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Abstract. We determine the symmetry of Cooper pairs, on the basis of
the perturbation theory in terms of the Coulomb interactibnfor the two-
dimensional Hubbard model on the square lattice. The phase diagram is
investigated in detail. The Hubbard model for small is mapped on to

an effective Hamiltonian with the attractive interaction using the canonical
transformation: He = €SHe™S. The gap equation of the weak coupling
formulation is solved without numerical ambiguity to determine the symmetry
of Cooper pairs. The superconducting gap crucially depends on the position
of the van Hove singularity. We show the phase diagram in the plane of the
electron fillingne and the next nearest-neighbor transferhe d-wave pairing is
dominant for the square lattice in a wide rang@goandt’. The d-wave pairing is

also stable for the square lattice with anisotrapicThe three-band d—p model

is also investigated, for which the d-wave pairing is stable in a wide rangg of
andt,, (the transfer between neighboring oxygen atoms). In the weak coupling
analysis, the second-neighbor transfer parametecould not be so large so that

the optimum doping rate is in the range 08 n. < 0.85.
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1. Introduction

Since the discovery of high-temperature superconductors, the strongly correlated electron
systems have been studied intensively. The effect of the strong correlation between the electrons
is important for many quantum critical phenomena such as unconventional superconductivity
(SC). High-temperature superconductadl-[3] as well as heavy fermiongl}-[7] are known

as the typical correlated electron systems. These systems are modeled by the Hamiltonian with
the electronic interaction of the on-site Coulomb repulsion. Recently, the mechanisms of SC
in high-temperature superconductors have been extensively studied using the two-dimensional
(2D) Hubbard modelg]-[16].

The SC of the Hubbard model has been questioned for many years. It is extremely difficult
to show the existence of superconducting phase for the Hubbard model in a reasonable way. At
present we cannot answer this long-standing question. Instead of examining the possibility of
SC, itis possible to investigate possible symmetries of Cooper pairs for an effective Hamiltonian
with the attractive interaction. For this purpose effective Hamiltonians have been obtained for
the Hubbard model. The-J model is the well-known effective Hamiltonian derived in the
limit of the large on-site repulsiod, using the canonical transformatiéh_; = eSHe S with
Sxt/U. On the other hand, in the limit of small, the perturbation theory also leads to an
effective Hamiltonian with the attractive interactioh7]-[20], where we haveSocU/t. The
phase diagram with respect to the Cooper pair symmetry can be determined if we solve the gap
equation.

We must notice that we should compare the energy with other electronic states to show that
the superconducting state is indeed stable. For the half-filled band with vaniskirthin two
space dimensions, the antiferromagnetic order parameter for Sns[R21]

8tc A2tc
Apr = Uexp(— ¥ ) : (1)

where c=3— /3. It is, however, obvious that the antiferromagnetically ordered state is
unstable away from half filling if the Coulomb repulsidh is small. Thus, we focus on the
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case of smalU for which we have also a merit that the gap equation is considerably simplified.
The purpose of the paper is to determine the gap symmetry for the square lattice using the
smallU gap equation derived for the effective Hamiltonian. Although the real SC in correlated
electron systems should be described by a theory of strong-coupling SC, the phase diagram
can be determined in detail using the weak coupling formulation. Precise calculations are
sometimes not easy at low temperatures in the strong-coupling formulation due to the Matsubara
frequency summation and the wave number summation. It is important to examine the detailed
phase diagram for materials belonging to strongly correlated systems such as the cuprate
high-temperature superconductors, the organic superconductors, the ruthenate superconductor
SKHLRUG,.

The paper is organized as follows. In sectiyrthe effective Hamiltonian is derived using
the canonical transformation. We show that we can derive the attractive effective Hamiltonian
using some approximations. In secti®rthe gap equation is shown and the results are presented
in sectiord. We give a summary in sectidn

2. Effective Hamiltonian

The Hubbard Hamiltonian is
H=-t) (¢ +thc)—t' > (¢j,co+hec)+U Y niyny, (2)

(ii)o <Ljt>o [
where (ij) and <« j¢> denote the nearest-neighbor and next-nearest-neighbor pairs,
respectivelyl is the on-site Coulomb repulsion. The unit of energy is given toythis paper.
The total number of sites and the number of electrons are denotidaasl N, respectively.
The half-filled band correspondsig= Ne/N = 1.

The effective Hamiltonian is derived using the perturbation theory for stallThe
canonical transformation also maps the Hubbard model to an effective Hamiltonian with the
attractive interaction42]. Since no instability except SC occurs for smdllaway from half
filling, we assume that the pairing interaction is the most singular. The procedure of mapping is
as follows. The Hamiltonian is written as

H=Ho+H;+Hx+Hjs, 3)
where
Ho = Z £Cr, Cio (4)
ko
Hi= = 36kt (5)
N kA Y—k' | ’
P
Hy= o > ol g Coqic (6)
2= N k' ~—k'—qJ Z—k—=a “k1>
ks, G0
He = — "¢l corcl 7
3= N > GGG, Gy (7)

kk
The dispersion relatiog, for the square lattice is
ex = —2t(cosk, + cosky) — 4t'cosk,cosky, (8)
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where o is the chemical potential. We sét = ex — . Using a canonical transformation,
Y =eSy, we look for the solution of the Schridinger equatidlg = Ev. The effective
Hamiltonian reads

Het = €°He = H +[S H]+3[S [S H]]+---

= Ho+ Hy+ Hy+ Hy+[S, Ho+ Hy + Hy+ Hg] + 3[S, [S, Holl + - - -. 9)
We determineS so as to satisfyH, +[S, Hp] = 0. We find
U 1 t t
S=— CoaCk—qiCp_qiCkt- 10
2 B+ Ek — Big — B 1 kol (10

ks£K', g0
Since [5, Hs] = 0, we obtain up to the order &f?,

Hef = Ho+ Hy + Ha + [S, Hi] + 3[S, Hal. (11)
The commutator$, H,] is evaluated as

2% tot f
[S Ho] = (N) Y > Sh(=8pechcl g CopqiCl g Cokeqi Gt

k#K',070 p#p’.q'#0
+5 el e e g G — & e ¢l el cuc c
PHa K+ p e p g M PP Y —k—g Lk T Oprtgl kg e Yok —q ) Vprt MK - p—aTL Pt
Tt t
+8p/kck’TC—k’—q¢C*k*Q¢C— p/_q/\llcf pfq/‘LCpT), (12)
where
g 1
K - .
Ek+q + &k — kg — &k
Since the purpose of this paper is to investigate the pairing symmetry, we need only the first
term and the last term o H,]. We find that the average of the second and third terms with

respect to the Bardeen—Cooper—Schrieffer (BCS) wavefunction vanish. Due to the same reason
[S, Hi] can be neglected. Then the effective Hamiltonian is

U 1U°2 1
H— 2=§ SkCTUCka+—E ch ci,c_kck + -
CURT LM T Lk R T o Nz ) e ™

(13)

k#k! k#k',q70 p#p’.q'#0
X (8 ykChaC k_qiC -/ C c! Cor — SpkCh A C c' CoraiCle o Car)
PkMp S—k=al Yk —q) Y= P=a Y- p—q | VPt T OpK e b p—g L b gy | Yok —aL kg KT
(14)
If we setk = p+q’ andp’ =k’ +q, the first term of 5, H,] is approximated as
U\? toAt t
HZa = — (N) Z Z $/k8pk/cp/,r0_ p/_q/¢c_ p_q"LC_k/_ql/C_k_q‘LCkT
k#k',q70 p#£p'.q'#0
+
U )2 to Co—qyCk-ay
~ —_ Ck/ C7 K — C_k‘L CkT
( N k?équ:#O M g + e — Eieg — &
2
U ) tot f kg
~ [ — CrCi C_kyCkr
( N k;ﬁk;q;éo P &+ 80 g — B —
2
U ot fq
K'+g£0,k+q 0 gk/+k+q - qu Ek’ - sk
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where fy is the Fermi distribution function,
1
fk=——.
et +1
Since the summation is restricted to the small region near the Fermi surface, we obtain assuming

&k =6

(16)

U\? f
H2a ~ <N) Z —qCI/Tcika—kickT- (17)
k- qiz—q Kk 5
Similarly the last term of §, H;] is written as
U\° fievicr
Hap ~ (N) SO leka ot dca (18)
(ot —a kg 5Kk ~ 5
The resulting effective Hamiltonian is
Hett = eSHe S= Hi_y2 = Z %‘kc;rockg + Z ka’CII/TCika—kickT’ (29)
ko kk'
where
U u?
Vi = — + —x (k+K). 20
=397\ x( ) (20)
x (k +K’) is the magnetic susceptibility defined as
1 fk+k/+q - fq
x(k+K') = 9 (21)
Z fq §k+k’+q

Thus, we have reached the eﬁectlve Hamiltonian up to the ordér?afising the canonical
transformation.

3. Gap equation

The gap equation for the-U? model was investigated in1§]. Since the equation was
considerably simplified for small, the gap equation was solved without numerical ambiguity.
We define the order parameter,

Ay = Z Vi (C_ky Ciry) - (22)
k/
Using the mean-field theory, the gap equation for the Hamiltokiag: is
1-2f(Ex)
Vik Ay ————= 23
Z kk Ak 2B, (23)

whereEy = ,/£Z + A2. We assume the anisotropic order parameter given as

A=A -7, (24)
wherez, denotes thdx-dependence ohy. At T =0, the gap equation is written as
Ay
=— ) Vig— 25
Z g, (25)
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For smallU, the gap equation for anisotropic pairing is extremely simplified retaining only the
logarithmic term [L9):

Iog( ) U= Zx(k +K)8 (&) 2k, (26)
whereawy is the cut-off energy. The crltlcal temperaturgis determined by
1-2f(|&1)
Vi for T =T.. 27
=T Ve T =T @7)
For smallU, the crltlcal temperatur€; is extremely small. In this case, we can use the following
approximation,
@0 tanh( 2)
= [ g TS
0

N (w)mw_ﬁ/wodglog(s) 1
JwolloGwo =7 J, & 109598 coshpeE /2))2

= lo frenl? dx lo <2X %) ;
= 9lo) ga)o—‘/(; J ﬂc) J (lgc (coshx)?

lo 0 frenr® dxlo 2 ;
= g(wo)log wo — g( )/ g (ﬁc) (coshx)?

~ 29’a)o
~ g(0)log <nkBTC) : (28)

where we assume thgt¢) is a slowly varying function and’(&¢) is negligible. The equation is
written as

26’ hw
z = —log ( nkBT°> > Vi zied (). (29)
Cc

k/

SinceT; is very small, the summation ové&r can be restricted to the average over near the
Fermi surface. If we solve the eigenequation

2

N kZ X (K+K)Zi08 (o) = —XZ, (30)
the critical temperature is obtained as

kg T = 1.13wpeX 2 (31)

B lc = L.1awo€XP —xuz)’
where the energy unit is given bySinceA is given as

2t2
A= Za)oexp(—m> , (32)

the ratio 2A / kg T, equals the BCS universal value 22" = 3.53.
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4. Pairing symmetry

4.1. Method of solving the eigenvalue equation

We expresg, andVy in terms of the polar coordinate$q):
z = 2(£,0), (33)

x(k+k')=x(,0,&,0, (34)

wherek is expressed using the polar anglek = (¢, 0) in terms of the polar coordinates.
We consider the gap function on the Fermi surfa¢e) = z(0, 6). If we define x (0, 6") =
x(0,6,0,0"), the gap equation is

2

2| d0'pe()x (0, 60)2(0") = —xz(0), (35)
0

wherepg(0) is the density of states at the Fermi surface:

1
(0) = —ke(® :
FO = o i GE /o k= k@)
wherekg(0) is the Fermi wave number of the polar coordinatand o /ok is the derivative
with respect tk = |K|. If we expandz(9) as

2(0) = Z z.e". (37)

(36)

the gap equation is given as
> XmnZn = =X, (38)
n

where xmn are the matrix elements gf(6, 6'):

1 2r ) .
Xmn = ;fo do do’ pe(0")e "™ x (0, 6')e™". (39)

The number of basis functions kept in solving the eigenequation is 30—40 in this paper. The
k-space is divided into 208 20 points on equally spaced mesh in the numerical calculations
of x (6, 6.

4.2. Simple square lattice

Let us investigate the phase diagram for the square lattice (figuiidhe basis functiongg™'}
(n=0,+1,£2,...) are classified into irreducible representations according to the symmetry
group. The eigenfunctions are specified by one of irreducible representations of the square
lattice (see tabld). It is convenient to use real basis functions @83 and siné) for this
purpose. The gap function in each representatiohd [

2(0) =y _ zy4c084L0) Ay, (40)
(=1

2(0) =Y _ zySin(4e0) A, (41)
=1
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Figure 1. Square lattice with next-nearest trandfer

2(0) =Y 24 _oCOS4L —2)0 By, (42)
=1

2(6) = Z Zu_oSin(4e —2)6  B,. (43)
=1

2(6) = Z Zp 1€0S2¢ — 1) E.
=1

or sin(2¢ — 1)6 (44)

In [19)], the representations;AB, were investigated. Here, the E symmetry for triplet pairing is
also examined. The eigenequation is solved for the above shown basis functions in the space of
each irreducible representation. The eigenvadder t' = 0 is shown in figure as a function

of the electron densitye. Forne > 0.6 the paired state with,el ,» symmetry is most stable for

t’ = 0. Since the exponentsensitively depends on the van Hove singularitis an increasing
function ofne near half filling fort’ = 0.

The exponenk for t' = —0.1, —0.2 and—0.3 is shown in figure8-5, respectively. The
exponents for small electron filling are not shown here because the high numerical accuracy
is required for exponentially small exponents. As is shown in the figures, the d-wave state is
most stable near half-filled case fin the range of 6< t’ < 0.4. The position of the van Hove
singularity depends oti, and the peak af shifts as—t’ > 0 increases (figur6é). x has a sharp
peak showing a logarithmic increase due to the van Hove singularity:

X ~ —log|i — favnl, (45)

where 4 is the chemical potential corresponding to the van Hove singularity. The figure
suggests higher, for small—t’. The antiferromagnetism, however, may compete and suppress

New Journal of Physics 10 (2008) 023014 (http://www.njp.org/)


http://www.njp.org/

9 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

10-1 | I I
B /,,,,,/,/
1021 1 |
| =T
E - = =
103 e
, N
104 | I I
0.6 0.7 0.8 1

Figure 2. The exponentx as a function of the electron density for= 0.
(See [L9). We have include for the E representation.) Since the line for A
mostly coincides with that for B the A line is omitted.

100 : :

107"

X 1072

1073

Figure 3. The exponenk as a function of the electron density foe= —0.1.

SC near half filling. Hence, we must have a bell-shape critical temperature as a function of the
electron filling.

It was pointed out from the electronic states calculations that the Fermi surface is much
deformed for TJBa,CuQ; [23] and HgBaCuQy [24] for which the band parameter values must
be assigned &s~ —0.4 andt” ~ 0.1 (third-neighbor transfer). Ber,CaCuyOsg.;s (Bi2212) also
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1071

10-2:_

10731

1074

ne
Figure 4. The exponenk as a function of the electron density = —0.2.

107", . : . :

1072}

1073}

0.4 ' 0.6 0.8 ' 1.0
Figure 5. The exponenk as a function of the electron density = —0.3.

has deformed Fermi surface so thiat —0.3 andt” ~ 0.2 [25]. For these values the optimum
doping rate must be larger than that forn LeéSr, CuQ, (LSCO) for whicht’ ~ —0.1 andt” ~ 0.
Experiments, however, indicated that the optimum doping rate is almost the same for Bi2212
and LSCO p6]. This may be a flaw of the weak coupling formulation, which, however, may not

be completely remedied by the strong coupling treatment since the van Hove singularity still has
a large effect on the critical temperature. This suggests that we must re-examine the structure of
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0.16 T T T T

—e— 1t’'=0.0

—o— t'=-0.1

0.12

x 0.08

0.04

Figure 6. The exponenk of B; symmetry as a function of the electron density
fort’'=0,-0.1,-0.2,-0.3 and—0.4.

the Fermi surface of high-temperature cuprates. In particular, the band parameters for Bi2212
will be modified if we take into account the double layer struct@’g p8]. The band structure
reported by recent studie®q, 29] is well fitted using smallet’ such as30]®

t'~—0.2. (46)

The phase diagram in the—t’ plane is shown in figur& for t' < 0 and in figure8 for
t' > 0. Forne~ 0.5 and—t’ ~ 0.4, there is a possibility that the p-wave SC is realized. For
example, the ruthenate superconducting materigR80, [31] is sometimes modeled by the
one-band Hubbard model for theorbital witht” ~ —0.4 andn, >~ 0.67 after the electron—hole
transformation. The state of these parameters just corresponds to the point within the singlet
region near the boundary to p-wave regions in figiirén order to obtain the stable p-wave
pairing for the parameters corresponding tgR210O,, we may need to consider the multi-band
structure includingx andpg orbitals B2]. Fort’ > 0, we have a large d-wave region.

If t" is large and negative, i.e. #t’ > 0.5, we have the case with two Fermi surfaces;
one is a large Fermi surface (FS1) and the other is a small Fermi surface (FS2) inside of the
larger one. In this case, we must examine the coupled equation of two gap furmtamsz2
corresponding to two Fermi surfaces:

2 2

N D Mk +K)ZS (&) + N D xPk+K)Z = —x7, (47)
k’:FS1 k’:FS2

2 2

N > Pk H+K)Ze 8 (&) + N D xPk+K)Z = —xZ, (48)
k":FS1 k':FS2

3 We thank K Yamaiji for stimulating discussions on this point.
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"0 0.2 0.4 0.6 0.8

Figure 7. Phase diagram in the.-t’ plane fort’ < 0. s denotes the pairing state

with extended, s-wave symmetry. In the s-wave region for sftiglithe s- and
p-wave states are sometimes nearly degenerate. Small regions near boundaries
are not shown.

10 T T T T T T T T
\\s/ p

0.8 | dye_ye i

o6 00— T~

0.4

Figure 8. Phase diagram in the-t’ plane fort’ > 0. s, g and d pairing states are
almost degenerate in the low carrier region for large
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functions are also shown.

Representation = Symmetry Bases

Ay S 1 cos(4)
A, g Xy(x? — y?) sin(#)
B: ye_y2 cosfy)—cosky) x2 —y? cos(®)
B, Oxy sin(ky)sin(ky) Xy sin(®)

E p sinky), sinky) X,y cosp), sin@)

t
z'l t’

Figure 9. Square lattice with anisotropic next-nearest transfganisotropic
triangular lattice) which is the lattice of organic conductors.

where the symbo}_, -4 indicates the summation over the Fermi surface&®lx'! (k +k’) is

the susceptibility fok on FS andk’ on FSj. The stable pairing symmetry is also obtained using
the electron—hole transformation for> O for which we have almost only one Fermi surface
even in the electron-doped case.

4.3. Square lattice with anisotropic¢ t

The Hubbard model on the square lattice with anisotropic next-nearest-neighbor transfer
t’ (figure 9) has been investigated intensively as a model for organic conductors such as
BDET-TTF(ET) molecules33—[35]. The model for organic conductors is well known as the
Hubbard model with anisotropic next-nearest-neighbor trarisfgvhich is sometimes called

the anisotropic triangular lattice). The dispersion relation is

& = —2t(cosky + cosky) — 2t'cogky +ky) — . (49)
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10° T T T

—— dx27y2

107" H

X 1072

Figure 10. The exponenk on the square lattice with anisotropiic= —0.1.

0.08 . : .
!
0.06 - .. I -
dyy f
——p /|
||
[
||
x 0.04f | -
s
[
iy
0.02 i -
-
n/ X:\l s
0.2 0.4 0.6 0.8 1.0

Ne
Figure 11. The exponenk on the square lattice with anisotrogic= —0.5.

This model has the two-fold rotational symmetry and we classify the irreducible representation
using theC,, point group (table?). The exponenx is in figuresl0andl1 as a function of the
electron density for t’ = —0.1 andt’ = —0.5, respectively. As apparent from the figures, the
d-wave state is stable over the whole region, which is consistent with the FLEX predigsion [
The phase diagram in the—t’ plane is presented in figu for t' < 0 and in figurel3 for

t’ > 0. For this model, we conclude that the d-wave pairing is stable over the whole range of
parameters.
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1.0 T T T T T T T T
0.8 -
e
n, 06

e

) 0.2 0.4

Figure 12. Phase diagram for the square lattice with anisotropicO (lattice of
organic conductors).

10 T T T T T T T T
0.8 I o2 i
n, 0.6 _—_‘N
0.4 |- d, .
0.2 L 1 1 | L | L |
0 0.2 0.4 0.6 0.8
t,

Figure 13. Phase diagram for the square lattice with anisotropicO (lattice of
organic conductors).
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Table 2. Irreducible representations 6%, for the square lattice with anisotropic
next-nearest-neighbor transfer.

Representation Symmetry Bases

Ay e y2 x2,y? cos(d)
A, Oxy Xy sin()
Bs Px X cosg)
B> Py y sin@)

4.4. Three-band d—p model

The formulation is also applied to the three-band model for the Qpi@ne B7]. We are
interested in the relation between the single-band Hubbard model and the three-band d—p model.
The pairing symmetry in the electron-doped cuprates is still controversial between the d-wave
and s-wave order paramet&g]-[40]. The Hamiltonian is

T T t
Hdp =€&d Z digdin teép Z(pi +%/20 Pi+g/20 P +/20 Di+g//zo)
io io
T
Hap Z[di(y(pi %720 F Pivg20 — Pi—gj20 — Pi—g/20) T h.C]
io
T T T
+pp Z[ Bi+g/20 Pi+ss20 = Prag o, Pi-/20 = Bi_g25 Pi+g/20
io

0 0 Pigizr +he]+Ug Y d il (50)
i

In this subsection, the energy is measured in unitg,0The energy levels of the non-interacting
Hamiltonian is written as in a concise fori®7]:

2 ok + 2 €4 — €p
C=—t + , 51
€¢ 73 kcos( 3 ) 3 (51)
fora =0, 1 and 2, where
o=/ I+ 12+ ()2 + (ea — €)2/3, (52)
T T 6 2
b= 7 +signiso) ( 5 — arctan/|1 - 4/ 2750 ). (53)
(6 —€ )2 t2 * *
S = (€g— €p) (% =5+ OO )+ nOnen” ), (54)

wheren} = 2itg, sin(ke/2), 1 = 2itgy Sin(ky/2), andn} = —4ty, sin(ke/2) sin(k,/2). € for a =

0, 1, 2 is the dispersion relation of the upper, lower and middle band, respectively. We examine
the doped case within the hole picture where the lowest band is occupied up to the Fermi energy
wu. The effective interaction is

U U2
Viw = — + dedd(k +k'), (55)

—d
N
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Figure 14. x as a function of the carrier density, for the square lattice d—p
model:n, > O for hole doping andi. < O for electron doping.

where

o o
x (@) = ZZ W ‘;p " wf. (56)

€p ~ €q+p

Here f is the Fermi dlstrlbutlon function,
fo=@@“m+1t (57)
The weighting factor of d electronsy is defined as
i — (n;p - ef)(naf t) (58)
(e — € (e — &)
wherea, 8 andy are different from each other. The gap equation is

1
K 2

wherewy = wi andEy = /&2 + AZ for the lowest-band dispersidp = €} — u.

The d-wave pairing is predominant over the whole range in the parameter space as is shown
in figure 14. In particular, g-_,.-wave pairing is stable near half-filling. Although the extended
s-wave pairing is possible in the narrow region near half filling in the Gutzwiller variational
Monte Carlo study14], we have no chance of s-wave SC within the weak-coupling perturbation
theory. The phase diagram for the d—p model is shown in fijGre

New Journal of Physics 10 (2008) 023014 (http://www.njp.org/)


http://www.njp.org/

18

I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

08 T T T
dy
R e SSS———S—
0.4 | -
n 0+ Oy .
04} -
dyy
-0.8 | | |
0 0.1 0.2 0.3 0.4

tPP

Figure 15. Phase diagram for the three-band d—p model in the plane of the carrier
numbern andty, in the range of G< t,, < 0.4. We setep — g = 2 andty, = 1.

n = 0 indicates half filling, and the positive and negativare for hole doping

and electron doping, respectively.

5. Summary

We have examined the phase diagram with respect to pairing symmetry on the basis of the 2D
Hubbard model. The weak coupling formulation is convenient to investigate the phase diagram
in detail. The results are almost consistent with the strong-coupling perturbation theory. We

summarize the results as follows.

1.

2.

The d-wave pairing is stable near half filling for the square lattice and the anisotropic square
lattice.

The gap function has a maximum at the van Hove singularity. As the second neighbor
transfert’ increases, the energy of the van Hove singularity decreases. Fortlatge
—0.3 to ~ —0.4, the optimal doping is more than 25% doping, ng< 0.75. For small

third neighbor transfet” the situation remains the same. The largg is assigned to
several high-temperature cuprates to fit the angle resolved photoemission spectroscopy
(ARPES) data or the Fermi surface obtained by the band structure calculations. Most of
them, however, have optimum critical temperature in the range8ot . < 0.85. Thus,

the weak coupling analysis suggests that we must consider other electronic or lattice
interactions, or reexamine the band paramete@ndt”. Recent ARPES studies have
reported the band structure which is well fitted using rather smglgurch ag’ ~ —0.2

by our analysis.

. The predictions of the weak-coupling theory are almost consistent with the variational

Monte Carlo method. An effective interaction to induce SC is possibly the sim(e
with renormalization in the Gutzwiller variational theory.

New Journal of Physics 10 (2008) 023014 (http://www.njp.org/)


http://www.njp.org/

19 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

4. For the d—p model, the d-wave pairing is predominant in a wide range and the phase
diagram is almost symmetric between electron and hole dopings. Although the pairing
symmetry in the electron-doped cuprates is controversial, only the d-wave pairing is
possible near half-filling in the weak-coupling formulation.
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Appendix. Higher-order corrections

In the appendix, we examine higher-order correctiong.tdf the third-order terms have an
effect to reduce the exponext the results obtained using the second-order perturbation have
a possibility to become unstable Bisincreases. It is not an easy task to derive an effective
Hamiltonian up to the third order of the interaction using the canonical transformation. The gap
equation up to the third order &f has been obtained using the perturbative expansion for the
Hubbard model41, 42]. The Green’s functions satisfy the Dyson equations:

Gk, ien)=Go(K, ien) + Go(k, ien)Zn (K, i€n) G (K, ien)+ Go(K, ien)Za(K, ien)F*(K, i€n), (A1)

Fk,ien) = Go(k, ien) Zn(K, ien) F(K, ien) — Go(K, ien) Xa(K, ien) G(—k, —iep), (A.2)

wheree, = (2n+ 1)kgT is the Matsubara frequency, a@g (X,) is the normal (anomalous)
self-energy.Gy, is the free-electron Green’s functio@y(K, ien) = (i€, — &) 1. Since we are
interested in the third-order contributiors, (of the order olU?) is neglected as follows:

. _ iEn"'i:k
e = Rk e (A3)
F(K, ien) = Fa(k ien) (A.4)

2+ E2+(Ta(k, ien) 2

The equation for the anomalous self-energy is

1

Talk, i€n) = BN D U +U2xo(k +K',ien +ien) + 2U3xo(k +K', ien +ien) ] F (K, i€n)
K, ey

1

3
+U ,32N2

Z Go(k/, ien/)[XO(k +K', ien + i€n)

K ey, P,€

—po(k+K', i€y +ien)]Go(k +K +p, i€, +iey +ie,)F(p, i€,)

1 H / . .
U 2 GolK iemlxo(—k +K', —ien +ien)
k/,En/, P,€e

—po(—K +K', —ien +ien)]|Go(—K +K' —p, —ien +iey —ie)) F(p, iey), (A.5)
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Figure Al. The exponent for the second-order (open symbols) and third-
order (solid symbols) perturbation . We setU /t = 0.1. The symbol Non-V
indicates the results obtained without vertex corrections.

for 8 =1/kgT. The second and third terms originate from the vertex correctigj(g, iom)
andgo(q, iwy) are defined as

o1 f (&) — T (Skrq)
XO(q’ |a)m) — N ; iwm_l_%_k _ %_k+q ) (A6)

f (&) — F(—&_k+q)

lom — &k — § kg ’

. 1
$o(0, iom) = - Xk: (A7)

wherewn,, = 2rmksT. We assume thak, is small and that we can neglect thelependence

since we consider the small-limit. We setAx = X,(k, €, = 0), then the equation foA is
derived. We show the results in figukel for U/t = 0.1 on the square lattice. The exponent

x slightly decreases due to the third-order corrections. There is a cancellation among the third-
order terms. As has been shown in the literatddg, [the vertex corrections reduce the exponents

x and T, compared to those without vertex corrections.
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