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Abstract

It is proposed that models based on processing relations capture the structure sensitivity of
higher cognitive processes while they can also be compared with more basic processes such as
associations. Relations have the following properties that are not shared by associations: there
is an explicit symbol for each relational instance, allowing it to be manipulated, higher-
order relations can be formed that have lower-order relations as arguments, given any N-1
components of an n-ary relation the remaining component can be retrieved (omni-directional
access), and representation of relational instances is a prerequisite to analogical mapping. A
model is proposed in which each component of a relational instance is represented by a vector,
and the binding is represented by computing the outer product of the vectors. This
architecture has been used to model analogy and human memory. It can also be used to model
structural effects on both similarity and category formation. Computational cost increases
exponentially with representational rank, defined as number of components that are bound
into a representation. Thus the model provides a natural explanation for processing capacity
limitations in humans and higher animals. Each rank corresponds to a class of psychological
processes, neural nets, and empirical criteria. The ranks and typical concepts which belong to
them, are: Rank 0, elemental association; Rank 1, content-specific representations and
configural associations; Rank 2, unary relations, class membership, variable-constant
bindings; Rank 3, binary relations, proportional analogies; Rank 4, ternary relations,
transitivity and hierarchical classification; Rank 5, quaternary relations, proportion and the
balance scale. Rank 6, quinary relations. Rank 0 can be performed by 2-layered nets, rank 1 by
3-layered nets, and ranks 2-6 by tensor products of the corresponding number of vectors. All
animals with nervous systems perform rank 0, vertebrates perform rank 1, other primates
perform rank 2-3, but ranks 4-6 are uniquely human. Rank also increases with age.
Implications of this model are developed for human reasoning and cognitive development.
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Relational processing in higher cognition: Implications for analogy, capacity and
cognitive development.

In this paper we will present an outline of a theory that provides a general metric for
cognitive complexity, and specifies properties of higher cognitive processes in a way
that enables them to be distinguished systematically from more basic cognitive
functions. The theory distinguishes the cognition of humans from other animals,
distinguishes levels of cognitive development, and accounts for processing loads in
cognitive tasks, within a common metric based on structural complexity. The levels of
complexity are related systematically both to neural net architectures and to empirical
criteria. Analogy has a central role in this theory, first because it is a core mechanism
in higher cognition, and second because lower cognitive processes cannot implement
analogy.

Although interest in analogy dates back to near the beginning of scientific psychology
(Piaget, 1950; Spearman, 1923) understanding of human analogical reasoning
accelerated dramatically in the 1980s (Gentner, 1983; Gick & Holyoak, 1983).
Analogy is a natural mechanism for human reasoning, but we will suggest that its
involvement in higher cognition might be even greater than previously realised. It has
proven difficult to produce effective models of human reasoning based on logical
inference rules. Such models do exist (Braine, 1978; Rips, 1989) but most theorists have
chosen to model reasoning on the basis of alternative psychological mechanisms such as
memory retrieval (Kahneman & Tversky, 1973) mental models (Johnson-Laird, 1983;
Johnson-Laird & Byrne, 1991) or pragmatic reasoning schemas (Cheng & Holyoak,
1985). Analogy can play a role in a human reasoning and is also entailed in some
significant ways with a number of other models. We can illustrate this using pragmatic
reasoning schemas.

Although it has become fashionable to interpret pragmatic reasoning schemas as being
specialised for deontic reasoning, they may be more widely applicable. Consistent with
this, we will use the definition of pragmatic reasoning schemas as structures of general
validity that are induced from ordinary life experience. One type of pragmatic
reasoning schema, permission, is known to improve performance on the Wason
Selection Task (Cheng & Holyoak, 1985). In this task participants are given four cards
containing p, ~p, q, ~q and asked which cards must be turned over to test the rule p ->
q. Analogy plays a central role here, because as Figure 1 shows, the elements and
relations presented in the WST task can be mapped into a permission or prediction
schema. This can be done by application of the principles that are incorporated in
contemporary computational models of analogy (Falkenhainer, Forbus, & Gentner,
1989; Gray, Halford, Wilson, & Phillips, 1997; Hummel & Holyoak, 1997; Mitchell &
Hofstadter, 1990) and no special mechanism is required.

Figure 1
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A possible reason why induction of a permission schema improves performance is that,
as Table 1 shows, permission is isomorphic to the conditional. Extending this argument,
a possible reason for the tendency to respond in terms of the biconditional p <-> q, is
that participants may otherwise interpret the rule as a prediction. As Table 1 shows,
prediction is isomorphic to the biconditional. This argument has been presented in
more detail elsewhere (Halford, 1993). It implies that the importance of permission is
not that it is deontic, but that it is isomorphic to implication. While we would not
suggest that this argument does justice to the extensive literature on either the Wason
Selection Task or pragmatic reasoning schemas, it does serve to illustrate that analogy
can serve as the basic mechanism even in tasks such as WST that might normally be
considered to entail logical reasoning.
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Table 1
The Structure of the Permission Schema

Permission Schema
(Symbolic)

Conditional Biconditional
(Prediction)

Permission schema Action →  Permission A →  P A P A →  P p q p ↔  q
Action permission allowed   A   P + 1 1 1 1 1 1
Action no

permission
not allowed   A  P - 1 0 0 1 0 0

No action permission allowed  A   P + 0 1 1 0 1 0
No action no

permission
allowed  A  P + 0 0 1 0 0 1



Analogy, relations and higher cognitive processes

Although there are big differences between contemporary computational models of
analogy, there is some degree of consensus about the core processes. In particular, it
seems clear that analogy is a matter of mapping relations or relational instances
between two representations. The core principles seem to be: the elements in one
structure, the base  are mapped uniquely to the elements of the other structure, the
target, and; if a predicate P in the base is mapped to the predicate P’ of the target, the
arguments of P are mapped to the arguments of P’. The relational instances may be
coded in the input (Gray et al., 1997; Hummel & Holyoak, 1997, Falkenhainer, 1989
#1136) or they may be constructed dynamically during the running of the model
(Mitchell & Hofstadter, 1990) but a mapping between relational instances seems to
constitute the essence of analogy in most models. It seems fair to say that an organism
that could not represent relations or relational instances could not perform analogy. If
we accept that analogy is one of the core processes in higher cognition, then ability to
process relations and relational instances is also likely to be important in higher
cognition. This is really an argument for the importance of structure in higher
cognition, because relations are the essence of structure (a structure is a set on which
one or more relations is defined).

Our next step is to consider those properties of higher cognitive processes on which
there seems to be reasonable consensus. One such property is representation of
structure, together with ability to operate on that structural representation. This is
generally seen as the essence of higher cognition. The central role of structure in higher
cognitive processes has been recognised historically (Humphrey, 1951) and by a
number of writers in this century, including Gestaltists (Wertheimer, 1945), Piagetians
(Piaget, 1950), information processing theorists (Anderson, 1983; Hunt, 1962; Miller,
Galanter, & Pribram, 1960; Newell, 1990) and linguists (Chomsky, 1980; Fodor, 1975).
One role of analogy is to form mappings between structures, so on these grounds also
analogy might be considered a core process in higher cognition.

There is also reasonable consensus that higher cognitive processes entail variables,
which are essential to the generality and content-independence that characterise higher
cognitive processes.. An entire generation of cognitive models are based on rules, a
distinguishing characteristic of which is that they relate variables. Production rules are
perhaps the most common example (Anderson, 1983; Newell, 1990) and production
systems normally have provision for variable binding. Smith, Langston and Nisbett
(1992) make a case for logical inference rules being used in natural reasoning. These
rules relate variables. For example, modus ponens is a logical inference rule of the
form if p then q, p therefore q, where p and q are variables. Pragmatic reasoning
schemas (Cheng & Holyoak, 1985) are more content-specific than abstract logical
inference rules, but still relate variables. Thus the permission schema can be expressed
as: to perform act a, you must have permission p.
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Analogies can simulate variables by putting instances of a relation in
correspondence with each other. Consider for example the following relational
instances;

larger(whale,fish),
larger(horse,dog),
larger(5,3).

Each relational instance has two roles or slots, one filled by the larger entity and one
by the smaller entity in a given pair. Because each role can be instantiated in a variety
of ways, it effectively functions as a variable, but only if the arguments are in
correspondence. It would not be true if the relational instances were cross-mapped, as
in this case;

larger(whale,fish)
larger(dog,horse)

Models of analogy include mechanisms for ensuring structural correspondence.
Indeed this is a core process in analogy models. Therefore they provide a mechanism
that is capable of at least limited processing of variables.

Higher cognitive processes are widely regarded as incorporating symbols, even
though the issue has become complicated by the debate between proponents of
symbolic and connectionist models. Newell argued that symbols and a system that
operates on them are necessary for intelligent action (see Newell, 1990, p. 170). Fodor
and Pylyshyn (1988) argue that symbols are vital to cognition. Smolensky (1988), a
connectionist modeller, does not deny the importance of symbols per se, but seeks to
explain them at the subsymbolic level, rather than accepting them as a primary datum.
With this proviso, there does seem to be widespread acceptance of the importance of
symbols in higher cognitive processes.

Analogical reasoning mechanisms operate on relations that are symbolic in the
sense that they include a label that specifies the link between the entities that are
related. Thus in the instances considered above, the entities in the pairs (whale,fish)
and (horse,dog) are linked by the relation symbol “larger”. Mathematically, an n-ary
relation is a subset of the cartesian product of n sets, but the subset is typically
specified by a label; for example, >{. . (3,2), . . , (5,1), . . ,}.  The existence of a label and
an ordering over relational elements (i.e., R(a,b) is not the same as R(b,a)) are
important characteristics that distinguishes relations from other psychological
structures such as associations, as we will argue later. We will briefly consider some
further properties of higher cognition.

Compositionality has come to be accepted as a property of higher cognitive
processes since the work of Fodor and Pylyshyn (1988). In essence it means that the



components of a cognitive representation retain their identity when they are composed
into more complex representations, and both the components and the composites are
semantically evaluable. As we will see, there are cognitive processes such as configural
association, for which these properties do not hold.

Systematicity is another property that has been accepted as important in higher
cognition since Fodor & Pylyshyn (1988) although it too has been the subject of some
controversy (Niklasson & van Gelder, 1994; Van Gelder & Niklasson, 1994).In essence,
it implies generalisation to all logically or structurally equivalent situations, although it
is generally accepted that content can also influence performance, independent of
structure, to some extent. Analogy clearly has the potential to be a core mechanism in
achieving systematicity.

Categories are another property of higher cognition. We will not consider this
complex topic here, except to say that categories must entail a label that is independent
of content.

Modifiability on line is a property of higher cognitive processes that has been
highlighted by the work of Clark and Karmiloff-Smith (1993). Higher cognitive
processes should also be productive or generative, in the sense that they can produce or
comprehend new sentences, can generate new representations, and make new
inferences. This is true of both human and nonhuman primates, because apes show
some inventiveness (Kohler, 1957) and ability to draw inferences (Tomasello & Call,
1997). Furthermore, though we will not pursue the question here, the approach we
have adopted can model some limited forms of creativity (Halford, Wiles, Humphreys,
& Wilson, 1993).

We do not include conscious awareness and language as criterial properties of
higher cognition. Awareness has proven to be a difficult criterion to use, as the implicit
learning literature has shown (Neal & Hesketh, 1997). As we wish to include some
nonlinguistic, nonhuman species as having at least some forms of higher cognition,
then  language cannot be included either. We see conscious awareness and language
as correlated rather than criterial properties of higher cognition.

We want to suggest that relational processing can capture the properties of
higher cognition. Relations are preferable to rules, which have been used to model higher
cognitive processes and to distinguish them from basic processes that have been
characterised as associative (Sloman, 1996) or instance-based (Smith et al., 1992). Some
cognitive representations such as loves(John,Mary) or contains(cup,drink) are not rules, but
can be expressed as relations. The concept of n-ary relation is general enough to express any
rule, it has the advantage of a precise mathematical definition, and effects of relational
complexity on processing load are known -a{Blank or a = BBS, Which one b??}(Halford et
al., in press). Relations are increasingly being utilised as the basis for models of higher
cognitive processes. In addition to analogy, the importance of relational processing has been
recognised in similarity (Markman & Gentner, 1993), induction (Lassaline, 1996), and
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categorisation (Medin, 1989). Mental model theory, which can now account for a wide
range of phenomena in human reasoning (Gentner & Stevens, 1983; Halford, 1993;
Johnson-Laird, 1983; Polk & Newell, 1995), is based on representation of relations between
entities. Phillips, Halford, and Wilson (1995) have argued that the associative-relational
distinction can subsume the implicit-explicit distinction of Clark and Karmiloff-Smith
(1993). Propositions, which are the core of some models of higher cognitive processes, can
be treated as relational instances (Halford, Wilson, & Phillips, in press), section 2.2.2). For
example the proposition loves(Joe,Jenny) is a relational instance.

Another big advantage of relations is that they can be compared directly with
associations.  The importance of this is that association has been accepted as a fundamental
process in psychology virtually throughout the history of the discipline, and even many
contemporary models incorporate it in one form or another.  Therefore it is a disadvantage
for associative and cognitive models to exist in conceptual worlds that do not communicate.
We will suggest that basic processes, such as association, and higher cognitive process,
which we identify with relations, can be incorporated into an overarching theory that
integrates psychological processes at all levels. First however we will consider the properties
of associative and relational knowledge in more detail.

Association

By contrast with higher cognition, association is not seen as inherently structural (Fodor
& Pylyshyn, 1988; Humphrey, 1951).  It differs from relational knowledge in a number of
critical ways, one of which is that it is not symbolic. To illustrate, let us consider two
commonplace relations, between cup and drink and between cup and saucer: i.e.
contains(cup,drink) and placed-on(cup,saucer). The relation-symbols (or predicates)
contains and placed-on  specify the type of link represented, containment or superposition.
Contrast this with associations; cup is associated with drink, and cup is associated with
saucer.  The associations per se do not specify the relations between cup and drink, or
between cup and saucer, nor do these associations per se capture the fact that the relations
are quite different. It is easy to overlook this because we know that a cup contains a drink
and that a cup is placed on a saucer, so we tend to see this information in the associative link.
The associative link is causal but does not capture the structure (Fodor & Pylyshyn, 1988).
Associative links are unlabelled and all of the same kind, differing only in strength
(Humphrey, 1951). The need for labelled links has been recognised however in models of
higher cognitive structures such as propositional networks, in which links between nodes
carry labels such as “agent”, “object”, “location”. An explicit symbol for a link therefore
appears to be a property that distinguishes relational from associative processes. Our aim
now is to define the properties of relational processes so that they capture the essence of
higher cognition and can be compared directly with association.

Properties of relational processes

A relation that relates n entities, or n-ary relation is a subset of the cartesian product of n
sets: i.e. R(a1,a2,…,an) is a subset of S1× S2×… ×Sn. A relation is identified by the relation
symbol, R, and the entities by argument symbols, a1,a2,…,an. For example the relation
“larger” identifies a specific subset of a cartesian product, that subset in which the first



entity is always larger than the second; i.e. a1 > a2.  There must be a binding between
entities and arguments which preserves the truth of the relation; thus contains(cup,drink) is
true but contains(drink,cup) is not.

Symbolisation, or an explicit label specifying the link, is a property of relations, but not of
associations.

Higher-order relations have lower-order relations as arguments; e.g. in cause(shout-
at(Tom,John), hit(John,Tom)) cause is a higher-order relation, with shout-at(Tom,John) and
hit(John,Tom) as arguments.

Systematicity means that relations imply other relations, and can be captured by higher-
order relations; e.g. >(a,b) implies <(b,a), can be written as the higher-order relation
implies(>(a,b),<(b,a)).

Association does not share these properties. Associations can be chained, so that the
output of one association is the input to another:   E1 → E2 → E3 . . . . .  → En, and may
converge, so that E1 and E2  elicit E3, or diverge, so that E1 elicits E2 and E3. However
associations are not identified by a symbol, and the associative link per se cannot be an
argument to another association. Therefore the recursive, hierarchical structures that can be
formed using higher-order relations do not appear to be possible with associations.

Compositionality means that the components of the relation, symbol and arguments, retain
their identity when bound into a structure; e.g. in larger(whale,dolphin), the components
“larger”, “whale” and “dolphin” retain their identity when bound into the relation. This is
not inherent in association, as we will see when we consider configural associations.

Modifiability by strategic processes, without information input, is possible for relations,
whereas associations are modified incrementally on the basis of experience.

Omni-directional access means that, given all but one of the components of a relational
instance, we can access (i.e. retrieve) the remaining component. For example, given the
relational instance mother-of(woman,child), and given mother-of(woman,?) we can access
“child”, whereas given mother-of(?,child) we can access “woman”, and
given ?(woman,child) we can access “mother-of”. Although backward association may be
possible, omni-directional access does not appear to be inherent in association.

Complexity can be defined by the “arity” or number of arguments of a relation (Halford et
al., 1994; Halford et al., in press). Each argument corresponds to a source of variation or
dimension, so an n-nary relation is a set of points in n-dimensional space. Dimensionality is
related to processing load. Capacity is limited by the number of dimensions (or number of
interacting variables) that can be processed in parallel. Data in the literature, and from our
own laboratory, indicates quaternary relations (Rank 5) are the most complex that can be
processed in parallel by most humans. Concepts too complex to be processed in parallel are
handled by segmentation (decomposition into smaller segments that can be processed
serially) and conceptual chunking  (recoding representations into lower rank, but at the cost
of making some relations inaccessible). For example, velocity = distance/time, is a ternary
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relation, and is Rank 4, but can be recoded to rank 2, a binding between a variable and a
constant (Halford et al., in press), Section 3.4.1). Difficulty can vary because of factors other
than capacity, including declarative and procedural knowledge and amount of iteration (e.g.
constructing a 5-term series from premises a>b, b>c, c>d, d>e requires the integration
process to be iterated 3 times; a>b, b>c yields a,b,c, then this is integrated with c>d to yield
a,b,c,d, etc.).

In the next section we argue that each level of cognitive functioning can be assigned to an
equivalence class of equal structural complexity, and that the classes can be ordered
according to their complexity. They are ordered according to representational rank, defined
as the number of components in cognitive representations, given that the components retain
their identity when bound into more complex representations. An important feature of this
idea is that the ranks correspond across the three domains of psychological process, neural
net structure, and empirical observation. Each rank corresponds to a class of neural net
architectures and can be identified by specific empirical criteria. It is an extension of a
theory that defines processing capacity in terms of relational complexity (Halford et al., in
press).

Representational rank

Representational rank corresponds to the number of components of a representation, given
that the components retain their identity when bound in a more complex representation. The
metric is shown in Figure 2, together with corresponding psychological processes and neural
net architectures. The metric combines relational complexity with two nonstructural levels,
elemental and configural association, enabling the basic properties of all levels of cognition
to be defined within a single system. Rank = n+1 where n is the dimensionality or arity of a
relation. We will now give an overview of the ranks.

Figure 2

Rank 0 corresponds to Elemental associations, which comprise links between pairs of
entities: E1 → E2

They are Rank 0 because there is no representation other than input and output, and they can
be implemented by 2-layered nets. In principle Rank 0 can be assessed by any associative
learning test, and because ability to perform at this level is not in question for vertebrates, or
even for most invertebrates, no special assessment is intended.
Rank 1 corresponds to Configural associations, in which one cue is modified by another.
They have the form: E1,E2 → E3 An example is conditional discrimination, shown in Table 2.
This cannot be acquired through elemental association, because of associative interference
(each element, colour or shape, is equally associated with each outcome).  They can be
learned by fusing or "chunking" elements into a configuration such as “black/triangle”. This
avoids associative interference but at the cost that the components lose their
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Figure 2. Ranks 0-6, with schematic neural nets. Input and output layers are omitted for
Ranks 2-6.

identity, (e.g. “triangle” is not the same in “black/triangle” as in “white/triangle”) so the
structure of the task is not represented.  Thus the representation is holistic and nonstructural.
Configural learning cannot be implemented by 2-layered nets (Minsky & Papert, 1969; note
that conditional discrimination is isomorphic to exclusive-OR). They can be implemented
with three-layered nets, by using units in the hidden layer to represent configurations of
features such as "black&triangle " (Schmajuk & DiCarlo, 1992).

Ranks 2-6 are structural, and complexity increases with rank. We will consider the main
properties of each rank.
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Rank 2 corresponds to unary relations which are a binding between a relation symbol and an
argument symbol. An example would be the proposition happy(John). Indicators of Rank 2
include symbolic representation of categories and understanding word reference.

Rank 3 corresponds to binary relations, which represent common states and actions in the
world, such as larger(whale,dolphin), or loves(Joe,Jenny).

Rank 4 corresponds to Ternary relations such as “love-triangle”, which is a relation between
three people. They can be interpreted as bivariate functions, and binary operations. For
example, the binary operation of arithmetic addition consists of the set of ordered triples of
+{. . , (3,2,5), . . , (5,3,8), . .  , . .  } and is a ternary relation. Many cognitive tasks that
cause difficulty for young children, including transitivity and class inclusion, are ternary
relations (Halford, 1993; Halford et al., in press).

Rank 5 corresponds to quaternary relations. Proportion, a/b = c/d, is a quaternary relation.
Comparison of moments on the balance scale (Siegler, 1981) is another example.

Rank 6 corresponds to quinary relations. Some complex reasoning tasks, such as categorical
syllogisms and meta logical tasks, require Rank 6.

Table 2. Conditional discrimination, with isomorphic transfer task.

Original task Transfer task
black triangle → R+ green circle → R+
 black square → R- blue cross → ?
white triangle → R- green cross → ?
white square → R+ blue circle → ?

Neural net modeling of representational ranks

Neural nets can be rank-ordered according to the structural complexity of their internal
representations (excluding input and output layers), and this rank ordering corresponds both
to classes of psychological processes and to empirical criteria. Two-layered nets have no
internal representation. Three-layered nets contain a representation that is computed from
the input. While allowing that there are many variations, and potential for development, the
representation in a typical three-layered net is “holistic” and is not structured in a way that
meets the criteria for representation of relations. Three-layered nets can represent content-
specific information and can form prototypes (Quinn & Johnson, 1997) but they lack
compositionality and systematicity (Fodor & Pylyshyn, 1988; Phillips, 1994). They can only
mediate transfer based on similar content (Marcus, submitted) and not between isomorphic
structures with different contents (Phillips & Halford, 1997).

Nets that model higher cognitive processes should implement the properties of
relational processes defined above. There are currently a number of competing models that
can meet these criteria, discussed by (Halford et al., in press).  In the model we will present



here, each relational instance is represented as a unique n-tuple, by representing bindings
between relation symbol and arguments as outer products. Thus to represent
loves(Joe,Jenny), each component, loves, Joe and Jenny is represented as a vector, and the
binding is represented as the outer product of these vectors. The outer product corresponds
to the binding units, shown for Rank 2 in Figure 1 but omitted for simplicity at higher ranks.
Other instances of loves are represented in the same way, and can be summed to form a
tensor product which represents the relation loves (Halford et al., in press, section 4.1.1.2).
Thus loves(Joe,Jenny) and loves(Tom,Wendy) are represented as:

Vloves⊗ VJoe⊗ VJenny  + Vloves⊗ VTom⊗ VWendy

Neural net representations of relations from unary to quinary are shown schematically
in the rightmost column of Figure 2. An n-ary relation is represented by the rank-n tensor,
VR ⊗  Va1 ⊗,  . . , ⊗  Van. A unary relation such as happy(John) is represented by the outer
product of vectors representing “happy” and “John”: Vhappy⊗ VJohn. In Figure 2 the two
vectors are bound by a set of connections to a matrix of binding units. Rank 2 is the lowest
structural level, but the transition from Rank 1 to Rank 2 can be envisaged by imagining the
hidden layer at Rank 1 (Figure 2) being divided into two components which are then
connected so as to form a matrix as shown for Rank 2. More complex relations are
represented by tensor products of higher rank. A binary relation is represented by VR ⊗  Va1

⊗ Va2, and so on. There is one component representing the symbol and one for each
argument, so the representation of an n-ary relation has n+1 components. The components
retain their identity, and the representations have the compositionality property. The model
provides a natural explanation for empirical observations that cognitive processing load
increases with relational complexity (Halford et al., in press, Section 5.). Representation of a
relation of rank r with m units in each vector, requires mr bindings units. The model
implements all properties of relational knowledge (Halford et al., in press, Section 4.2) and
is more efficient than models based on role-filler bindings for data bases in which relational
instances are superimposed in the sense that role-filler bindings require r units per
relational instance, where symbol-argument bindings require 1 unit per instance
(Halford et al., in press, sections 2.2.1.2 and 4.1.3).

Associations, relations and analogy

It follows from this analysis that higher cognitive processes differ from associative
processes in that the former entail representation and processing of structure.  A task is
cognitive to the extent that it entails a representation and processing of the structure of the
task or situation. The representation should have the properties identified above.
Representation of structure (relations) is essential to analogy, and this principle can be used
to devise what is probably the most objective and straightforward test for cognitive
processes.

The essential idea is that if the structure of a task is learned, it can be transferred to
isomorphs using analogical mapping, and unknown items in the new task can be predicted.
This principle has been applied successfully with tasks based on mathematical groups
(Halford, Bain, Maybery, & Andrews, in press) but can be easily illustrated with the
conditional discrimination task summarised in Table 2. Suppose someone has learned the
original task. While this can be done by configural association, as noted above, configural
discrimination does not lead to a representation of structure because the elements lose their
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identity. However the task can also be learned by acquiring a representation of structure.
The two modes of learning can be distinguished because only representation of structure
enables transfer to isomorphs with prediction of new items. Notice that, in the transfer task
in Table 2, once the first item is known and is mapped into the structure, the remaining three
items can be easily predicted, irrespective of order of presentation.

Prediction of unknown items in an isomorphic task in this way requires analogical mapping,
which in turn requires representation of structure. It is not possible if the task has been
learned by configural association. Therefore transfer between isomorphs, with prediction of
unseen items is a clearcut and objective measure of structural processing. It is a good way to
assess higher cognitive processes. Notice too that it does not impose any extraneous task
demands. The isomorphic task is assessed by the same procedure as the original task, and
structure processing can be assessed by the number of correct items on the first trial of a new
problem. It is not necessary to ask participants to describe the structure or to define rules,
both of which impose an additional demand for articulation. We have been able to use this
methodology successfully (Halford, 1980; Halford, Bain,  et al., in press; Halford &
Wilson, 1980) and have found that was related in a systematic way to other criteria.

Categories, structure and similarity

Although natural categories can be based on prototypes, prototypes do not represent
structure (Medin, 1989). This problem can be overcome by forming prototypes based on
relational instances. Relational instances such as Lives-in (chair, living room), Lives-in
(vase, living room), Lives-in(couch, living room) can be represented as outer products of
vectors and superimposed on a tensor product. The superimposed representation
automatically averages features of the relational instances and corresponds to a prototype of
living room furniture, but it also incorporates structure in the form of propositional
information.

Similarity depends on more than common features, and is influenced by structure. For
example grey hair is rated more similar to white hair than to black hair, whereas grey clouds
are more similar to black clouds than to white clouds, because of our intuitive theories of
ageing and weather respectively (Medin, 1989). Our model can handle similarity based both
on elements and structure.

Element similarity can be assessed by computing the dot (inner) products of vectors
representing two elements. If “desk”, “chair” and “vase” were coded by vectors representing
sets of features, the dot products of vectors representing “desk” and “chair” would be higher
than dot products of vectors representing “desk” and “vase”, reflecting greater similarity in
the former pair.

Structural similarity can be handled by computing dot products of tensor products. The
propositions feeds(soup-kitchen,woman) and feeds(woman,squirrel) have low similarity
because “woman” occupies different roles. If we represent the propositions respectively as:
vfeeds⊗ vsoup-kitchen⊗ vwoman and vfeeds⊗ vwoman⊗ vsquirrel , the dot products of these tensors will have a
low value (expected value is zero with orthonormal vectors, low with sparse random
vectors). This reflects the relational context, because woman is bound to soup-kitchen in one



case and squirrel in the other. However cases such as feeds(man,woman) and
feeds(woman,man) are distinguished solely by the roles occupied by entities “woman” and
“man”. We represent these in analogous fashion as vfeeds⊗ vman⊗ vwoman and vfeeds⊗ vwoman⊗ vman.
Dot products of these vectors will again be low, reflecting “man” and “woman” being in
different roles. This occurs because dot products are computed so as to respect structural
alignment (the elements of vman are multiplied by the elements of vwoman, and vice-verse,
giving the dot product an expected value of zero with orthonormal vectors, or a low value
with sparse random vectors). This illustrates the sensitivity of the model to structural
alignment.

 Relational Context Similarity

The similarity of two items can be based on the degree to which they are used in the same
relational context.  For example, in the relational domain constructed around the items
chair, desk and vase detailed above, chair and desk would achieve a high similarity as they
both occur frequently in the same relational context (ie. Made_of(chair, wood) and
Made_of(desk, wood), Stands_on(chair, floor) and Stands_on(desk, floor)). Chair and vase,
however would achieve a lower similarity as they occur less frequently in the same
relational context. Furthermore “woman” in feeds(soup-kitchen,woman) is dissimilar to
“woman” in feeds(woman,squirrel) because the relational contexts are different, “soup-
kitchen” in one case and “squirrel” in the other.

The relational context similarity of two items, a  and b is computed as a normalised dot
product of the rank 2 tensors retrieved from computing the dot product of each item’s vector
against an appropriate dimension of the rank 3 tensor storing the relations1. This can be
applied to the hair-colour and cloud-colour examples above. We will represent a naive
theory of ageing by propositions such as old-people-have(hair,grey), old-people-
have(hair,white), young-people-have(hair,black), young-people-have(hair,brown) etc. These
propositions can be superimposed on a tensor product representation. If we query this
representation with “grey” we retrieve “old-people-have(hair,_)”. If we query it with
“white” we retrieve “old-people-have(hair,_)”. The dot products of these tensors will be
high, reflecting high similarity. However if we query the representation with “black” we
retrieve “young-people-have(hair,_) and the dot product of this with “old-people-
have(hair,_)” is low.

By contrast, our knowledge of weather is represented by propositions
threatening(clouds,grey), threatening(clouds,black), nonthreatening(clouds,white) etc.
Querying with “grey” and “black” yields threatening(clouds,_) in both cases, with high dot
products representing high similarity. Querying with “white” yields
nonthreatening(clouds,_) which is dissimilar to threatening(clouds,_). Thus the model
represents naive theories as sets of propositions coded in a tensor product. Relational context,
as defined above, accounts for the effect of naive theories on similarity.

                                                
1 This is illustrated with the rank 3 tensor as only binary relations are being stored. A higher rank tensor
would allow ternary, quaternary, etc. relations to be stored.
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Representational ranks are really points on a continuum, and limits on processing capacity
are soft, so performance declines gracefully as the rank demanded by a task increases. It is
proposed to model performances of intermediate rank, using the graceful degradation and
graceful saturation properties of tensor products (Wilson & Halford, 1994).

Empirical indicators of ranks

Each rank has a unique set of empirical indicators. We will consider the main indicators for
each rank.

Rank 0 is indicated by elemental association. Since this is evidently universal to all animals
with nervous systems, no special predictions are made.

Rank 1 is best assessed by conditional discrimination. It is indicated in general by tasks that
require content-specific representations. Representation of vanished objects and prototype
formation both entail this requirement, and are performed by infants 3-6 months
(Baillargeon, 1987). Consequently the theory predicts that with suitable testing and training
techniques,  infants of this age can acquire conditional discrimination. The significance of
this can be seen from the fact that in the past children under five years have had great
difficulty with this task (Rudy, 1991). Two further predictions follow. The first is that
transfer to isomorphs of conditional discrimination will not be possible until a median age of
five years.  The second is that formation acquisition of  conditional discrimination will be
related to representation of vanished objects as assessed by Baillargeon (1987) and to
prototype formation.

Rank 2 entails a relation-symbol that is independent of the entity to which it is bound, and is
the simplest symbolic representation. Tasks that require this level of structure include:

Explicit category membership, such as dog(Rover), where the category label dog is
represented independently of the entity to which it is bound, Rover.  As with all relations,
the argument slot functions as a variable, and can be instantiated in a variety of ways such as
dog(Fido), dog(Penny) etc. Representation of explicit categories, in which there is a binding
between a category symbol and instances of the category, seems to occur at approximately
one year (Gershkoff-Stowe, Thal, Smith, & Namy, 1997; Sugarman, 1982).

Inferences about numerosity based on category membership Xu and Carey (1996).

Word comprehension, or understanding that words function as symbols for their referents.

Representing the binding between an object and its location, as assessed in the A-not B task
(Halford, 1993, pp. 51-56; Wellman, Cross, & Bartsch, 1986).

Match-to-sample requires choosing an object that matches the sample (e.g. if shown an
apple as sample, required to choose between an apple and a hammer). This task has been
analysed by Premack (1983) and Halford et al. (in press) and is an analogy based on a unary
relation. Transfer to an isomorphic task (e.g. the sample is a hammer, and the choices are a



banana and a hammer) demonstrates the principle is recognised independently of specific
content.

This theory appears to be unique in predicting a correspondence between all five tasks.

Rank 3 entails symbolic processes based on binary relations, which develop at a median age
of two years (Halford, 1993). Tasks that can be used to test this level of performance
include:

Binary relational match-to-sample requires choice of a pair of objects that has the same
relation as the sample (e.g. if the sample is XX, they should choose AA rather than BC. If
the sample is XY, they should choose BC rather than AA). This implies a form of analogical
reasoning based on binary relations, a Rank 3 representation (Gentner & Stevens, 1983;
Halford et al., in press; Holyoak & Thagard, 1995).

Sorting into two categories can be assessed using the technique of Gershkoff-Stowe et al.
(1997.  Balance scale - weight and distance rules requires children to decide whether a
beam should balance, or which side will go down, based on either weight or distance, with
the other factor held constant [Halford, 1995 #2927). This requires binary relations (Halford
et al., in press, Section 6.3.1).

Rank 4 entails ternary relations. This level of structure is required for transitive inference,
hierarchical classification, class inclusion, hypothesis testing, cardinality and comprehension
of sentences (Andrews, 1996; Halford, 1993; Halford et al., in press).  Other tests that
require this level of structure include:

Transfer between isomorphs of conditional discrimination tasks with prediction of unseen
items. Conditional discrimination has a well defined structure that can be assessed by
transfer to isomorphs. As pointed out above, if the relations in the original task in Table 1
are learned, and given any one item of the isomorphic transfer task, the remaining three
items can be predicted, irrespective of order of presentation. This is a case of analogical
reasoning (Gentner & Stevens, 1983; Holyoak & Thagard, 1995) in which the structure of
the original task (the base or source) is mapped into the transfer task (target). The structure
of conditional discrimination is basically a ternary relation, in that it consists of ordered 3-
tuples (e.g. colour,shape,response). Therefore, while original learning can be used to infer
nothing more complex than configural association (Rank 1), prediction of unseen items of a
new isomorphic transfer task reflects processing ternary relations (Rank 4). The same
paradigm can be used to assess two different levels of cognitive process, with procedure
held constant and without additional demands such as articulation. Infants should be able to
learn the original discrimination but should not be able to predict unseen items on the
isomorphic transfer task. Five year olds should be able to do both. These predictions are
more optimistic than previous findings that conditional discrimination is not learned before
age 5 (Gollin, 1966; Rudy, 1991).

The tendency to prefer reversal over nonreversal shifts (Kendler, 1995). Ability to make
efficient reversal shifts in multidimensional discrimination problems was first analysed in
detail by Kendler and Kendler (1962) and there is a long history of research (see review by
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Kendler, 1995, and commentary by Halford, 1997). Reversal shifts depend on representation
of the relevant dimension, which requires processing a ternary relation, because a dimension
is a set on which an asymmetric, transitive relation is defined. Representation of a dimension
requires induction of a relational schema (Halford, Bain,  et al., in press). Consequently this
longstanding enigma can be explained as a form of relational processing. Many predictions
follow from this, but the one on which we will focus here is that preference of reversal shifts
should correspond to other ternary relations tasks.

Ranks 5 and 6 entail quaternary and quinary relations respectively. Rank 5 is typically
understood at age 11 (Halford, 1993), but there is virtually no useable data on Rank 6,
though it is believed to occur only in a minority of adults. However we will consider two
tasks that appear to require this level of processing, but have not been analysed in this way
before.

Relational processes in reasoning

In this section we will consider how relational processes could be involved in two reasoning
tasks, knights and knaves and categorical syllogisms.

Knights and knaves problems are based on the following scenario. Suppose there is an island
where there are just two sorts of inhabitants - knights who always tell the truth and knaves
who always lie. An example problem is:  A says “I am a knave and B is a knave”. B says,
“A is a knave”. What is the status of A and B: Knight, knave, or impossible to tell? (Rips,
1989, pp. 85-86). The solution entails two or more steps, but we focus on the step that
requires the highest relational complexity: If we assume A is a knight, then A’s statement
that A and B are knaves must be true, but A says A is a knave, which is a contradiction.
Therefore A must be a knave. Symbolically:

kt(A) and says(A,(kv(A) and kv(B))) → kv(A).

Using the type of analysis developed by Halford et al. (in press-a) there are five variables in
this expression, corresponding to the five underlined arguments. Therefore this inference is
quinary. The second step is to reason that if it is false that A and B are knaves, and that A is a
knave, then B must be a knight: false(kv(A) and kv(B)) and kv(A) → kt(B). This step is
quaternary, so task complexity, defined by the most complex step, is quinary.

Categorical syllogism tasks have been more extensively investigated, but we will focus on
the following example tasks:

All A are B, all B are C. This would be represented by Johnson-Laird & Byrne  (1991,
Table 6.1) as the mental model: [[a]b]c. This mental model can be expressed as a relation
between the following classes of entities (where ¬A means “not A”): ABC, ¬ABC, ¬A¬BC.
We can think of this as follows: There is one class of entities with properties A,B and C,
another class with properties not-A, B and C, and another class with properties not -A, not -B
and C. The mental model that relates these three classes has the complexity of a ternary
relation. Now consider the syllogism:



Some A are B, No B are C. The premises express a relation between the following classes of
entities: A¬BC, A¬B¬C, AB¬C, ¬A¬BC, ¬AB¬C (c.f. J-L&B, 1991, Table 6.1). The problem
relates 5 classes of entities, so it has the complexity of a quinary relation. J-L&B define
complexity in terms of the number of mental models required for a problem. The first
problem above requires one model and is easy (88% correct) while the second requires 3
models and is difficult (38% correct). However more difficult problems tend to entail more
complex relations. Of the 27 syllogisms with valid conclusions, there are 7 with ternary
relations that entail 1 mental model, and 17 with relations more complex than ternary that
entail more than 1 mental model (contingency coefficient C = .61). Therefore the relational
complexity metric has potential to provide an alternative explanation to number of mental
models for difficulty of categorical syllogisms.

Conclusion

We wish to propose that the representation and processing of structure, including analogical
mapping, are core processes in higher cognition. They can be used as criteria for
distinguishing tasks that demand higher cognitive processes from those that can be
performed by more basic processes. Ability to form analogies can also be used as criterion
for neural net models of higher cognitive processes.  The relational complexity metric
permits levels of structure to be distinguished.

Cognitive tasks can be grouped into equivalence classes of equal structural complexity, and
the classes can be ordered according to representational rank. Ranks 0 and 1 are associative,
do not entail explicit representation of structure, and do not enable analogical mappings to
be made. Ranks 2-6 entail explicit representation of relations, from unary to quinary. In
general they have the properties normally attributed to higher cognitive processes. There is a
correspondence between three domains: level of structural complexity, neural net
architecture, and observable properties of performance.
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