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Abstract. We determine the symmetry of Cooper pairs, on the basis of
the perturbation theory in terms of the Coulomb interactionU , for the two-
dimensional Hubbard model on the square lattice. The phase diagram is
investigated in detail. The Hubbard model for smallU is mapped on to
an effective Hamiltonian with the attractive interaction using the canonical
transformation: Heff = eSHe−S. The gap equation of the weak coupling
formulation is solved without numerical ambiguity to determine the symmetry
of Cooper pairs. The superconducting gap crucially depends on the position
of the van Hove singularity. We show the phase diagram in the plane of the
electron fillingne and the next nearest-neighbor transfert ′. The d-wave pairing is
dominant for the square lattice in a wide range ofne andt ′. The d-wave pairing is
also stable for the square lattice with anisotropict ′. The three-band d–p model
is also investigated, for which the d-wave pairing is stable in a wide range ofne

andtpp (the transfer between neighboring oxygen atoms). In the weak coupling
analysis, the second-neighbor transfer parameter−t ′ could not be so large so that
the optimum doping rate is in the range of 0.8< ne< 0.85.
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1. Introduction

Since the discovery of high-temperature superconductors, the strongly correlated electron
systems have been studied intensively. The effect of the strong correlation between the electrons
is important for many quantum critical phenomena such as unconventional superconductivity
(SC). High-temperature superconductors [1]–[3] as well as heavy fermions [4]–[7] are known
as the typical correlated electron systems. These systems are modeled by the Hamiltonian with
the electronic interaction of the on-site Coulomb repulsion. Recently, the mechanisms of SC
in high-temperature superconductors have been extensively studied using the two-dimensional
(2D) Hubbard model [8]–[16].

The SC of the Hubbard model has been questioned for many years. It is extremely difficult
to show the existence of superconducting phase for the Hubbard model in a reasonable way. At
present we cannot answer this long-standing question. Instead of examining the possibility of
SC, it is possible to investigate possible symmetries of Cooper pairs for an effective Hamiltonian
with the attractive interaction. For this purpose effective Hamiltonians have been obtained for
the Hubbard model. Thet–J model is the well-known effective Hamiltonian derived in the
limit of the large on-site repulsionU , using the canonical transformationHt−J = eSHe−S with
S∝ t/U . On the other hand, in the limit of smallU , the perturbation theory also leads to an
effective Hamiltonian with the attractive interaction [17]–[20], where we haveS∝ U/t . The
phase diagram with respect to the Cooper pair symmetry can be determined if we solve the gap
equation.

We must notice that we should compare the energy with other electronic states to show that
the superconducting state is indeed stable. For the half-filled band with vanishingt ′

= 0 in two
space dimensions, the antiferromagnetic order parameter for smallU is [21]

1AF =
8tc

U
exp

(
−

√
4π2tc

U

)
, (1)

where c = 3−
√

3. It is, however, obvious that the antiferromagnetically ordered state is
unstable away from half filling if the Coulomb repulsionU is small. Thus, we focus on the
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case of smallU for which we have also a merit that the gap equation is considerably simplified.
The purpose of the paper is to determine the gap symmetry for the square lattice using the
small-U gap equation derived for the effective Hamiltonian. Although the real SC in correlated
electron systems should be described by a theory of strong-coupling SC, the phase diagram
can be determined in detail using the weak coupling formulation. Precise calculations are
sometimes not easy at low temperatures in the strong-coupling formulation due to the Matsubara
frequency summation and the wave number summation. It is important to examine the detailed
phase diagram for materials belonging to strongly correlated systems such as the cuprate
high-temperature superconductors, the organic superconductors, the ruthenate superconductor
Sr2RuO4.

The paper is organized as follows. In section2, the effective Hamiltonian is derived using
the canonical transformation. We show that we can derive the attractive effective Hamiltonian
using some approximations. In section3, the gap equation is shown and the results are presented
in section4. We give a summary in section5.

2. Effective Hamiltonian

The Hubbard Hamiltonian is

H = −t
∑
〈i j 〉σ

(c†
iσc jσ + h.c.)− t ′

∑
� j `�σ

(c†
jσc`σ + h.c.)+U

∑
i

ni ↑ni ↓, (2)

where 〈i j 〉 and � j `� denote the nearest-neighbor and next-nearest-neighbor pairs,
respectively.U is the on-site Coulomb repulsion. The unit of energy is given byt in this paper.
The total number of sites and the number of electrons are denoted asN and Ne, respectively.
The half-filled band corresponds tone = Ne/N = 1.

The effective Hamiltonian is derived using the perturbation theory for smallU . The
canonical transformation also maps the Hubbard model to an effective Hamiltonian with the
attractive interaction [22]. Since no instability except SC occurs for smallU away from half
filling, we assume that the pairing interaction is the most singular. The procedure of mapping is
as follows. The Hamiltonian is written as

H = H0 + H1 + H2 + H3, (3)

where

H0 =

∑
kσ

ξkc
†
kσckσ , (4)

H1 =
U

N

∑
k 6=k′

c†
k′↑

c†
−k′↓

c−k↓ck↑, (5)

H2 =
U

N

∑
k 6=k′,q 6=0

c†
k′↑

c†
−k′−q↓

c−k−q↓ck↑, (6)

H3 =
U

N

∑
kk′

c†
k↑

ck↑c†
k′↓

ck′↓. (7)

The dispersion relationεk for the square lattice is

εk = −2t (coskx + cosky)− 4t ′coskxcosky, (8)
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whereµ is the chemical potential. We setξk = εk −µ. Using a canonical transformation,
ψ̃ = eSψ , we look for the solution of the Schrödinger equationHeffψ̃ = Eψ̃ . The effective
Hamiltonian reads

Heff = eSHe−S
= H + [S, H ] + 1

2[S, [S, H ]] + · · ·

= H0 + H1 + H2 + H3 + [S, H0 + H1 + H2 + H3] + 1
2[S, [S, H0]] + · · · . (9)

We determineSso as to satisfyH2 + [S, H0] = 0. We find

S=
U

N

∑
k 6=k′,q 6=0

1

ξk′+q + ξk′ − ξk+q − ξk
c†

k′↑
c−k′−q↓c†

−k−q↓
ck↑. (10)

Since [S, H3] = 0, we obtain up to the order ofU 2,

Heff = H0 + H1 + H3 + [S, H1] + 1
2[S, H2]. (11)

The commutator [S, H2] is evaluated as

[S, H2] =

(
U

N

)2 ∑
k 6=k′,q 6=0

∑
p6=p′,q′ 6=0

Sq
kk′(−δpk′c†

p′↑
c†
−p′−q′↓

c−p−q′↓c†
−k′−q↓

c−k−q↓ck↑

+δp+q′,k′+qc†
p′↑

c†
−p′−q′↓

c†
k′↑

cp↑c−k−q↓ck↑ − δp′+q′,k+qc†
k′↑

c†
−k′−q↓

c†
p′↑

ck↑c−p−q′↓cp↑

+δp′kc
†
k′↑

c†
−k′−q↓

c−k−q↓c†
−p′−q′↓

c−p−q′↓cp↑), (12)

where

Sq
kk′ =

1

ξk′+q + ξk′ − ξk+q − ξk
. (13)

Since the purpose of this paper is to investigate the pairing symmetry, we need only the first
term and the last term of [S, H2]. We find that the average of the second and third terms with
respect to the Bardeen–Cooper–Schrieffer (BCS) wavefunction vanish. Due to the same reason
[S, H1] can be neglected. Then the effective Hamiltonian is

Ht−U2 =

∑
kσ

ξkc
†
kσckσ +

U

N

∑
k 6=k′

c†
k′↑

c†
−k′↓

c−k↓ck↑ +
1

2

U 2

N2

∑
k 6=k′,q 6=0

∑
p6=p′,q′ 6=0

1

ξk′+q + ξk′ − ξk+q − ξk

×(δp′kc
†
k′↑

c−k−q↓c†
−k′−q↓

c−p−q′↓c†
−p′−q′↓

cp↑ − δpk′c†
p′↑

c−p−q′↓c†
−p′−q′↓

c−k−q↓c†
−k′−q↓

ck↑).

(14)

If we setk = p + q′ and p′
= k′ + q, the first term of [S, H2] is approximated as

H2a ≡ −

(
U

N

)2 ∑
k 6=k′,q 6=0

∑
p6=p′,q′ 6=0

Sq
k′kδpk′c†

p′↑
c†
−p′−q′↓

c−p−q′↓c†
−k′−q↓

c−k−q↓ck↑

≈

(
U

N

)2 ∑
k 6=k′,q 6=0

c†
k′+q↑

c†
−k′−q↓

c†
−k−q↓

c−k−q↓

ξk′+q + ξk′ − ξk+q − ξk
c−k↓ck↑

≈

(
U

N

)2 ∑
k 6=k′−q,q 6=0

c†
k′↑

c†
−k′↓

f−k−q

ξk′ + ξk′−q − ξk+q − ξk
c−k↓ck↑

=

(
U

N

)2 ∑
k′+q 6=0,k+q 6=0

c†
k′↑

c†
−k′↓

fq

ξk′+k+q − ξ−q + ξk′ − ξk
c−k↓ck↑, (15)
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where fk is the Fermi distribution function,

fk =
1

eβξk + 1
. (16)

Since the summation is restricted to the small region near the Fermi surface, we obtain assuming
ξ−k = ξk

H2a ≈

(
U

N

)2 ∑
k 6=−q,k′ 6=−q

fq

ξk′+k+q − ξq
c†

k′↑
c†
−k′↓

c−k↓ck↑. (17)

Similarly the last term of [S, H2] is written as

H2b ≈

(
U

N

)2 ∑
k 6=−q,k′ 6=−q

fk′+k+q

ξk′+k+q − ξq
c†

k′↑
c†
−k′↓

c−k↓ck↑. (18)

The resulting effective Hamiltonian is

Heff = eSHe−S
≡ Ht−U2 =

∑
kσ

ξkc
†
kσckσ +

∑
kk′

Vkk′c†
k′↑

c†
−k′↓

c−k↓ck↑, (19)

where

Vkk′ =
U

N
+

U 2

N
χ(k + k ′). (20)

χ(k + k ′) is the magnetic susceptibility defined as

χ(k + k ′)=
1

N

∑
q

fk+k′+q − fq

ξq − ξk+k′+q
. (21)

Thus, we have reached the effective Hamiltonian up to the order ofU 2 using the canonical
transformation.

3. Gap equation

The gap equation for thet–U 2 model was investigated in [19]. Since the equation was
considerably simplified for smallU , the gap equation was solved without numerical ambiguity.
We define the order parameter,

1k =

∑
k′

Vkk′〈c−k′↓ck′↑〉. (22)

Using the mean-field theory, the gap equation for the HamiltonianHt−U2 is

1k = −

∑
k′

Vkk′1k′

1− 2 f (Ek′)

2Ek′

, (23)

whereEk =

√
ξ2

k +12
k. We assume the anisotropic order parameter given as

1k =1 · zk, (24)

wherezk denotes thek-dependence of1k. At T = 0, the gap equation is written as

1k = −
1

2

∑
k′

Vkk′

1k′

Ek′

. (25)
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For smallU , the gap equation for anisotropic pairing is extremely simplified retaining only the
logarithmic term [19]:

zk = log

(
1

2ω0

)
U 2 1

N

∑
k′

χ(k + k ′)δ(ξk′)zk′, (26)

whereω0 is the cut-off energy. The critical temperatureTc is determined by

zk = −

∑
k′

Vkk ′zk′

1− 2 f (|ξk′|)

2 |ξk′|
for T = Tc. (27)

For smallU , the critical temperatureTc is extremely small. In this case, we can use the following
approximation,

I ≡

∫ ω0

0
dξg(ξ)

tanh(βcξ/2)

ξ

≈ g(ω0)logω0 −
βc

2

∫ ω0

0
dξ logξg(ξ)

1

(cosh(βcξ/2))2

= g(ω0)logω0 −

∫ βcω0/2

0
dx log

(
2x

βc

)
g

(
2x

βc

)
1

(coshx)2

= g(ω0)logω0 − g(0)
∫ βcω0/2

0
dx log

(
2x

βc

)
1

(coshx)2

≈ g(0)log

(
2eγω0

πkBTc

)
, (28)

where we assume thatg(ξ) is a slowly varying function andg′(ξ) is negligible. The equation is
written as

zk = −log

(
2eγ h̄ω0

πkBTc

)∑
k′

Vkk ′zk′δ(ξk′). (29)

SinceTc is very small, the summation overk ′ can be restricted to the average over near the
Fermi surface. If we solve the eigenequation

2

N

∑
k′

χ(k + k ′)zk′δ(ξk′)= −xzk, (30)

the critical temperature is obtained as

kBTc = 1.13ω0exp

(
−

2t2

xU2

)
, (31)

where the energy unit is given byt . Since1 is given as

1= 2ω0exp

(
−

2t2

xU2

)
, (32)

the ratio 21/kBTc equals the BCS universal value 2π/eγ = 3.53.
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4. Pairing symmetry

4.1. Method of solving the eigenvalue equation

We expresszk andVkk′ in terms of the polar coordinates [19]:

zk = z(ξ, θ), (33)

χ(k + k ′)= χ(ξ, θ, ξ ′, θ ′), (34)

wherek is expressed using the polar angleθ : k = (ξ, θ) in terms of the polar coordinates.
We consider the gap function on the Fermi surfacez(θ)≡ z(0, θ). If we defineχ(θ, θ ′)=

χ(0, θ,0, θ ′), the gap equation is

2
∫ 2π

0
dθ ′ρF(θ

′)χ(θ, θ ′)z(θ ′)= −xz(θ), (35)

whereρF(θ) is the density of states at the Fermi surface:

ρF(θ)=
1

(2π)2
kF(θ)

1

|(∂ξ/∂k)(k = kF(θ))|
, (36)

wherekF(θ) is the Fermi wave number of the polar coordinateθ and∂ξ/∂k is the derivative
with respect tok = |k|. If we expandz(θ) as

z(θ)=

∑
n

zneinθ , (37)

the gap equation is given as∑
n

χmnzn = −xzm, (38)

whereχmn are the matrix elements ofχ(θ, θ ′):

χmn =
1

π

∫ 2π

0
dθ dθ ′ρF(θ

′)e−imθχ(θ, θ ′)einθ ′

. (39)

The number of basis functions kept in solving the eigenequation is 30–40 in this paper. The
k-space is divided into 200× 20 points on equally spaced mesh in the numerical calculations
of χ(θ, θ ′).

4.2. Simple square lattice

Let us investigate the phase diagram for the square lattice (figure1). The basis functions{einθ
}

(n = 0,±1,±2, . . .) are classified into irreducible representations according to the symmetry
group. The eigenfunctions are specified by one of irreducible representations of the square
lattice (see table1). It is convenient to use real basis functions cos(nθ) and sin(nθ) for this
purpose. The gap function in each representation is [19]

z(θ)=

∑
`=1

z4`cos(4`θ) A1, (40)

z(θ)=

∑
`=1

z4`sin(4`θ) A2, (41)
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t

t′

Figure 1. Square lattice with next-nearest transfert ′.

z(θ)=

∑
`=1

z4`−2cos(4`− 2)θ B1, (42)

z(θ)=

∑
`=1

z4`−2sin(4`− 2)θ B2. (43)

z(θ)=

∑
`=1

z2`−1cos(2`− 1)θ E.

or sin(2`− 1)θ (44)

In [19], the representations A1–B2 were investigated. Here, the E symmetry for triplet pairing is
also examined. The eigenequation is solved for the above shown basis functions in the space of
each irreducible representation. The eigenvaluex for t ′

= 0 is shown in figure2 as a function
of the electron densityne. Forne> 0.6 the paired state with dx2−y2 symmetry is most stable for
t ′

= 0. Since the exponentx sensitively depends on the van Hove singularity,x is an increasing
function ofne near half filling fort ′

= 0.
The exponentx for t ′

= −0.1,−0.2 and−0.3 is shown in figures3–5, respectively. The
exponents for small electron filling are not shown here because the high numerical accuracy
is required for exponentially small exponents. As is shown in the figures, the d-wave state is
most stable near half-filled case fort ′ in the range of 06 t ′ 6 0.4. The position of the van Hove
singularity depends ont ′, and the peak ofx shifts as−t ′ > 0 increases (figure6). x has a sharp
peak showing a logarithmic increase due to the van Hove singularity:

x ∼ −log|µ−µvH|, (45)

whereµvH is the chemical potential corresponding to the van Hove singularity. The figure
suggests higherTc for small−t ′. The antiferromagnetism, however, may compete and suppress
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10–4

10–3

10–2

10–1

0.6 0.7 0.8 0.9

x

ne

B1

B2

A2

E

Figure 2. The exponentx as a function of the electron density fort ′
= 0.

(See [19]. We have includedx for the E representation.) Since the line for A1

mostly coincides with that for B2, the A1 line is omitted.

10–4

10–3

10–2

10–1

100

0.4 0.6 0.8 1.0

B1

B2

A1

A2

E

x

ne

Figure 3. The exponentx as a function of the electron density fort ′
= −0.1.

SC near half filling. Hence, we must have a bell-shape critical temperature as a function of the
electron filling.

It was pointed out from the electronic states calculations that the Fermi surface is much
deformed for Tl2Ba2CuO6 [23] and HgBa2CuO4 [24] for which the band parameter values must
be assigned ast ′

∼ −0.4 andt ′′
∼ 0.1 (third-neighbor transfer). Bi2Sr2CaCu2O8+δ (Bi2212) also
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10–4

10–3

10–2

10–1

0.4 0.6 0.8 1.0

B1
B2
A1
A2
E

x

ne

Figure 4. The exponentx as a function of the electron density fort ′
= −0.2.

10–3

10–2

10–1

0.4 0.6 0.8 1.0

B1

B2

A1

A2

E

x

ne

Figure 5. The exponentx as a function of the electron density fort ′
= −0.3.

has deformed Fermi surface so thatt ′
∼ −0.3 andt ′′

∼ 0.2 [25]. For these values the optimum
doping rate must be larger than that for La1−xSrxCuO4 (LSCO) for whicht ′

∼ −0.1 andt ′′
∼ 0.

Experiments, however, indicated that the optimum doping rate is almost the same for Bi2212
and LSCO [26]. This may be a flaw of the weak coupling formulation, which, however, may not
be completely remedied by the strong coupling treatment since the van Hove singularity still has
a large effect on the critical temperature. This suggests that we must re-examine the structure of
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0

0.04

0.08

0.12

0.16

0.4 0.6 0.8 1.0

 t ′ = 0.0
 t ′ = –0.1
 t ′ = –0.2
 t ′ = –0.3
 t ′ = –0.4

x

ne

Figure 6. The exponentx of B1 symmetry as a function of the electron density
for t ′

= 0, −0.1, −0.2, −0.3 and−0.4.

the Fermi surface of high-temperature cuprates. In particular, the band parameters for Bi2212
will be modified if we take into account the double layer structure [27, 28]. The band structure
reported by recent studies [28, 29] is well fitted using smallert ′ such as [30]3

t ′
∼ −0.2. (46)

The phase diagram in thene–t ′ plane is shown in figure7 for t ′ 6 0 and in figure8 for
t ′ > 0. For ne ∼ 0.5 and−t ′

∼ 0.4, there is a possibility that the p-wave SC is realized. For
example, the ruthenate superconducting material Sr2RuO4 [31] is sometimes modeled by the
one-band Hubbard model for theγ orbital with t ′

∼ −0.4 andne ' 0.67 after the electron–hole
transformation. The state of these parameters just corresponds to the point within the singlet
region near the boundary to p-wave regions in figure7. In order to obtain the stable p-wave
pairing for the parameters corresponding to Sr2RuO4, we may need to consider the multi-band
structure includingα andβ orbitals [32]. For t ′ > 0, we have a large d-wave region.

If t ′ is large and negative, i.e. if−t ′ > 0.5, we have the case with two Fermi surfaces;
one is a large Fermi surface (FS1) and the other is a small Fermi surface (FS2) inside of the
larger one. In this case, we must examine the coupled equation of two gap functionsz1

k andz2
k

corresponding to two Fermi surfaces:

2

N

∑
k′:FS1

χ11(k + k ′)z1
k′δ(ξk′)+

2

N

∑
k′:FS2

χ12(k + k ′)z2
k′ = −xz1

k, (47)

2

N

∑
k′:FS1

χ21(k + k ′)z1
k′δ(ξk′)+

2

N

∑
k′:FS2

χ22(k + k ′)z2
k′ = −xz2

k, (48)

3 We thank K Yamaji for stimulating discussions on this point.
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0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8

ne

–t ′

dx 2–y 2

dx 2–y 2

s

s (p) p

p
gdxy

d

Figure 7. Phase diagram in thene-t ′ plane fort ′ 6 0. s denotes the pairing state
with extended, s-wave symmetry. In the s-wave region for small|t ′

|, the s- and
p-wave states are sometimes nearly degenerate. Small regions near boundaries
are not shown.

dx 2–y 2

dx y
0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8

ne

t ′

s p

s
p

g

s

Figure 8. Phase diagram in thene-t ′ plane fort ′ > 0. s, g and d pairing states are
almost degenerate in the low carrier region for larget ′.
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Table 1. Irreducible representations ofC4v for the square lattice. One of basis
functions are also shown.

Representation Symmetry Bases

A1 s 1 cos(4θ)
A2 g xy(x2

− y2) sin(4θ)
B1 dx2−y2 cos(kx)−cos(ky) x2

− y2 cos(2θ)
B2 dxy sin(kx)sin(ky) xy sin(2θ)
E p sin(kx), sin(ky) x, y cos(θ), sin(θ )

t

t ′

Figure 9. Square lattice with anisotropic next-nearest transfert ′ (anisotropic
triangular lattice) which is the lattice of organic conductors.

where the symbol
∑

k′:FSi indicates the summation over the Fermi surface FSi andχ i j (k + k ′) is
the susceptibility fork on FSi andk ′ on FSj . The stable pairing symmetry is also obtained using
the electron–hole transformation fort ′ > 0 for which we have almost only one Fermi surface
even in the electron-doped case.

4.3. Square lattice with anisotropic t′

The Hubbard model on the square lattice with anisotropic next-nearest-neighbor transfer
t ′ (figure 9) has been investigated intensively as a model for organic conductors such as
BDET-TTF(ET) molecules [33]–[35]. The model for organic conductors is well known as the
Hubbard model with anisotropic next-nearest-neighbor transfert ′ (which is sometimes called
the anisotropic triangular lattice). The dispersion relation is

ξk = −2t (coskx + cosky)− 2t ′cos(kx + ky)−µ. (49)
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Figure 10. The exponentx on the square lattice with anisotropict ′
= −0.1.
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Figure 11. The exponentx on the square lattice with anisotropict ′
= −0.5.

This model has the two-fold rotational symmetry and we classify the irreducible representation
using theC2v point group (table2). The exponentx is in figures10 and11 as a function of the
electron densityne for t ′

= −0.1 andt ′
= −0.5, respectively. As apparent from the figures, the

d-wave state is stable over the whole region, which is consistent with the FLEX prediction [36].
The phase diagram in thene–t ′ plane is presented in figure12 for t ′ < 0 and in figure13 for
t ′ > 0. For this model, we conclude that the d-wave pairing is stable over the whole range of
parameters.
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dx y
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Figure 12. Phase diagram for the square lattice with anisotropict ′ < 0 (lattice of
organic conductors).
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Figure 13. Phase diagram for the square lattice with anisotropict ′ > 0 (lattice of
organic conductors).
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Table 2. Irreducible representations ofC2v for the square lattice with anisotropic
next-nearest-neighbor transfer.

Representation Symmetry Bases

A1 dx2−y2 x2, y2 cos(2θ)
A2 dxy xy sin(2θ)
B1 px x cos(θ )
B2 py y sin(θ )

4.4. Three-band d–p model

The formulation is also applied to the three-band model for the CuO2 plane [37]. We are
interested in the relation between the single-band Hubbard model and the three-band d–p model.
The pairing symmetry in the electron-doped cuprates is still controversial between the d-wave
and s-wave order parameter [38]–[40]. The Hamiltonian is

Hdp = εd

∑
iσ

d†
iσdiσ + εp

∑
iσ

(p†
i +x̂/2σ pi +x̂/2σ + p†

i +ŷ/2σ pi +ŷ/2σ )

+tdp

∑
iσ

[d†
iσ (pi +x̂/2σ + pi +ŷ/2σ − pi −x̂/2σ − pi −ŷ/2σ )+ h.c.]

+tpp

∑
iσ

[ p†
i +ŷ/2σ pi +x̂/2σ − p†

i +ŷ/2σ pi −x̂/2σ − p†
i −ŷ/2σ pi +x̂/2σ

+p†
i −ŷ/2σ pi −x̂/2σ + h.c.] + Ud

∑
i

d†
i ↑di ↑d†

i ↓di ↓. (50)

In this subsection, the energy is measured in units oftdp. The energy levels of the non-interacting
Hamiltonian is written as in a concise form [37]:

εαk =
2

√
3

tkcos

(
φk + 2πα

3

)
+
εd − εp

3
, (51)

for α = 0, 1 and 2, where

tk =

√
|ηx

k |
2 + |η

y
k |

2 + (ηp
k )

2 + (εd − εp)2/3, (52)

φk =
π

2
+ sign(sk)

(
π

2
− arctan

√
|1− 4t6

k/(27s2
k)|

)
, (53)

sk = (εd − εp)

(
(εd − εp)

2

27
−

t2
k

3
+ (ηp

k )
2

)
+ηp

k (η
x
kη

y∗

k +ηx∗

k η
y
k), (54)

whereηx
k = 2itdp sin(kx/2), η

y
k = 2itdp sin(ky/2), andηp

k = −4tpp sin(kx/2) sin(ky/2). εαk for α =

0,1,2 is the dispersion relation of the upper, lower and middle band, respectively. We examine
the doped case within the hole picture where the lowest band is occupied up to the Fermi energy
µ. The effective interaction is

Vkk ′ =
Ud

N
+

U 2
d

N
χdd(k + k ′), (55)
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Figure 14. x as a function of the carrier densityne for the square lattice d–p
model:ne> 0 for hole doping andne< 0 for electron doping.

where

χdd(q)=
1

N

∑
p

∑
αβ

wα
q+p

f αq+p − f βp

ε
β
p − εαq+p

wβ
p . (56)

Here f αk is the Fermi distribution function,

f αk = (eβ(ε
α
k −µ) + 1)−1. (57)

The weighting factor of d electronswα
k is defined as

wα
k =

(η
p
k − εαk )(η

p
k + εαk )

(ε
β

k − εαk )(ε
α
k − ε

γ

k )
, (58)

whereα, β andγ are different from each other. The gap equation is

1k = −

∑
k′

wkVdd
kk′wk′1k′

1

2Ek′

, (59)

wherewk = w1
k andEk =

√
ξ2

k +12
k for the lowest-band dispersionξk = ε1

k −µ.
The d-wave pairing is predominant over the whole range in the parameter space as is shown

in figure14. In particular, dx2−y2-wave pairing is stable near half-filling. Although the extended
s-wave pairing is possible in the narrow region near half filling in the Gutzwiller variational
Monte Carlo study [14], we have no chance of s-wave SC within the weak-coupling perturbation
theory. The phase diagram for the d–p model is shown in figure15.
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Figure 15. Phase diagram for the three-band d–p model in the plane of the carrier
numbern and tpp in the range of 06 tpp6 0.4. We setεp − εd = 2 andtdp = 1.
n = 0 indicates half filling, and the positive and negativen are for hole doping
and electron doping, respectively.

5. Summary

We have examined the phase diagram with respect to pairing symmetry on the basis of the 2D
Hubbard model. The weak coupling formulation is convenient to investigate the phase diagram
in detail. The results are almost consistent with the strong-coupling perturbation theory. We
summarize the results as follows.

1. The d-wave pairing is stable near half filling for the square lattice and the anisotropic square
lattice.

2. The gap function has a maximum at the van Hove singularity. As the second neighbor
transfer t ′ increases, the energy of the van Hove singularity decreases. For larget ′

=

−0.3 to ∼ −0.4, the optimal doping is more than 25% doping, i.e.ne< 0.75. For small
third neighbor transfert ′′ the situation remains the same. The large−t ′ is assigned to
several high-temperature cuprates to fit the angle resolved photoemission spectroscopy
(ARPES) data or the Fermi surface obtained by the band structure calculations. Most of
them, however, have optimum critical temperature in the range of 0.8< ne< 0.85. Thus,
the weak coupling analysis suggests that we must consider other electronic or lattice
interactions, or reexamine the band parameterst ′ and t ′′. Recent ARPES studies have
reported the band structure which is well fitted using rather smallert ′ such ast ′

∼ −0.2
by our analysis.

3. The predictions of the weak-coupling theory are almost consistent with the variational
Monte Carlo method. An effective interaction to induce SC is possibly the simpleχ(q)
with renormalization in the Gutzwiller variational theory.
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4. For the d–p model, the d-wave pairing is predominant in a wide range and the phase
diagram is almost symmetric between electron and hole dopings. Although the pairing
symmetry in the electron-doped cuprates is controversial, only the d-wave pairing is
possible near half-filling in the weak-coupling formulation.
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Appendix. Higher-order corrections

In the appendix, we examine higher-order corrections tox. If the third-order terms have an
effect to reduce the exponentx, the results obtained using the second-order perturbation have
a possibility to become unstable asU increases. It is not an easy task to derive an effective
Hamiltonian up to the third order of the interaction using the canonical transformation. The gap
equation up to the third order ofU has been obtained using the perturbative expansion for the
Hubbard model [41, 42]. The Green’s functions satisfy the Dyson equations:

G(k, iεn)=G0(k, iεn)+ G0(k, iεn)6n(k, iεn)G(k, iεn)+ G0(k, iεn)6a(k, iεn)F
∗(k, iεn), (A.1)

F(k, iεn)= G0(k, iεn)6n(k, iεn)F(k, iεn)− G0(k, iεn)6a(k, iεn)G(−k,−iεn), (A.2)

whereεn = (2n + 1)πkBT is the Matsubara frequency, and6n (6a) is the normal (anomalous)
self-energy.G0 is the free-electron Green’s function:G0(k, iεn)= (iεn − ξk)

−1. Since we are
interested in the third-order contributions,6n (of the order ofU 2) is neglected as follows:

G(k, iεn)= −
iεn + ξk

ε2
n + ξ2

k + |6a(k, iεn)|2
, (A.3)

F(k, iεn)= −
6a(k, iεn)

ε2
n + ξ2

k + |6a(k, iεn)|2
. (A.4)

The equation for the anomalous self-energy is

6a(k, iεn)=
1

βN

∑
k′,εn′

[U +U 2χ0(k + k ′, iεn + iεn′)+ 2U 3χ0(k + k ′, iεn + iεn′)2]F(k ′, iεn′)

+U 3 1

β2N2

∑
k′,εn′ ,p,ε`

G0(k ′, iεn′)[χ0(k + k ′, iεn + iεn′)

−φ0(k + k ′, iεn + iεn′)]G0(k + k ′ + p, iεn + iεn′ + iε`)F(p, iε`)

+U 3 1

β2N2

∑
k′,εn′ ,p,ε`

G0(k ′, iεn′)[χ0(−k + k ′,−iεn + iεn′)

−φ0(−k + k ′,−iεn + iεn′)]G0(−k + k ′
− p,−iεn + iεn′ − iε`)F(p, iε`), (A.5)
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Figure A1. The exponentx for the second-order (open symbols) and third-
order (solid symbols) perturbation inU . We setU/t = 0.1. The symbol Non-V
indicates the results obtained without vertex corrections.

for β = 1/kBT . The second and third terms originate from the vertex corrections.χ0(q, iωm)

andφ0(q, iωm) are defined as

χ0(q, iωm)= −
1

N

∑
k

f (ξk)− f (ξk+q)

iωm + ξk − ξk+q
, (A.6)

φ0(q, iωm)= −
1

N

∑
k

f (ξk)− f (−ξ−k+q)

iωm − ξk − ξ−k+q
, (A.7)

whereωm = 2πmkBT . We assume that6a is small and that we can neglect theε-dependence
since we consider the small-U limit. We set1k =6a(k, εn = 0), then the equation for1k is
derived. We show the results in figureA1 for U/t = 0.1 on the square lattice. The exponent
x slightly decreases due to the third-order corrections. There is a cancellation among the third-
order terms. As has been shown in the literature [41], the vertex corrections reduce the exponents
x andTc compared to those without vertex corrections.
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