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We present a new mechanism of fluctuation-induced Nambu-Goldstone bosons in a scalar field theory of Higgs-Josephson
systems. We consider a simple scalar field model with U(1)n rotational symmetry. When there is an interaction which violates
the rotational symmetry, the Nambu-Goldstone bosons become massive and massless bosons are concealed. We present a model
where the massive boson becomes a massless boson as a result of the perturbative fluctuation. In our model the Z2-symmetry
associated with the chirality is also broken. The transition occurs as a weak first-order transition at the critical point. The
ground state at absolute zero will flow into the state with more massless bosons due to fluctuation effects at finite temperature.
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Introduction When global and continuous symmetries
are spontaneously broken, gapless excitation modes,
called the Nambu-Goldstone bosons, exist and govern
the long-distance behaviors of the system[1–3]. When the
U(1) rotational symmetry is spontaneously broken, there
is a massless Nambu-Goldstone boson. When there is
an interaction that violates the U(1) symmetry, we have
no massless boson. An interesting question is whether
such an interaction will continuously conceal the Nambu-
Goldstone bosons when the perturbative corrections are
taken into account. We present a model that exhibits a
fluctuation induced Nambu-Goldstone boson in this pa-
per. This means that a massless boson appears inspite of
an interaction that hides Nambu-Goldstone bosons. We
propose the mechanism of fluctuation induced Nambu-
Goldstone boson.

We consider a model of an n-component scalar
field with Josephson interactions, so called the Higgs-
Josephson model[4–7]. Let us consider the action given
as

S =
1

kBT

∫
ddx

∑
j

(
αj |φj |2 +

βj

2
|φj |4

)
+

1
kBT

∫
ddx

[∑
j

Kj |∇φj |2 +
∑
i6=j

γijφ
∗
i φj

]
, (1)

where φ ≡ (φ1, · · · , φn) is a complex n-component scalar
field. We write φj as

φj = eiθj |φj | = eiθj ρj , (2)

where ρj (j = 1, · · · , n) are real scalar fields. The last
term in the action is the Josephson term. We assume that
γij are real and γij = γji. Without this interaction, the
phase modes θj (j = 1, · · · , n) represent massless modes.
Because of this term, we have n−1 phase massive modes
and one massless mode as shown by expanding cos(θi−θj)
in terms of θi − θj . We adopt that βj is positive so
that the action has a minimum. When αj is negative,
ρj takes a finite value at the minimum of the potential.
We set this value as ∆j and write ρj = ∆j + Hj . Hj

is the Higgs field and represents fluctuation of the scalar

field around the minimum ∆j . We simply assume that
K = Kj , ∆ = ∆j and γij = γji ≡ γ. Then the action for
the phase variables θj is

S[θ] =
Λd−2

t

∫
ddx

∑
j

(∇θj)2 + λΛ2
∑
i<j

cos(θi − θj)

 ,

(3)
where t/Λd−2 = kBT/(K∆2) and λΛ2 = γ/K. We have
introduced the cutoff Λ so that t and λ are dimensionless
parameters. We assume that λ > 0 in this paper. We
now focus on θj and consider the case n = 3. Since the
potential term is written as

V ≡ (λΛd/t)(cos(θ1 − θ2) + cos(θ2 − θ3) + cos(θ3 − θ1)),
(4)

the mode of the total phase θ1+θ2+θ3 remains massless.
We do not consider this mode because the coupling to the
gauge field turns this mode into a gapped mode (Higgs
mechanism). The other n−1 modes do not become mas-
sive by the coupling to the gauge field. Let us consider
the case λ > 0. As is easily shown, the ground state of V
has a 2π/3 structure, namely, θ2−θ1 = 2π/3 and θ3−θ2 =
2π/3 as shown in Fig.1(a). The state in Fig.1(b) has also
the same energy. Two states are indexed by the chirality
κ = 1 for (a) and κ = −1 for (b), where κ is defined by
κ = (2/3

√
3)(sin(θ2 − θ1) + sin(θ3 − θ2) + sin(θ1 − θ3)[8–

15]. We set ϕ1 = θ3 − θ1 and ϕ2 = θ1 − 2θ2 + θ3 to write
the potential density as

V =
λΛd

t

(
cos(ϕ1) + 2 cos

(ϕ1

2

)
cos

(ϕ2

2

))
. (5)

V has a minimum at ϕ1 = 4π/3 and ϕ2 = 0. We mention
here that an S3 symmetry of the Josephson potential
is not lost when we express the potential in terms of
ϕ1 and ϕ2. When V has a minimum at some value of
ϕ1 = θ3 − θ1, V has also a minimum when θ3 − θ2 takes
the same value (modulo 2π). When the former has the
chirality κ = 1, the latter has κ = −1. We consider
the fluctuation around this minimum. For this purpose,
we perform a unitary transformation by defining ϕ1 =



2

4π/3 +
√

2η1 and ϕ2 =
√

6η2:

θ1 = −2π

3
− 1√

2
η1 +

1√
6
η2 +

1√
3
η3, (6)

θ2 = − 2√
6
η2 +

1√
3
η3, (7)

θ3 =
2π

3
+

1√
2
η1 +

1√
6
η2 +

2√
3
η3. (8)

where ηi (i = 1, 2, 3) indicate fluctuation fields. η3 de-
scribes the total phase mode, η3 = (θ1+θ2+θ3)/

√
3, and

is not important in this paper because this mode turns
out to be a plasma mode by coupling with the long-range
Coulomb potential. We obtain

∑
i(∇θi)2 =

∑
i(∇ηi)2,

and then the action S[η] ≡ S[θ] is

S[η] =
Λd−2

t

∫
ddx

[∑
j

(∇ηj)2 + λΛ2
(
cos

(√
2η1 +

4π

3

)

+ 2 cos
(

1√
2
η1 +

2π

3

)
cos

(√
3
2
η2

))]
. (9)

The potential term has a minimum at η1 = η2 = 0. Both
of η1 and η2 represent massive modes with mass 3λ/(2t).

Fluctuation induced Nambu-Goldstone boson The po-
tential V corresponds to the potential of a two-
dimensional XY model on the triangular lattice with a
frustrated interaction. The ground state has an well
known 2π/3-structure. We consider the role of fluctua-
tion and show the existence of fluctuation-induced mass-
less mode. We examine the following free-energy density
by neglecting the kinetic term:

f = kBT
λΛd

t

[
cos

(√
2η1 +

4π

3

)
+ 2 cos

(
1√
2
η1 +

2π

3

)
cos

(√
3
2
η2

) ]
. (10)

The partition function is given by

Z =
∫

dη1dη2 exp
(
− F

kBT

)
, (11)

for the free energy functional F . Using the formula for
the modified Bessel function,

I0(z) =
1
π

∫ π

0

ez cos ϕdϕ, (12)

we have, by using ϕ2/2 =
√

3/2η2,∫ 2π

0

dϕ2 exp
[
− 2λΛd

t
cos

(ϕ1

2

)
cos

(ϕ2

2

) ]
= 2πI0

(
2λΛd

t
cos

(ϕ1

2

))
. (13)

We use I0(−x) = I0(x) and the asymptotic formula
I0(z) ∼ ez/

√
2πz (z > 0) at low temperature. Then

the effective free-energy density for η1 is

f [η1]
Λd

= ε0 cos
(√

2η1 +
4π

3

)
− 2ε0

∣∣∣cos
(

1√
2
η1 +

2π

3

)∣∣∣
+

1
2

kBT

Λd
ln

(
λΛd

πt

∣∣∣cos
(

1√
2
η1 +

2π

3

)∣∣∣) , (14)

where ε0 ≡ kBTλ/t. We have an effective entropy term
being proportional to the temperature T . f [η1] has a
minimum at η1 = 0 (ϕ1 = 4π/3) at absolute zero T = 0.
In contrast, at finite temperature T > 0, the minimum
is at η1 = −

√
2π/6 and ϕ1 = π. This is shown in

Fig.2 where we present the potential f [η1]/ε0 as a func-
tion of ϕ ≡ ϕ1 = 4π/3 +

√
2η1 for t = λ with setting

Λ = 1. At ϕ = π, η2 becomes a massless boson be-
cause the free-energy density in eq.(10) becomes inde-
pendent of η2 with vanishing of the mass term. This
is due to the fluctuation of η2 field at finite tempera-
ture. The qualitatively same result is obtained by the
Gaussian integration with respect to η2 after expanding
cosine function as cos(

√
3/2η2) = 1 − (3/4)η2

2 + · · · and
assuming that cos(η1/

√
2 + 2π/3) < 0. (We can use the

formula I0(z) ∼ ez/
√

2πz when z > 0 is large. In the
limit z → 0, we have a largee entropy coming from the
volume of the phase space and thus the minimum is at
ϕ1 = π for T > 0 when T is higher than a critical value.)
This state is shown in Fig.1(c) using a spin analogue
where we have two antiferromagnetic spins and one van-
ishing spin. This means that the η2-mode is massless and
ϕ2 =

√
6η2 = θ1 − 2θ2 + θ3 can take any value. At the

absolute zero, we have the index of chirality κ = ±1 as
shown in Figs.1(a) and 1(b). The chirality disappears at
finite temperature leading to the emergency of a Nambu-
Goldstone boson. This represents a phenomenon that the
Nambu-Goldstone boson appears due to a fluctuation ef-
fect.

(a ) (c )(b )
FIG. 1: (a) 2π/3-structure in the ground state with the chi-
rality κ = 1. (b) Degenerate ground state with the chirality
κ = −1. (c) Spin structure at finite temperature. Two spins
are antiferromagnetically aligned and one spin vanishes, that
is, the expectation value vanishes: 〈S〉 = 0. This means that
the one spin is rotating freely, indicating the existence of a
massless boson.

Phase transition at finite temperature We next consider
the kinetic terms of ηj . For this purpose, we use the
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FIG. 2: Potential terms V1, V2 and Vtotal = V1 + V2 as
a function of ϕ ≡ 4π/3 +

√
2η2 for t/λ = 1 and Λ =

1. V1 = cos(ϕ) − 2| cos(ϕ/2)| and V2 = 2| cos(ϕ/2)| −
(t/λ) ln(2πI0(2(λ/t)| cos(ϕ/2)|)). V1 and V2 are symmetric
with respect to the axis of ϕ = π. The aymptotic form
of ε0(V1 + V2) agrees with eq.(14). The total potential
Vtotal = V1 +V2 has a minimum at ϕ = π due to the logarith-
mic term. Minima of V1 correspond to the state of chirality
κ = 1 and κ = −1, respectively.

expansion of cosine term and write the action in the form

S =
Λd−2

t

∫
ddx

[∑
j

(∇ηj)2 + λΛ2
(
cos

(√
2η1 +

4π

3

)

− 2
∣∣∣cos

(
1√
2
η1 +

2π

3

)∣∣∣) +
3λΛ2

2

∣∣∣cos
(

1√
2
η1 +

2π

3

)∣∣∣η2
2

]
.

(15)

When cos(ϕ1/2) < 0, we use cos(
√

3/2η2) = 1−(4/3)η2
2+

· · · . Around the minimum at ϕ1 = 2π/3 and ϕ2 = 2π
(with chirality κ = −1), we use instead the expansion by
defining ϕ2 = 2π+

√
6η2. We integrate out the field η2 to

obtain the effective action, using ϕ ≡ ϕ1 = 4π/3+
√

2η1,

S =
Λd−2

t

∫
ddx

[1
2
(∇ϕ)2 + λΛ2

(
cos ϕ − 2

∣∣∣cos
(ϕ

2

)∣∣∣)]
+

1
2
Tr ln

(
−Λd−2

t
∇2 +

3λ

2t
Λ2

∣∣∣cos
(ϕ

2

)∣∣∣) . (16)

When we neglect the kinetic term −∇2, this action is
reduced to the previous effective free energy. We adopt
that the spatial variation of ϕ field is very slow so that
we can perform the k-summation for −∇2 = k2. In the
two-dimensional case (d = 2), the effective free-energy

density is obtained as

f [ϕ]
Λ2

=
1
2
K∆2Λ−2(∇ϕ)2 + ε0

(
cos ϕ − 2

∣∣∣cos
(ϕ

2

)∣∣∣)
+

1
2
kBT

c

4π
ln

(
cΛd

t
+

3λΛd

2t

∣∣∣cos
(ϕ

2

)∣∣∣)
+ kBT

3λ

16π

∣∣∣cos
(ϕ

2

)∣∣∣ ln
(
1 +

2c

3λ

∣∣∣cos
(ϕ

2

)∣∣∣−1)
,

(17)

where we have chosen the cutoff k0 in the momentum
space as k2

0 = cΛ2 for a constant c.

� 2� 10
1

0 0 . 5 1 1 . 5 2
V

� / 	
V 2

V 1V t o t a l
FIG. 3: Potential terms V1, V2 and Vtotal = V1 +
V2 as a function of ϕ ≡ 4π/3 +

√
2η2 for t = 8π

and λ/c = 1 where we set c = 4π to compare with
V in Fig.2. V1 is the same as that in Fig.2 and
V2 is V2 = (t/2λ)(c/4π) ln(c/t + (3λ/2t)| cos(ϕ/2)|) +
(3t/16π)| cos(ϕ/2)| ln(1+(2c/3λ)| cos(ϕ/2)|−1). The total po-
tential Vtotal = V1 + V2 has a minimum at ϕ = π.

� 2� 1
0
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FIG. 4: Potential as a function of ϕ for t/c = 0.5, 0.935 and
2, respectively, where we set λ/c = 1 and c = 4π.

The spatial fluctuation softens the thermal fluctuation
effect and there is a finite critical temperature where the



4

minimum at ϕ = 4π/3 disappears and simultaneously
the chirality vanishes. We show the potential term as
a function of ϕ for t = 2c and λ = c with c = 4π in
Fig.3 where we subtracted the term kBT/2 lnΛd which
is independent of ϕ (or equivalently we set Λ = 1). We
have a minimum at ϕ = π when t is large as shown in
Fig.3. The critical temperature tc is scaled by λ/c:

tc = tc(λ/c). (18)

tc is estimated by the equation V (ϕ = 4π/3) = V (ϕ =
π), which gives

kBTc

K∆2
= tc =

λ
c
4π ln

(
1 + 3λ

4c

)
+ 3λ

16π ln
(
1 + 4c

3λ

) . (19)

For small λ → 0, tc is small: tc ' 16π/(3 ln(1/3λ)).
When λ is large, λ À 1, tc is also large tc '
4πλ/c ln(3λ/4c). In Fig.4 we show the potential for
t/c = 0.5, 0.935, 2, and λ/c = 1 with c = 4π. When
t is small, the potential has a minimum at ϕ = 4π/3 or
at ϕ = 2π/3 indicating that the ground state has the
2π/3 structure with the chirality ±1. In contrast, when
t is large, we have a minimum ϕ = π. There is a tran-
sition at finite temperature t = tc. This is a first-order
transition since we have the double-minimum potential
in the range π ≤ ϕ ≤ 2π. This should be called a weak
first-order transition because the change of Vtotal(ϕ = π)
is slow as t is varied near the critical temperature. The
minimum point of ϕ changes gradually from 4π/3 and
changes suddenly to π at the critical temperature. For
t > tc, the η2-mode represents a massless boson. We
show tc as a function of λ/c in Fig.5.

0

10

20

30

40

0 1 2 3 4 5 6

t
c

λ/c

FIG. 5: tc as a function of λ/c with c = 4π. tc is an increasing
function of λ/c.

We discuss a relation to the classical XY model on a
two-dimensional triangular lattice. The ground state of
the 2D XY model has the 2π/3-structure to minimize
the energy. There is a transition of the chirality at fi-
nite temperature. The critical temperature Tc is of the

order of the exchange coupling J because λ/t = J/kBT
in this case. The Kosterlitz-Thouless (KT) transition
also occurs in the XY model on the 2D triangular lat-
tice. The critical temperature of the KT transition TKT

is determined by the renormalization group equation. In
general, TKT is different from the critical temperature of
the chiral transition Tchiral ≡ K∆2tc.

1 . 71 . 7 51 . 81 . 8 51 . 91 . 9 5

0 0 . 5 1 1 . 5 2
V

	 / �
FIG. 6: Effective potential as a function of θ for n = 4. From
the top, we set λ = 1 and a = 1.2, λ = 1 and a = 1.001 and
λ = 0.5 and a = 1.2, respectively, The potential has mimima
at θ = mπ for integer m.

The similar phenomenon occurs for an n = 4 theory
with the potential

V =
λΛd

t

[
cos(θ1 − θ2) + a cos(θ1 − θ3) + cos(θ1 − θ4)

+ cos(θ2 − θ3) + a cos(θ2 − θ4) + cos(θ3 − θ4)
]
, (20)

where a ≥ 1 is a constant. This model has a close re-
lation with the 2D antiferromagnetic XY model on a
square lattice[16, 17]. One of the ground state is given by
(θ1, θ2, θ3, θ4) = (0, θ, π, θ + π) where real θ is arbitrary
and the ground state is degenerate with respect to θ. We
define ϕ1 = θ1−θ2−θ3+θ4 = η1, ϕ2 = θ1+θ2−θ3−θ4 =
η2 − 2π, ϕ3 = θ1 − θ2 + θ3 − θ4 = η3 − 2θ, and the total
phase Φ = θ1 + θ2 + θ3 + θ4. Then the potential becomes

V =
λΛd

t

[
− 2a +

1
4
(a− cos θ)η2

1 +
1
4
(a + cos θ)η2

2 + · · ·
]
,

(21)
where · · · indicates higher order terms. The η3-mode
becomes massless and the ground state energy −2a is
independent of θ. This is the n− 3 series state[18] which
we call the type I. When a = 1, η1- or η2-mode is massless
in the case θ = 0 or π. This is the n−2 series state. The
effective potential Veff is obtained by integrating out the
η1 and η2 variables in a similar way to the case n = 3 in
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two dimensions:
Veff

kBTΛ2
=

1
2

ln
(
(4π + λa)2 − λ2 cos2 θ

)
+

1
8π

λa ln
(

(4π + λa)2 − λ2 cos2 θ

λ2(a2 − cos2 θ)

)
+

cos θ

8π
ln

(
4π + λ(a + cos θ)

λ(a + cos θ)
λ(a − cos θ)

4π + λ(a − cos θ)

)
,

(22)

where we used the cutoff k0 in the momentum inte-
gral satisfying k2

0/(4π) = Λ2. The potential is shown
in Fig.6 for several parameters where the ground state
is at θ = mπ for an integer m. This indicates that a
Nambu-Goldstone boson emerges for a = 1 as a result of
fluctuation of the U(1) phase variables. We can regard
the sign of sin θ as a kind of chirality. The emergence of
new massless boson is accompanied by the vanishing of
chirality.

We can generalize our argument to an n-component
scalar field with Josephson couplings. The potential

V =
λΛd

t

∑
i<j

cos(θi − θj), (23)

has a series of massless bosons; there are two types of
ground states called the type I and II[18]. In the ground
state I one has n − 3 massless bosons and in the ground
state II one has n − 2 massless bosons. (The n − 2 se-
ries exists only for even n.) Two ground states I and II
are degenerate for the potential V . However, the ground
state II becomes more stable than the state I due to fluc-
tuation effect. Thus, when we are in the ground state I
first, the fluctuation effect leads us to the state II with
increasing the number of Nambu-Goldstone bosons.

Order to order transition by disorder The chiral tran-
sition considered in this paper is a transition from the
2π/3-structure in Fig.1(a) (or (b)) to the antiferromag-
netic state in Fig.1(c). We can say that the ordered state
with a massless boson in Fig.1(c) is induced by disorder,
namely, thermal fluctuation. We call this an order to
order transition by disorder. We discuss here the fluc-
tuation effect on the induced Nambu-Goldstone boson.
For this purpose, we write ϕ1 = π + φ1 so that φ1 in-
dicates the fluctuation mode in the neighborhood of π.
The action is written as

S =
Λd−2

t

∫
ddx

[1
2
(∇φ1)2 +

1
2
λΛ2φ2

1 +
1
6
(∇ϕ2)2

− λΛ2φ1 cos
(ϕ2

2

) ]
. (24)

The ϕ2-mode is obviously a massless mode, but there
is an interaction with φ1. This interaction will gener-
ate an effective potential of ϕ2 that is proportional to
cos2(ϕ2/2) = (cos(ϕ2) + 1)/2. Then, the effective action
for ϕ2 is given by the sine-Gordon model:

Sϕ2 =
Λd−2

t

∫
ddx

[1
6
(∇ϕ2)2 −

λ

4
Λ2 cos(ϕ2)

]
. (25)

The low-energy property is determined by the values
of λ and t as indicated by the renormalization group
equations[26, 27] near two dimensions. The critical value
of t, denoted by t2c, is t2c = 8π/3. We assume that
t > tc > t2c. When λ is small, λ is renormalized to 0 fol-
lowing the renormalization flow. This indicates that the
ϕ2-mode remains massless for small λ. When λ is large,
λ is renormalized to be a large value, showing that the
potential term dominates the behavior of ϕ2-mode and
then that ϕ2 takes the value near 0. In this case the mass-
less ϕ2-mode becomes massive, that is, a gapped mode
again. Basically ϕ2-mode may remain massless because
the Josephson coupling λ is small in real superconduc-
tors.

Summary We have proposed the mechanism of fluc-
tuation induced Nambu-Goldstone bosons. In an n-
component scalar field theory with frustrated Josephson
interactions, massless bosons appear due to fluctuations
at finite temperature. In the 3-component theory dis-
cussed in the paper, a massless boson appears and the
chirality vanishes as the temperature is increased, that
is, the Z2-symmetry breaking is driven by the chirality.
This shows that nature prefers massless bosons. In fact,
in an n-component model, the ground state at absolute
zero will flow into the state with more massless bosons as
the temperature is increased from (n−3)-state to (n−2)-
state.

The excitation modes in our model has an analogy to
the vibration modes of a molecule CH2. Two modes, the
scissoring mode and the rocking mode, are important in
determining the excitation spectra of CH2[28, 29]. The
modes shown by ϕ1 = θ3 − θ1 and ϕ2 = θ1 − 2θ2 + θ3

represent the scissoring and rocking modes, respectively.
In our model, the rocking mode plays a significant role.
The fluctuation effect of the rocking mode becomes
large as the temperature is increased and gives rise to
the phase transition. The model presented in the pa-
per appears as an effective free energy in multi-band
superconductors[13–15, 19–23]. Low energy excitation
states are important in superconductors, the existence of
massless modes have been pointed out[18, 21, 24, 25]. In
this paper we have presented a new mechanism of the
emergence of Nambu-Goldstone bosons.

We express our sincere thanks to J. Kondo and I. Hase
for useful discussions. This work was supported by a
Grant-in-Aid for Scientific Research from the Ministry of
Education, Culture, Sports, Science and Technology of
Japan.
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