Group 1

J symbol (dollar): \$

Monadic case:

Name: shape

Rank: _(infinite/unbounded) - applies to the entire array y
Definition (simple): $\$ \mathbf{y}$ is the shape of y (i.e., a list of the lengths of each axis of y).
Definition (precise): $\$ \mathbf{y}$ returns a numeric list, where the i th element of the list is the length of the i th axis of y , or if y is a scalar then $\$ \mathrm{y}$ is an empty list (scalars have no axes).

Please also include explanations for your answers to some of the following questions:
What is the shape of a scalar, vector, matrix, rank 3 array?
What is the shape of an empty list?
How do you find the rank of a scalar, vector, matrix, r-array using \$?

Dyadic case:

Name: reshape
Rank: 1 (left); (right) - applies to a vector on the left and the entire array on the right Definition (simple): $\mathbf{x} \$ \mathbf{y}$ reshapes array y into the shape specified by x .
Definition (precise): $\mathbf{x} \$ \mathbf{y}$ the shape of $\mathrm{x} \$ \mathrm{y}$ is x , siy where siy is the shape of an item of y ; $\mathrm{x} \$ \mathrm{y}$ gives a length error if y is empty and x , siy does not contain a zero.

Please also include explanations for your answers to some of the following questions:
Reshape a scalar, vector, matrix?
What happens when (an element of) x is 0 ?
What happens when x is empty?
What happens when y contains too many elements?
What happends when y contains too few elements?

