure of incommensurate state is
dependent upon the values of tpp.
Let us turn to a discussion of the energy gain due to

a formation of stripes, which is estimated from an ex-
trapolation to the bulk limit as shown in Fig.12. One
notes that the energy gain increases as the system size
increases. The energy gain per site for 4-lattice stripe
state is given by � 0.015tdp � 22.5meV. Furthermore the
energy difference between commensurate and incommen-
surate states is found to be finite in the bulk limit, which
is shown in Fig.13. Thus within VMC the stripe state
with spin modulation is stable at δ = 1/8 doping.
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FIG. 11. Energies at δ = 1/8 for 16 × 16 lattice. Parameters
are given by εp−εd = 2, Ud = 8 and tpp = 0.4. Symbols are the
same as in Fig.8. For (a) boundary conditions are antiperiodic
and periodic in x- and y-direction, respectively, and for (b)
periodic and antiperiodic boundary conditions are imposed in
x- and y-direction, respectively. Monte Carlo statistical errors
are within the size of symbols.

The antiferromagnetic order parameter m in eq.(18)
is of the order of 0.5tdp � 0.75eV, while the SC order
parameter ∆s (which gives the minimum of energy) is
of the order of 0.01 ∼ 0.015tdp = 15meV∼ 20meV at
δ ∼ 0.2. The magnitude of SC order parameter agrees
with measurements of tunneling spectroscopy72,73 where
∆s is estimated as ∆s � 17meV for YBCO sample.72

The antiferromagnetic order parameter is larger than SC
order parameter at least by one order of magnitude. The
charge order parameter α in eq.(17) is small and negligi-
ble compared to mi.

V. Summary

We have presented our evaluations for the 2D three-
band Hubbard model based on the variational Monte
Carlo method. Our work is regarded as a starting step
for more sophisticated calculations in future such as the
inclusion of correlation factors of Jastrow type or Green
function Monte Carlo approaches. The SC energy scales
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given by tpp = 0.4, Ud = 8 and εp − εd = 2. Circles are for
rectangular lattices and the square is for 16 × 16. Boundary
conditions are the same as in Fig.12

obtained from our evaluations are consistent with exper-
imental indications, which provides a support to our ap-

proaches.

According to VMC the attractive interaction works
for d-wave pairing due to electron correlations. The
strength of Ud is also important to determine the phase
boundary of the SDW phase. If Ud is extremely large,
the SDW region extends up to large doping for which
the d-wave region is restricted to infinitesimally small
region near the boundary of antiferromagnetic phase.
For intermediate values of Ud and εp − εd the SDW re-
gion is reduced and the d-wave superconducting phase
may exist. The fact that the SC condensation energy
agrees reasonably with the experimental data for opti-
mally doped samples supports our computations. The
magnitude of SC order parameter is also consistent with
tunneling spectroscopy experiments. From our data for
∆ESC and ∆s and the relation N (0)∆2

s/2 = ∆ESC,
the effective density of state N (0) can be estimated as
N (0) � 3 ∼ 6.7(eV)−1 � 4.4 ∼ 10/tdp at δ ∼ 0.2 in the
overdoped region, which is not far from the BCS estimate
N (0) ∼ 2 to 3(eV)−1 by using N (0)(kBTc)2/2 for opti-
mally doped YBCO.64 We expect that the pure d-wave
state from optimal to overdoped regions may be described
by the projected-BCS wave function. The phase diagram
for electron-doping is consistent with the available ex-
perimental indications suggesting that the properties of
electron-doped materials may be understood within our
approach. In the SDW region the incommensurate spin
structures are stabilized for the low-doping case to keep
the energy loss minimum due to disorder effect caused
by holes. A competition among the uniform SDW state,
SDW state with stripes, and pure d-wave SC is highly
non-trivial. A picture for the hole-doping case followed
from our evaluations is that a stripe state is stable in the
underdoped region and changes into the d-wave SC in the
overdoped region.
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