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Abstract 

It is argued that working memory limitations are best defined in terms of the complexity 

of relations that can be processed in parallel. Relational complexity is related to processing 

loads in problem solving, and discriminates between higher animal species, as well as between 

children of different ages. Complexity is defined by the number of dimensions, or sources of 

variation, that are related. A unary relation has one argument and one source of variation, 

because its argument can be instantiated in only one way at a time. A binary relation has two 

arguments, and two sources of variation, because two argument instantiations are possible at 

once. Similarly, a ternary relation is three dimensional, a quaternary relation is four 

dimensional, and so on. Dimensionality is related to number of chunks, because both attributes 

on dimensions and chunks are independent units of information of arbitrary size. Empirical 

studies of working memory limitations indicate a soft limit which corresponds to processing 

one quaternary relation in parallel. More complex concepts are processed by segmentation or 

conceptual chunking. Segmentation entails breaking tasks into components which do not 

exceed processing capacity, and which are processed serially. Conceptual chunking entails 

"collapsing" representations to reduce their dimensionality and consequently their processing 

load, but at the cost of making some relational information inaccessible. Parallel distributed 

processing implementations of relational representations show that relations with more 

arguments entail a higher computational cost, which corresponds to empirical observations of 

higher processing loads in humans. Empirical evidence is presented that relational complexity 

discriminates between higher species, is related to processing load in reasoning and in sentence 

comprehension, and that the complexity of relations processed by children increases with age. 

Implications are considered for neural net models, and for theories of cognition and cognitive 

development.  

 

Abstract 

It is argued that working memory limitations are best defined in terms of the complexity 

of relations that can be processed in parallel. Complexity is defined by the number of 

dimensions, or sources of variation, that are related. Empirical evidence indicates that human 

adults are limited to processing quaternary relations in parallel. More complex concepts are 

processed by segmentation (breaking tasks into serially processed components that do not 
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exceed processing capacity) or conceptual chunking ("collapsing" representations to reduce 

their dimensionality, but at the cost of making some relational information inaccessible). 

Parallel Distributed Processing implementations show that dimensionality of relations is 

associated with computational cost, which corresponds to processing load in humans. 

Empirical evidence is presented that relational complexity discriminates between higher 

species, and is related to processing load in reasoning for both adults and children. Implications 

are considered for neural net models, and for theories of cognition and cognitive development. 

   

Keywords: capacity, complexity, working memory, central executive, resource, cognitive 

development, comparative psychology, neural nets, representation of relations, chunking
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Processing Capacity Defined by Relational Complexity: 

Implications for Comparative, Developmental, and  

Cognitive Psychology 

 1.0 We propose that information processing capacity limitations in humans and higher 

animals should be defined, not in terms of items, but by the complexity of relations that can be 

processed in parallel.  The core argument will be that relational complexity is associated with 

processing load in human problem solving, with age differences in children's understanding of 

concepts, and differences between higher animal species.  It is not argued of course that 

relational complexity is the only factor that influences difficulty, because domain expertise, 

skill with problem solving heuristics, memory availability, and perceptuo-motor factors are 

also important.  Nevertheless, relational complexity is essential to the explanation of some 

established findings spanning a wide range of literature.  We will also explore possible 

explanations for this limitation in neural net (parallel distributed processing, connectionist) 

models of cognition. First we will consider previous approaches to working memory, then 

present our own formulation. 

1.1 Processing capacity and working memory 

Processing capacity has often been treated as working memory capacity, defined as 

information that is stored for later processing (Hitch, 1980). Consequently capacity limitations 

have been defined in terms of number of items, or units of information (Miller, 1956). However 

storage and processing functions of working memory are partly distinct, because short term 

storage of information does not necessarily interfere with concurrent processing  (Baddeley & 

Hitch, 1974; Baddeley, 1986; 1990; Halford, 1993; Halford, Bain, & Maybery, 1984; Halford, 

Maybery, O'Hare, & Grant, 1994; Klapp, Marshburn, & Lester, 1983).  Because of this, 

Baddeley (1986) postulated three systems, a visuo-spatial scratchpad, a phonological loop, and 

a central executive.  The first is concerned with storage of visual-imaginal information, while 

the second is involved in short-term serial recall or "memory span" tasks.  Actual processing is 

the function of the central executive.  

The distinction between information that is stored for later processing, and information 

that is actually being processed, can be illustrated by the task of mentally adding 79 and 86.  

The storage of a partial result for later processing that would occur in this task is legitimately 
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called working memory, because the term can include storage for later process. However such 

storage is distinct from actual processing, in which information constrains a decision, and is not 

simply stored.  For example, when we ask "what number results from adding 9 to 6?" we are not 

merely storing the addends, but are using them to carry out a computation, and they constrain 

our decision. 

Working memory capacity has also been defined in terms of limits on activation 

(Anderson, Reder, & Lebiere, 1996; Just, Carpenter, & Hemphill, in press), but this does not 

provide a general metric for processing complexity.  Just et al. (in press) assess complexity in 

terms of the number of new goals generated, and Case (1985; 1992) uses a similar metric, based 

on number of embedded goals in a control structure. However, as explained in 6.1.3, the 

relational complexity metric can subsume the levels of embedding metric and applies more 

widely. Working memory capacity of children has been assessed using tests that combine 

processing and storage (Case, 1985; 1992; Pascual-Leone, 1970) but this makes it difficult to 

assess whether successful prediction is due to processing or storage components of working 

memory. Anderson et al. (1996) assess processing complexity by the number of symbols in an 

equation, but this does not necessarily reflect the difficulty of the underlying processes, and 

does not provide a metric that is general to different types of tasks. 

Storage complexity can be measured relatively directly, by number of items or chunks 

stored as, for example, in memory span tests.  Computational complexity of algorithms can also 

be measured (Garey & Johnson, 1979; Tsotsos, 1990), but as will be discussed in Section 5, it is 

not clear that this can be translated into a metric for processing complexity in human cognition.  

The  problem can however be approached in the following way.  Any cognitive process can be 

expressed as a function which maps input(s) to output(s).  Capacity to perform the process 

corresponds to capacity to compute the function.  A function is a special case of a relation (see 

2.3.2), so relational complexity has potential as a measure of processing demand. With 

processing capacity defined this way, it is not just the number of items or amount of 

information, but the relations between entities, that is the structure, that is the limiting factor. 

This was first realised by assessment of the empirical cognition literature, discussed in Sections 

3 and 6. However two approaches to modeling higher cognitive processes in neural nets 

(Halford et al., 1994; Shastri & Ajjanagadde, 1993a) have independently identified a limitation 

that is consistent with this one.  
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We are concerned with processing capacity in higher cognitive processes including 

reasoning, memory operations and language comprehension. Processes such as vision which 

are performed by modules have higher processing capacity, but are specialised for particular 

types of input, such as information represented on the retina (Fodor, 1983; Fodor & Pylyshyn, 

1988). Modular processes do not impose measurable processing demands (as defined in 2.1), 

and are not associated with individual differences in intelligence (Anderson, 1992). Modular 

processes cannot be greatly modified by higher cognitive processes, so thought cannot be used 

to �re-program� the visual system. By contrast, higher cognitive processes can be modified �on 

line� and the way a task is performed can be influenced strategically without relearning (Clark 

& Karmiloff-Smith, 1993). We have attempted to provide a principled account of higher 

cognitive processes by identifying them with the properties of relational knowledge, defined in 

2.2, and we propose that the processing limitations we are considering apply to cognitive 

functions that have these properties. 

2.0 Relations and Processing Demand 

The way relational complexity influences processing load can be illustrated by the 

difficulty of the following sentence: 

 "The boy the girl the man saw met slept."   (1) 

The problem here does not reside solely with storage, either of the original sentence or the 

results of partial processing, but also reflects the amount of information about which decisions 

must be made. This sentence entails an integrated structure, discussed in 6.1.4, that requires 

boy, girl, and man to be assigned to roles corresponding to subjects of three verbs and objects of 

two verbs. Strategies are not generally available to English speakers for serial processing of 

centre-embedded clauses, and the relative lack of semantic cues or syntactic case markers 

means people receive little help in deciding which nouns fill which case roles. The result is that 

we have to decide who saw, who met, and who slept, and identify the objects of "saw" and 

"met", all together, because we cannot positively identify subjects or objects of any of the verbs 

until we comprehend the whole sentence.  Sentences with this type of reduced relative clause 

are known to impose high resource demands (Just & Carpenter, 1992; Kimball, 1973). 

Another example is provided by Sweller (1993) who analysed the following problem: 

Suppose five days after the day before yesterday is Friday. What day of the week is tomorrow?  
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Despite our expertise in reasoning about days of the week, this problem is frustratingly 

difficult. The reason is that, especially in the first sentence, numerous elements are related to 

each other and cannot be considered meaningfully in isolation.  These relations have to be at 

least partially processed in order to segment the statement into subproblems that can be 

processed serially. The processing load is felt most keenly when we try to plan this procedure.  

The processing load imposed by interacting components of a task can be captured with 

the concept of relational complexity.  We will begin by considering relations between different 

numbers of factors.  At a low level of complexity, consider a case where a cognitive process is 

constrained by a single factor; for example, our choice of restaurant might depend on the 

amount of money we have.  We can express this as a binary relation, between money and 

restaurant-choice; that is, a set of ordered pairs, in which each amount of money is associated 

with a particular restaurant (or with a subset of restaurants). The money-restaurant relation 

could be modified by another factor, such as importance: The more important the occasion the 

more expensive our choice of restaurant, though importance might have more influence when 

we have plenty of money than when we have little. Here we have an interaction between two 

determining factors. This situation can be represented as a ternary relation, comprising a set of 

ordered triples in which each amount of money, and each level of importance, is associated with 

a restaurant. These variables could in turn interact with a third factor, such as hunger, which 

might make us profligate, but only when we are not really poor. We now have an interaction 

between three determining factors. This can be expressed as a quaternary relation, comprising a 

set of ordered 4-tuples, in which each amount of money, level of importance, and state of 

hunger, is associated with a restaurant choice.  

It is clear that the problem becomes more complex as the number of interacting factors 

increases.  This complexity can be measured by the dimensionality of the relation, or number of 

variables that are related.  Problems which entail a binary relation are simpler than those that 

entail a ternary relation, which are simpler than those which entail a quaternary relation, and so 

on. The idea of relational complexity is analogous to the number of factors in an experimental 

design.  An experimental design can be thought of as a set of relations between independent and 

dependent variables.  A one-way experimental design is equivalent to a binary relation between 

one independent and one dependent variable.  A two-way experimental design is equivalent to a 

ternary relation, between two independent and one dependent variables. Experimental designs 
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with more factors permit more complex interactions, but at the cost of more observations 

(participants) being required. This is analogous to the processing load imposed by problems of 

high relational complexity. 

The complexity of a relation may be defined by the number of arguments. A binary 

relation has two arguments: For example, the binary relation �bigger-than� has two arguments, 

a larger and a smaller entity. A ternary relation has three arguments: For example, 

�love-triangle� is a ternary relation, and has arguments comprising three people, two of whom 

love a third. Quaternary relations have four arguments, and so on.  Each argument can be 

instantiated in more than one way.  For example, each argument of �bigger-than� can be 

instantiated in an infinity of ways, such as bigger-than(horse,mouse), . . .,  

bigger-than(whale,dolphin), . . ,  and so on.  Consequently, each argument provides a source of 

variation, or dimension, and thereby makes a contribution to the complexity of the relation.  

Our next step is to link relational complexity to the concepts of demand (or load) and resources 

which have been commonly used to account for performance limitations in cognitive 

psychology. 

2.1. Processing complexity  

This may depend on the strategy used by the person in a particular set of circumstances, 

because different performers use different strategies, and even the same person uses different 

strategies at different times. The optimum cognitive strategy for real human performers may not 

correspond to the algorithm that is best theoretically, or to any algorithm that would be used in 

artificial intelligence, because human cognition operates in ways that are very different in some 

respects from theoretically optimum algorithms. Strategies can be constrained to some extent 

by experimental procedures, but if this cannot be done with confidence then the strategy used 

must be determined by empirical investigation, a point to which we will return in section 6.0. 

Therefore processing complexity measures need to be specific to the actual cognitive process 

used. 

2.1.1. Complexity of a cognitive process is the number of interacting variables that must 

be represented in parallel to perform that process. Complexity of processing may also vary over 

time within one task, so the critical value is the complexity of the most complex step.  Tasks can 

vary in the number of steps they require but this does not necessarily affect processing load, 

because a task with many steps might impose only a low demand for resources at any one time 



13 

(e.g., counting peas in a box). Processing demand can be high where steps are embedded in a 

hierarchical structure, but this entails higher-order relations, and relational complexity is also 

high (to be discussed in 2.2.5). 

2.1.2. Processing complexity of a task is the number of interacting variables that must be 

represented in parallel to perform the most complex process entailed in the task, using the least 

demanding strategy available to humans for that task.  

2.1.3. Processing demand is the effect exerted by task complexity on a performer, and it 

reflects the cognitive resources required to perform a task. The core proposal of this paper is 

that demand is a function of relational complexity. That is, the more interacting variables that 

have to be processed in parallel, the higher demand will be. Demand is synonymous with �load� 

and �effort� and the three terms tend to be used interchangeably in the psychological literature. 

It is the psychological counterpart of computational cost which will be discussed in Section 5. 

Demand can be manipulated experimentally, with other aspects of the task controlled, and a 

number of examples of this will be considered in Section 6. 

2.1.4. Resources allocated to a task vary as a function of demand and performance. More 

resources must be allocated to higher demand tasks to maintain performance. The methodology 

for dealing with demand and resources is now highly developed, and is reviewed by Gopher 

(1994) and Halford (1993, Chapter 3). Resources utilized can be measured by physiological 

arousal indicators (Kahneman, 1973), by neural activity assessed using brain imaging 

techniques (Carpenter & Just, 1996), by subjective feeling of effort assessed through 

self-report, and by decrement in competing tasks (Navon & Gopher, 1980). Resources invested 

by an individual in a given task will vary over time as a function of the conditions of 

performance. 

2.1.5. Processing capacity is the limit of resources available. It will vary across 

individuals and may change over the lifespan (discussed in 6.3). Within a short time frame it is 

essentially constant, but can be influenced by factors such as physiological state, diurnal 

rhythms and drugs. 

In order to put this argument on a more formal basis, we will consider the nature of 

relational knowledge. 

2.2 Relational knowledge 
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Given that processing complexity can be related to number of arguments of a relation, the 

nature of relational knowledge becomes essential to the theory of processing capacity. Phillips, 

Halford and Wilson (1995; submitted) have argued, on the basis of the work of Codd (1990), 

that essential properties of higher cognitive processes, including data structures such as lists and 

trees, can be captured by a model based on processing relations. Our proposed explanation for 

capacity limitations in higher cognitive processes depends on the complexity of neural net 

models of relational knowledge, which are considered in Section 4. Therefore we need to 

specify the properties that relational knowledge must have for a neural net model to be 

considered adequate. For our present purposes it will be appropriate to say that relational 

knowledge consists of relational schemas, which we will now define. 

2.2.1 Relational schemas are cognitive representations that include elements and relations 

between elements, and represent situations or activities in the world. In general, an n-ary 

relation R is a subset of the cartesian product of n sets: S1× S2×� ×Sn. Thus if 

(a1,a2,�,an) ∈ R we say that r(a1,a2,�,an) holds; for example, (cat, mouse) 

∈ LARGER-THAN signifies larger-than(cat, mouse). An n-ary relation comprises a set 

of n-tuples, where each tuple is a relational instance. We shall refer to R and 

�larger-than� as relation-symbols. Tuples like (a1,a2,�,an) and (cat, mouse) we refer to 

as relational instances. However, it may not be clear, for example, whether (cat, mouse) 

is being considered as an instance of the relation �larger-than� or of the relation 

�chases�. For this reason, we frequently use the term relational instance for an 

expression of the form r(a1,a2,�,an) or larger-than(cat, mouse). Strictly speaking, 

r(a1,a2,�,an), larger-than(cat, mouse), and larger-than(mouse, cat) are propositions (see 

section 2.2.2). Thus we use the term �relational instance� to refer both to the tuple, and 

to the tuple labelled with the relation symbol. This is not an uncommon practice in 

cognitive science. Where it would be unclear whether r(a1,a2,�,an) is being considered 

as a proposition or a relational instance, we shall refer to (for example) �the relational 

instance r(a1,a2,�,an)�. 

2.2.1.1. Representation of a relation requires a symbol to specify the relation R, a 

representation of the arguments a1,a2,�,an, and a set of bindings between symbol and 

arguments that maintain the truth of the relation. The binding must constrain the fillers for each 

argument role so that appropriate members of the cartesian product are bound. For example, in 
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bigger-than(-,-), interpreted in the natural way, the entity in the first argument position must 

always be bigger than the argument in the second argument position. Thus 

bigger-than(cat,mouse), bigger-than(mountain,molehill) should be bound but not 

bigger-than(mouse,cat). The symbol and arguments must retain their identity in the binding. 

That is, they must not be fused into a whole in which the components cannot be identified. 

Representations of relations are valid when they conform to the structural correspondence 

principle, which holds that relations in the representation must correspond to relations in the 

world. Formally: 

A relational schema comprising elements Es and relations Rs corresponds to an aspect of 

the world with elements Ew and relations Rw if there exists a function f that assigns each 

member of ES in the schema to a member of Ew
   in the world, in such a way that for any 

rs(e1
s ,e2

s ,...en
s ) in the schema (rs ∈  Rs, ei

s  ∈  Es) there is an rw(e1
w ,e2

w ,...en
w ) in the world (rw ∈  Rw, 

ei
w  = f (ei

s )). These criteria have been specified in more detail by Halford and Wilson (1980) and 

by Holland, Holyoak, Nisbett and Thagard (1986) and their neural net implementation has been 

specified by Halford et al. (1994).  Structural correspondence is a soft constraint and in some 

cognitive models it can be overridden by other constraints if of sufficient strength (e.g., 

Hummel & Holyoak, in press). However learning and induction processes will tend to bring 

relational schemas into correspondence with the aspect of the world they represent (Holland et 

al., 1986). This can be done by reducing the strength of representations with inappropriate 

bindings. 

2.2.1.2. Representation of a relational instance r(a1,a2,�,an) requires a binding between 

the relation symbol r, and the fillers ai, each bound to one argument role. Thus 

bigger-than(whale,dolphin) is a relational instance, whereas the bigger-than relation includes 

this instance plus appropriate others such as bigger-than(cat,mouse), 

bigger-than(mountain,molehill) etc. 

A relational instance in isolation can be represented by specifying the relation symbol r 

plus each of the role-filler bindings. The relational instance loves(John,Mary) requires a 

representation of �loves� plus a binding of John to the lover role and Mary to the loved role. We 

can write this as: 

loves + lover.John + loved.Mary 
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Here the �.� symbol signifies the role-filler binding and the �+� serves to concatenate the 

bindings to the relation-symbol. 

This is not sufficient to represent a relation (as distinct from relational instances) because 

ambiguity occurs as soon as more than one relational instance is represented. Suppose we now 

add the instance loves(Tom,Wendy), represented as: 

loves + lover.Tom + loved.Wendy 

When we put the representations of both relational instances together we have: 

loves + lover.John + loved.Mary + loves + lover.Tom + loved.Wendy 

This represents the fact that John and Tom are lovers and that Mary and Wendy are loved, 

but it does not distinguish between John loving Mary and John loving Wendy, and is similarly 

ambiguous with respect to Tom.  

The ambiguity can be removed by indicating that John and Mary belong to one instance 

of loves and Tom and Wendy to another. One way is to index each instance with a unique 

identifier. This in effect separates (or brackets) the "location" of the representation of each 

instance. For example, the loves relation could be represented as:  

    1.(loves + lover.John + loved.Mary) + 

    2.(loves + lover.Tom + loved.Wendy). 

One implication of this method is that, in general, the index does not indicate its contents 

(the index �1� does not indicate that John and Mary are involved). Thus, potentially all 

instances must be processed to determine the filler for a given role (in the worst case one may 

have to search all instances to find the one in which John is the lover of Mary).  

An alternative approach is to define each relational instance as a unique n-tuple. This can 

be done by representing bindings between the relation symbol and the fillers for each argument. 

For example, we can represent: 

loves.John.Mary + loves.Tom.Wendy 

This representation is based on symbol-argument-argument bindings, each of which 

comprises an intact relational instance, together with the symbol for the relation (�loves� in this 

case). The binding between a symbol and its arguments represents the link specified by the 

relational instance. Thus representing the tuple loves.John.Mary identifies this relational 
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instance unambiguously, and directly represents the link, identified as �loves�, between John 

and Mary. 

 2.2.1.3. Relations and working memory. Working memory has often been associated 

with storage of items of information, as in span tasks, which entail storing strings of items. 

Therefore it might appear that working memory would store relational instances, that is 

interconnected sets of items, rather than relations. In some cases this would be sufficient. For 

example, to understand �John loves Mary� we need only represent relational instance 

loves(John,Mary). However in some cases working memory entails variables. Consider, for 

example, reasoning about velocity, defined as V= s/t (where s is distance and t is time). We 

know that, for example, if we cover the same distance in half the time, velocity is doubled, even 

though we know no specific values. Thus we are reasoning about the interaction of three 

variables, velocity, distance and time, and we are dealing with a ternary relation, rather than a 

relational instance. 

2.2.2 A proposition is defined as the smallest unit of knowledge that can have a truth 

value. If the proposition is true, then there will be a corresponding relational instance. For 

example, the proposition bigger-than(cat, mouse) is an instance of the bigger-than relation. 

However a proposition need not be true, and a proposition that is false is not a relational 

instance: bigger-than(mouse,cat) is false, and is not an instance of bigger-than as defined above.  

True propositions and false propositions correspond to different subsets of the cartesian 

product. The relation > is a subset of S1×S2: the subset {(a,b) | a ∈  S1, b ∈  S2  and a > b}. 

Consider the false proposition >(mouse,cat). The pair (mouse, cat) is not a part of the relation >, 

(there are no cases of mice being bigger than cats) but the proposition >(mouse,cat) is 

representable, since (mouse, cat) ∈  S1×S2. Therefore false propositions can be represented, and 

correspond to subsets of the cartesian product. Learning and induction will tend to weaken 

representations of false propositions, and will tend to incorporate semantic constraints. Thus a 

proposition such as owns(car,Tom) will tend to be excluded. However, false propositions do 

occur in real cognitive processes and provision must be made for them to be represented.  

2.2.3 Truth value of a proposition can be assessed by matching against semantic memory, 

using a mechanism described in 4.2.1. Truth value can be represented as a higher-order 

relational instance. For example: false(bark(cats)), meaning that it is false that cats bark.  There 

is a psychological bias to represent true propositions. For example, in mental models theory 



18 

(Johnson-Laird, Byrne and Schaeken, 1992) only true contingencies are represented to reduce 

load on working memory. 

Quantifiers are not explicitly represented in relational schemas or in mental models, but 

the closest psychological property is strength. A strong proposition is one that has a high 

probability of being true (propositions like �dogs are bigger than cats� that have no definite 

truth value, in the sense that they are not universally either true or false.i) 

2.2.4 Symbolisation means that a link between the arguments of a relation or relational 

instance is explicitly symbolised (e.g., one link between �whale� and �dolphin� is explicitly 

symbolised by �bigger-than�).  The link is one of the requirements for identifying a relational 

instance, which in turn is necessary for a relational instance to be an argument to another 

relation, thereby forming higher-order relations. It also allows us to distinguish between a 

number of different links between the same argument sequence.  

2.2.5 Higher-order relations and hierarchical structures. Higher-order relations have 

relational instances as arguments, whereas first order relations have entities as arguments. 

Higher-order relations can represent connectives; for example implies(>(a,b),<(b,a)) or 

and(dog(Fido),pet(Fido)). Higher-order relations can be used to represent hierarchical 

structures, for example: cause(shout-at(John,Tom),hit(Tom,John)). 

The repeated variable constraint operates with hierarchical structures. In 

cause(shout-at(x,y),hit(y,x)) x and y must be bound to the same entities in both cases. For 

example: cause(shout-at(John,Tom), hit(Tom,John)) has the required structure but 

cause(shout�at(John,Tom), hit(John,Tom)) does not. The repeated variable constraint is 

implemented by ensuring that the first relational instance is in structural correspondence with 

cause(shout-at(x,y),hit(y,x)). Notice that a mapping that conforms to the structural 

correspondence principle (in 2.2.1.1) can be formed between them, whereas for the second 

relational instance such a mapping would be inconsistent (John and Tom must each be mapped 

to both x and y). 

2.2.6 Omni-directional access means that, given all but one of the components of a 

relational instance, we can access (i.e. retrieve) the remaining component. For example, given 

the relational instance mother-of(woman,child), and given mother-of(woman,?) we can access 

�child�, whereas given mother-of(?,child) we can access �woman�, and given ?(woman,child) 

we can access �mother-of�.  
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Omni-directional access is also potentially true of relations. A relational instance 

r(a1,a2,�,an) contains n+1 objects - the relation symbol and the n arguments. Given any n 

components, we can retrieve one or more candidates for the n+1st component. However where 

more than one relational instance is represented, the answers obtained will not always be 

unique.  For example, given the relation �mother-of�, the query mother�of(woman,?) may yield 

child, toddler, infant, baby, teenager, etc. Access may not be equally efficient in each direction. 

For example, arithmetic addition corresponds to the ternary relation +{ . . 

(3,2,5), . . ,(5,4,9), . . }. It might be easier to access a sum given two addends, that is +(3,2,?), 

than to access an addend given the sum and the other addend, that is +(3,?,5), but access in both 

directions is possible. Having learned our addition tables we can perform subtraction, but 

perhaps not as efficiently as addition. Another example from the psychological literature is 

discussed in 6.2.5.1. 

2.2.7 Role representation means that relational knowledge entails representation of 

argument roles or slots, independent of specific instances.  Thus bigger-than(-,-) entails 

representation of roles for a larger and a smaller entity. Roles must be distinguishable but they 

need not be represented explicitly: the role an argument fills can be identified by its position 

relative to the other arguments. Thus in �loves.John.Mary� (discussed in 2.2.1.2) we know John 

is in the lover role by his position in the binding.ii The argument positions in a proposition 

correspond to the sets indicated by their position in the cartesian product. Given the relational 

instance r(a1,a2,�,an) for a relational R that is a subset of S1× S2×� ×Sn, each ai corresponds 

to a given Si. 

2.2.8 Operations on relations are adapted from those defined in the theory of relational 

databases (Codd, 1990). They include select, project and join, plus the usual set operators 

intersection, union and difference (Phillips, et al, 1995). These operations permit information 

stored in relational knowledge structures to be accessed and manipulated in flexible and 

powerful ways. The select and project operations together permit access to any element within a 

relation. Informally, if one thinks of a relation as a table, where rows correspond to relational 

instances and column names correspond to the role names, then select and project return rows 

and columns of a table, respectively. The join operation corresponds to combining two tables at 

a specified pair(s) of columns. 

The operators are best described by example. Suppose the relation: 
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Taller = {(John,Mary),(Mary,Tom)}, where Taller is a subset of Person x Person. 

Formally, a select operation parameterized with condition C, takes a relation R and returns a 

new relation R' such that all instances of R' satisfy C. For example, select<Person1,John> Taller -> 

{(John,Mary)}, returns a single instance binary relation with John at role Person1. A project 

operation parameterized with attribute (role) name(s) A takes a relation R and returns only 

arguments at attribute A for each instance in R. For example, project<Person2> Taller -> 

{(Mary),(Tom)} (i.e., a unary relation with two instances). Taken together, select and project 

provide omni-directional access to all relational elements.  

For example, the query "who is taller than Mary" is realised as:  

project<Person1>(select<Person2=Mary> Taller)) -> {(John)}, which we write as Taller(-,Mary) 

-> John, for short. 

There are a number of different join operators which take two relations and return a new 

relation. The outer (or natural) join is analogous to the  cartesian product. It returns a relation 

containing every unique pairwise combination of instances from the argument relations. In this 

way it permits the construction of higher arity relations - the outer join of two unary relations is 

a binary relation. Of more interest for our purposes is the equi-join operator, which only joins 

instances having the same arguments at the specified roles. It provides a way of implementing 

transitive inference. 

For example, equi-join<Person2,Person1>(Taller, Taller) -> {(John,Mary,Tom)} is an equi-join 

of the relation Taller with itself along roles Person2 and Person1. Projecting onto the first and 

third positions of the resulting relation results in {(John,Tom)} (i.e., the inference "John is taller 

than Tom"). Finally, since relations are sets the standard set operators intersect, union and 

difference apply in the usual way. 

 2.2.9 Decomposability of relations means that relations can be composed of simpler 

relations. A decomposable relation is one which can be written as a conjunct of instances of 

relations of lower arities. For example, the ternary relation monotonically-larger(a,b,c) can be 

decomposed into >(a,b) & >(b,c) & >(a,c). This is discussed in more detail in Appendix A. 

Relations can be decomposed using operators select and project  defined in 2.2.8.  
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2.2.10 Relational systematicity means that certain relations imply other relations.  For 

example >(a,b) → <(b,a), whereas sells(seller,buyer,object) → buys(buyer,seller,object). 

Implication can be handled as a higher-order relation as noted in 2.2.5. 

2.2.11 An attribute is a relation with one argument. An attribute value is an instance of a 

unary relation (e.g., ripe(apple23) indicates that apple23 satisfies the unary relation ripe). 

2.2.12 Analogy, planning and modifiability. Analogy is a structure-preserving map 

between a base or source and a target, and representation of relations is at the core of analogies 

(Gentner, 1983; Gick & Holyoak, 1983; Holyoak & Thagard, 1989).  Planning is the main 

process in strategy development, and entails the organization of a sequence of actions to 

achieve a goal.  Planning has been explicitly modeled by VanLehn and Brown (1980), Greeno, 

Riley and Gelman (1984) and Halford, Smith, Dickson, Maybery, Kelly, Bain, and Stewart 

(1995). The development of the strategy is guided by a concept or mental model of the task, 

which entails representing relations between components of the task. 

Higher cognitive processes can be modified �on-line� without necessarily relearning all 

over again. A performance which distinguishes between higher and lower animal species is the 

ability to acquire the reversal learning set, that is having learned to choose A in preference to B, 

the animal must switch to B without relearning (Bitterman, 1960; Bitterman, 1975). If the 

animal learns the exclusion relation between A and B (i.e. one and only one of A and B is 

correct) the reversal can be effected by changing the mapping of the stimuli into the relational 

schema, so the stimulus that was formerly mapped to the positive element of the schema is 

remapped to the negative element, and vice verse  (Halford, 1993). Clark and Karmiloff-Smith 

(1993) have pointed out that modifiability is a criterial attribute of human cognition. Relational 

representations can achieve this by switching between relations, because when a relation is 

changed mappings between input and output change. For example, the binary operation of 

arithmetical addition, a ternary relation, entails a set of mappings between addends and sum, 

{ . . (3,2 → 5), . . (4,7 → 11) . . }. Multiplication entails a different set of mappings { . . (3,2 → 

6), . . (4,7 → 28) . . }. A switch to a different relation activates a different set of mappings and 

modifies the performance. 

Relational knowledge is symbolic, content-independent, flexible and modifiable, and can 

serve the functions of higher cognitive processes. Our next step is to consider the psychological 

properties that are associated with different levels of relational complexity. 
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2.3 Psychological interpretations of orders of relational complexity 

Each level of relational complexity, from unary to quaternary, corresponds to a distinct 

category of cognitive tasks. Empirical indicators for each level will be considered in Section 6. 

2.3.1 A unary relation has relational instances r(x) that can be interpreted as propositions 

with one argument, as variable-constant bindings, or as zero-variate functions.  A proposition 

with one argument can represent a state, such as happy(John), an action, such as ran(Tom), an 

attribute, such as big(dog), or class membership, such as dog(Fido). 

2.3.2 Binary relations have relational instances r(x,y) that can sometimes be interpreted as 

univariate functions; f(a) = b is a special case of a binary relation, in which the mappings are 

unique; it is a set of ordered pairs, (a,b) such that for each a there is precisely one b such that 

(a,b) ∈  f.  A unary operator is a special case of a univariate function; for example, the unary 

operator change-sign comprises the set of ordered pairs {(x, -x)}. 

2.3.3 Ternary relations have relational instances r(x,y,z) that can be bivariate functions, 

and binary operations. A bivariate function is a special case of a ternary relation. It is a set of 

ordered triples (a,b,c) such that for each (a,b) there is precisely one c such that (a,b,c) ∈  f.  A 

binary operation is a special case of a bivariate function: a binary operation on a set S is a 

function from the set S × S of ordered pairs of elements of S into S; i.e. S × S → S. For example, 

the binary operation of arithmetic addition consists of the set of ordered pairs of {. . , (3,2,5), . . , 

(5,3,8), . .  , . .  }; i.e. {(x,y,z) | x + y = z, x,y,z (say) natural numbers}. 

With a ternary relation, it is possible to seek x  such that r(x,y,z) is a relational instance 

given y,z , and similarly for y given x,z , or z  given x,y.  It thus becomes possible to compute the 

effects on x of variations in y,z and so on. This emergence of three-way comparisons in ternary 

relations is analogous to the emergence of interactions in two-way experimental designs.  

2.3.4 Quaternary relations have relational instances of the form r(w,x,y,z). Proportion, a/b 

= c/d, is a quaternary relation, and entails relations between the four terms, a,b,c,d. Given any 

three terms, plus the knowledge that proportion is entailed, we can predict the remaining term 

or, given all of a,b,c,d, we can decide whether proportion is entailed (a case of omni-directional 

access, see 2.2.6).  With a quaternary relation all the comparisons that are possible with ternary 

relations can be made, as well as four-way comparisons; the effect on w of variations in x,y,z, 

the effects on x of variations in w,y,z, and so on. 
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Quaternary relations also encompass trivariate functions and ternary operations. A 

trivariate function is a special case of a quaternary relation. It is a set of ordered 4-tuples 

(a,b,c,d) such that for each (a,b,c) there is precisely one d such that (a,b,c,d) ∈  f. Compositions 

of binary operations, such as a(b + c) = d correspond to quaternary relations. 

2.3.5 Dimensionality of relations: each argument xi of R(x1, . . , xn) for an n-ary relation 

R can be instantiated in more than one way, and therefore represents a source of variation, or 

dimension.  An n-ary relation may be thought of as a set of points in n-dimensional space, and 

can represent interaction between n variables.   The number of arguments, n, corresponds to the 

number of dimensions in the space defined by the relation. This is the basis for our proposed 

complexity metric. The relation symbol can be predicted in principle from the arguments; for 

example, given ?(3,2,5), where ? is known to be an arithmetic operation, we know the operation 

must be addition, whereas given *(?,2,6) we know the first multiplicand must be 3, and so on. 

Prediction of the relation symbol may depend on constraints, such as knowing the relevant 

domain, as in this example where it depended on knowing the domain was arithmetic 

operations. A suitable set of relational instances must be available, and in the worst case all 

relational instances must be known. Because the relation symbol can be predicted, at least in 

principle, from the arguments, there are only n independent sources of variation in an n-ary 

relation, and the number of dimensions equals the number of arguments. 

Algorithms that embody these properties will be discussed in Section 4.   However our 

next step is to define processing capacity in terms of relational complexity.  

3.0 Processing capacity 

The amount of information that can be processed in parallel has long been recognized as a 

critically important datum in cognitive psychology.  The most notable attempt to estimate this 

parameter was made by Miller (1956), who suggested that human capacity was limited to a 

small number of chunks. 

3.1 Chunks 

Miller's (1956) concept of a chunk may be defined as a unit of information of arbitrary 

size, so a digit, an alphabetic character, and an English word may all constitute one chunk, 

although they vary in information content.  The paradox is that the limitation seems to be, not in 

the amount of information, but in the number of independent units.   
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3.2 Chunks and dimensions 

There is some correspondence between the properties of chunks and the properties of 

dimensions.  Each chunk is a separate signal and fills a separate slot in a message. Attributes or 

values on different dimensions are at least partly independent of each other, by definition (even 

nonorthogonal dimensions must convey some independent information, or they are 

redundant).iii  Thus chunks, like dimensions, represent units of information that are at least 

partly independent. Their similarity can be illustrated by the proposition 

played(John,cricket,oval,Sunday) which has four roles or slots corresponding to player, game, 

location and day. It seems equally appropriate to regard each filler of these roles as a different 

chunk, or as a value on a different dimension.  

The amount of information (in the information theory sense, Attneave, 1959) conveyed 

by a chunk depends on the number of alternatives for that slot.  For example, �cat" conveys 

Log22 = 1 bit of information if there are two equally likely alternatives (e.g.,  cat or dog).  If 

however there were 32 (equally likely) alternatives, the chunk �cat� conveys Log232 = 5 bits.   

An attribute on a dimension also represents varying amounts of information, depending on the 

number of alternative values on that dimension. Therefore the amount of information conveyed 

by a chunk or dimension is arbitrary.  Thus both chunks and dimensions are independent units 

of information of arbitrary size. 

3.3.  Number of dimensions processed in parallel 

Given the link between dimensions and chunks in 3.2, the number of dimensions that can 

be processed in parallel can be estimated by determining the number of chunks that can be 

processed in parallel. Miller (1956) proposed that approximately seven chunks were processed 

in parallel, but difficulties have arisen with his empirical data base  (Baddeley, 1986; Halford, 

Maybery, & Bain, 1988; Schweickert & Boruff, 1986).   

More recent research has revised Miller�s estimate downwards. Broadbent (1975) 

examined temporal patterns in recall from semantic memory, and found that items tended to be 

recalled in groups of approximately three. He suggested that the "magical number seven" 

proposed by Miller might have reflected the combined output of two systems, each with a 

capacity of 3-4 items. Fisher (1984) studied visual scanning and found a modal value of four 

items processed in parallel, with a range of three to five. Halford, Maybery and Bain (1988) 

assessed the capacity of primary memory, or the information that is currently active (James, 
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1890) at 4-5 items. A number of other studies reviewed by Schneider and Detweiler (1987) also 

indicate that approximately four chunks are processed in parallel. Given the identification of 

chunks with dimensions in 3.2, this implies that approximately four dimensions can be 

processed in parallel, and humans should be limited to processing quaternary relations in 

parallel. Most studies indicate a range of values, indicating that this should be a soft limit. 

Neural net models of relations agree in predicting a soft limit, as will be discussed in Section 5. 

An attempt has been made to assess the number of dimensions that can be processed in 

parallel using interpretation of interactions, because the factors in an interaction cannot be 

interpreted meaningfully alone, and so there is a constraint to process them in parallel (Halford 

et al., 1994).  An interaction between N factors corresponds to a relation between N 

independent variables and the dependent variable, as discussed in 2.0, so ability to process four 

dimensions implies, prima facie, understanding of three-way interactions.  Academic staff and 

graduate students who were experienced in interpreting statistical interactions were asked what 

was the most complex interaction they could interpret unambiguously and with confidence, 

ignoring scale effects and nonlinearity. Ten answered 2-way, 14 3-way, and 6 4-way. The 

variations in estimates probably reflect errors due to imprecision of the test, but the mode is 

3-way, suggesting four dimensions are processed. While no single study might be definitive 

there is a degree of consensus across studies with a wide range of methodologies that 

approximately four dimensions are processed in parallel. 

If it should be possible to process two relations in parallel but independently the sum of 

their processing demands would be less than for a single relation with the same number of 

arguments. If we consider a k-ary relation R on a set S with s members, then each component 

xi in a tuple (x1, x2, . . . ,xk) ∈  R might be filled in s ways: the number of possible tuples is sk. 

Therefore the number of tuples is 2s2 for two binary relations but s4 for a quaternary relation. 

When we consider neural net representation of relations based on symbol-argument-argument 

bindings (in 4.1.1.2) the number of binding units is of nk+1, where n is the number of elements of 

each vector, and a similar argument applies. Therefore the limit will be reached more quickly 

with a single relation than with two relations having the same total number of arguments. 

Notice too that more links are defined in a quaternary relation than in two binary relations. Thus 

R(a,b,c,d) defines links between six pairs ab, ac, . . bc, . . ,cd, whereas R(a,b) and R(c,d) 

collectively define links between only two pairs, ab and cd.  
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However it is unlikely that two or more relations can be processed in parallel and 

independently in the central executive, or within any one system, because they would need to be 

coordinated to avoid conflict. They could be coordinated by integration into a higher-order 

relation, but this implies that they are effectively being processed as a single relation. Another 

way would be to superimpose two or more relations, and this can be done in the neural net 

models to be discussed in 4.1.1.2. For example the relational instances mother-of(mare,foal), 

loves(mare,foal), feeds(mare,foal) can all be superimposed. Notice however that 

superimposing relational instances in this way does not increase the number of dimensions 

being processed (there are only two arguments in this example). When we consider neural net 

implementations in 4.1.1 it will be apparent that such superposition adds little computational 

cost. Superimposed relational instances can be treated as a whole, but they can also be 

processed separately, using the retrieval process in 4.2.1. On the other hand the relation 

between them cannot be defined by superposition (e.g., �mother-of�, �loves�, and �feeds� can 

be fused into a whole equivalent to some kind of composite motherhood concept, or they can be 

processed as separate relational instances, but no relation is defined between the relational 

instances). 

If four dimensions can be processed in parallel, the next question is how more complex 

concepts are processed. Many concepts are more complex than quaternary relations, so we must 

have some means of dealing with these concepts without exceeding our processing capacity. 

3.4 Using capacity efficiently 

We propose two mechanisms for reducing processing loads imposed by complex 

concepts. These are conceptual chunking and segmentation. 

3.4.1 Conceptual chunking is the recoding of concepts into fewer dimensions.  In the 

limiting, and most typical case, they are recoded into a single dimension. In a mnemonic chunk 

items function as a unit (e.g., c,a,t becomes a chunk if the three letters form a single word cat). 

Similarly, elements that are formed into a conceptual chunk function as a whole in a relational 

structure, and relations between items within the chunk cannot be accessed.  

We can illustrate conceptual chunking using the concept of velocity, defined as V= s/t 

(where s is distance and t is time).  The relation between velocity, distance and time is three 

dimensional, but velocity can be expressed as a single dimension, such as the position of a 

pointer on a dial; velocity(60 km/h).  In this single dimensional representation, no relation is 
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defined between velocity, distance and time.  If we want to compute (say) the way velocity 

varies as distance increases and time decreases, we must return to the three-dimensional 

representation. Thus conceptual chunks save processing capacity, but the cost is that some 

relations become temporarily inaccessible. There is also a psychological factor which limits 

chunking, because experience is required in which there is a constant mapping of elements into 

chunks (Logan, 1979).  Chunking is a form of learning, which takes place over time. 

Chunked concepts can be combined with further dimensions to represent higher level 

concepts, so acceleration can be defined as A = (V2 � V1)t�1.  Acceleration also can be chunked, 

and then Force (F) can be defined as F = MA (where M = mass).  In this way we can bootstrap 

our way to higher and higher level concepts, without ever exceeding four dimensions processed 

in parallel.  A major function of expertise is to provide ways of chunking that permit the 

important features of concepts to be represented without imposing excessive processing 

demands.  

Where a role has only one possible filler it can be chunked without loss and the number of 

dimensions is reduced accordingly. Consider, for example, the relation: 

mother-of{(Jenny,Tom),(Jenny,Mary),(Jenny,Jill)}. The mother role is always filled by Jenny, 

so the representation can be collapsed to the unary relation 

Jenny-mother-of-({(Tom),(Mary),(Jill)}. 

The general principles of chunking are: (1) a chunk functions as a single entity, 

relation-symbol or argument, in a relation, (2) no relations can be represented between items 

within a chunk, (3) relations between the chunk and other items, or other chunks, can be 

represented.   

In order to assess processing capacity, chunking can be inhibited by using novel 

structures, for which chunks have not been learned. This does not preclude using familiar 

domains. For example, in testing transitivity, size relations between unknown persons can be 

used (e.g., John > Tom, Tom > Peter). Size relations are a familiar domain, but the specific 

orderings (John, Tom, Peter, etc.) will not have been prelearned as chunks. 

3.4.2 Segmentation is breaking tasks into steps which do not exceed processing capacity, 

and which are processed serially. Examples include algorithms for arithmetic operations, 

counting, and ordering tasks. Arithmetic algorithms such as multidigit addition generally have 

to be taught, but there is some degree of autonomy in acquisition of counting and ordering 
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algorithms. It is not possible to determine the precise number of elements in a large set solely by 

parallel processing, so we use the serial procedure of counting objects one (or, at most, a few) at 

a time. Children have some understanding of the principles of counting, and this guides the 

development of their strategies (Greeno et al., 1984).  People�s concept of an ordered set can 

provide a mental model for an ordering algorithm (Halford et al., 1995). 

The development of counting and ordering strategies illustrate the principle that 

autonomous development of serial processing strategies requires planning, which depends on 

representing relations (VanLehn & Brown, 1980). If processing limitations prevent the 

structure of the task being represented, a strategy cannot be developed without didactic help, 

which can only be available for a small subset of the cognitive tasks we perform. Thus the 

�self-programming� property of higher cognitive processes depends on ability to represent 

relations. 

3.4.3 Effective complexity determined by reduction technique 

Because complexity can be reduced by conceptual chunking and segmentation, the 

number of arguments of a relation does not immediately translate into effective complexity. 

Also, simply increasing the number of arguments by conjunction does not necessarily 

contribute to the complexity of the resulting relation. The important point regarding relational 

complexity is the nature of the interaction between the relational elements. Effective relational 

complexity can be determined using a reduction technique. 

More specifically, the effective complexity of a relation is the minimum dimensionality a 

relation can be reduced to without loss of information. So, if a ternary relation can be reduced to 

two binary relations without loss of information then effective relational complexity is binary, 

not ternary. One can determine if a relation can be reduced to a combination of lower order 

relations by a procedure of decomposing and recombining. If the resulting relation is the same 

as before then the relation can be decomposed into lower order relations without loss of 

information. Psychologically, effective relational complexity is the minimum dimensionality to 

which a relation can be reduced using decomposition and recombination procedures available 

to human performers. 

For example, suppose the following three facts: 

1. John played tennis at the school 
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2. John played soccer at the park 

3. Mark played soccer at the park. 

Intuitively, it would appear that this domain consists of a ternary relation over Person, 

Game and Location. That is, Played(Person, Game, Location) = 

{(John,tennis,school),(John,soccer,park),(Mark,soccer,park)}. So, at first we may claim that 

the relational complexity of this domain is ternary. However, this ternary relation can be 

decomposed into two binary relations by splitting the ternary relation along the Game attribute. 

The resulting relations are: Played(Person, Game) = 

{(John,tennis),(John,soccer),(Mark,soccer)}; and Is-played-at(Game, Location) = 

{(tennis,school),(soccer,park)}. Now, recombining these two binary relations by joining them 

along the common attribute Game results in the original ternary relation 

Played(Person,Game,Location) containing exactly the same elements. Therefore, the ternary 

relation is decomposable into two binary relations, and effective relational complexity is 

binary. 

However, suppose now that the domain has changed to include a new fact: 4. Mark played 

soccer at the school. We will see that inclusion of this fact changes the relational complexity of 

the domain. The ternary relation Played, consists of elements 

(John,tennis,school),(John,soccer,park), (Mark,soccer,park) and                                                                         

(Mark,soccer,school). Splitting this relation along the Game attribute results in the two binary 

relations: Played(Person,Game) = {(John,tennis),(John,soccer),(Mark,soccer)}; and 

Is-played-at(Game, Location) = {(tennis,school),(soccer,park),(soccer,school)}. However, 

recombining these two relations results in the new triple: (John,soccer,school), formed by 

joining pairs (John,soccer) and  (soccer, school). However, this triple is not an element of the 

ternary relation Played(Person, Game, Location) before decomposing, and is not recorded in 

any of the 4 facts for the new domain. Therefore, decomposing and recombining along the 

Game attribute has not recovered the original relation, so there has been a loss of information. 

The same procedure applied to the Person and Location attributes also results in triples: 

(John,tennis,park) and (John,soccer,school), respectively, that  are not elements of the ternary 

relation Played(Person,Game,Location). Therefore, this new domain cannot be decomposed 

into two binary relations, and so its effective relational complexity is ternary. One possible 

rejoinder to this sort of analysis is to claim that all relations can be decomposed into binary 
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relations by simply creating unique symbol for each element (tuple) of the higher order relation. 

Under this scheme, the above domain could be decomposed into the single binary relation: 

Involved(Event,Participant) = {(JTS, John),(JTS, tennis), (JTS, school), (JSP, John), ...}, where 

JTS is a unique symbol for the event "John played tennis at the school", etc. However, a general 

encoding scheme requires processing the original ternary relation (e.g., (John, tennis, school) -> 

JST). Decomposition only becomes effective once the creation process is complete. Less 

general encoding schemes are possible utilizing only binary relations (e.g., (John, tennis) -> 

JT), but such schemes are inadequate for relations containing both (John, tennis, school) and 

(John, tennis, park). Furthermore, its implausible that appropriate encoding strategies are 

immediately available for novel cognitive tasks. 

To relate this example to the analysis of variance analogy, notice that with facts 1-3, 

location is predicted solely by game (tennis at school, soccer in the park) independently of 

person. When fact 4 is added person and game jointly predict location, and there are 3 

interacting variables. 

The reduction checking technique can also be applied to higher-order relations. For 

example, intuitively one might expect that the relational complexity of transitive inferences 

(e.g., John is taller than Mary, and Mary is  taller than Sue, so John is also taller than Sue) is 

binary, since such inferences operate over binary relations. However transitive inference is not 

simply a collection of binary relations. Transitive inferences have the structure: "(A R B) and 

(B R C), therefore (A R C)", where R is some binary relation and A, B and C are variables 

ranging over the arguments of R. Transitive inference entails a constraint between two premises 

and a conclusion, and it is an example of systematicity, as defined in 2.2.10. Reduction analysis 

shows that the structure of transitive inference is ternary, since it cannot be reduced to a 

collection of binary relations without loss of information. 

The structure of transitive inference can be expressed as a higher-order ternary relation 

over binary relational instances. That is, Transitive inference(P1,P2,C) = {(aRb, bRc, aRc), 

(aRb, bRd, aRd), (aRc, cRd, aRd), (bRc, cRd, bRd)}, where P1, P2 and C are the first and 

second premise, and consequent attribute names (respectively); and a, b, c and d are symbols 

(place holders) to which elements of specific relational instances are aligned. Using the 

reduction checking technique, we show that transitive inference cannot be decomposed into 

binary relations.  
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Suppose we choose to split the relation along the P2 attribute, which results in the two 

binary relations: And(P1,P2) = {(aRb, bRc), (aRb, bRd), (aRc, cRd), (bRc, cRd)}; and 

Implies(P2,C) = {(bRc, aRc), (bRd, aRd), (cRd, aRd), (cRd, bRd)}. Rejoining these two 

relations along attribute P2 results in two ternary relational instances (aRc, cRd, bRd) and (bRc, 

cRd, aRd), which were not present in the original relation. (That is to say, it is not logically 

valid to conclude that, for example, Tom is taller than Mark given that John is taller than Bob, 

and Bob is taller than Mark, if we do not know the relationship between Tom and John or Bob.) 

Similarly, splitting and rejoining on attributes P1 and C, results in additional relational 

instances not present in the original relation. Thus, transitive inference is not, in general, 

decomposable into binary relations. 

Indecomposable relations are ultimately significant because, if a relation is 

indecomposable, then subjects cannot recode the problem by decomposing (ternary) relations 

into simpler (binary) relations. A case of a indecomposable relation is given in 6.2.4.3. Even 

where decomposition is theoretically possible, participants might lack the required strategies 

(algorithms), and the need to cope with more relational instances (of a lower arity) might 

impose loads of its own (e.g., if higher-order relations are involved, see 6.1.3).     

3.5. Effects of processing overload 

A participant who cannot construct a representation of the dimensionality required for a 

task has three options: 

1. The concept can be chunked to a lower dimensional representation. This will only be 

possible if appropriate chunks have been learned or can be constructed, and it results in loss of 

access to relations between chunked entities. 

2. The task can be segmented into smaller steps that are performed serially. This however 

requires a strategy, autonomous planning of which depends on the participant's ability to 

represent relations in the task. 

3. The participant can default to a lower level representation. This is analogous to 

performing an experiment with (say) a 3-way design, then analysing the data by a series of 

2-way ANOVAs. Just as the analysis would lead to recovery of most of the relevant data in the 

experiment (all main effects and 2 way interactions would be recoverediv), the performance 

would probably be correct in most respects. However, just as the hypothetical experimenter 
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would miss the 3-way interactions, our hypothetical performer could not reason about high 

level relations in the task. 

3.6 Capacity and content 

It is important to consider whether processing capacity is a function of content. As we 

indicated in 1.1, the capacity limitations we have defined do not apply to modular processes 

such as vision. They apply to higher cognitive processes which entail processing explicit 

relational knowledge, defined in 2.2. However it is still reasonable to ask whether complexity 

might be influenced by content. We suggest that complexity effects of content variations can be 

attributed to processes such as conceptual chunking, segmentation, and use of higher order 

relations. Relations in a familiar domain can be more readily chunked, or higher-order relations 

may be known which enable the structure to be represented hierarchically, as illustrated in 

2.2.5. It can then be segmented by processing one level of the hierarchy at a time, as described 

in 4.2.5.  

An example of content effects is discussed in 6.1.4,  but here we will consider two 

illustrative examples of the way relational complexity can be applied to different task contents 

and formats. Andrews and Halford (submitted) tested young children�s ability to order colored 

blocks using premises such as �red above green� and �green above blue�. In the construction 

condition the children simply built towers with green above blue, then red above green, and so 

on. In the prediction condition children had to say in advance which of two blocks, red or blue, 

would be higher in the tower. The construction condition was easier, apparently because of its 

concrete, �hands-on� nature. Notice however that in the construction task relations can be 

processed one at a time: children can first place green on blue, then red on green, etc. By 

contrast, in prediction they must mentally integrate two relations �red above green� and �green 

above blue� to yield �red above blue�. When number of relations that had to be considered in a 

single decision was manipulated, with format controlled, it was found that this factor accounted 

for most of the variance in the task, and there was no significant residual effect of 

construction-prediction. Thus format was completely subsumed under relational complexity. 

The relational complexity metric has been applied successfully to a wide variety of tasks, of 

which those discussed in Section 6 are a sample. It was applied successfully to children�s 
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mathematics by English and Halford (1995). Consider, for example, the following relations 

between rational numbers: 1/2 = 3/6; 1/2 < 4/6; 1/3 < 3/6; 5/7 > 5/8.  

Proportion is a notoriously difficult concept for children learning mathematics, and there 

seems to be some mystification as to why. However, as this example illustrates, proportions 

entail a quaternary relation, the variables being the two numerators and two denominators.  

Therefore the task is likely to be difficult because four dimensions must be processed. This 

simply illustrates that relational complexity has proved a very serviceable metric for conceptual 

complexity, in tasks as varied as proportion and ordering blocks. 

4.0 Algorithmic Design 

The essence of the model is defined at the mathematical (computational) level, and it is 

designed to account for observed capacity limitations of higher cognitive processes. However 

research on neural net representation of relations has discovered limitations at least broadly 

consistent with those observed in psychological data. Integrating the psychological and neural 

net work on this question has the potential to deepen our understanding of the issue, and to 

produce more refined questions for future research. This section considers how relations can be 

represented in neural nets and Section 5 develops the argument that computational cost is a 

function of relational complexity.  Thus the underlying reason for processing capacity 

limitations may be found in requirements for processing relations in neural nets. However if the 

reader wishes to avoid the technical complexities of this issue, at least for a first reading, then it 

is still possible to follow the paper by skipping to Section 6.   

The representation of relations in neural nets is currently the subject of extensive 

research, but even models which differ in architecture are in reasonable agreement about the 

nature of capacity limitations. 

4.1 Neural net models of relational knowledge can be categorised in two ways, type of 

binding and type of architecture. The models of Hummel & Holyoak (in press), Plate (1995), 

Shastri and Ajjanagadde (1993a) and Smolensky (1990) use role-filler bindings, while the 

model of Halford, et al. (1994) uses symbol-argument-argument bindings (defined in 2.2.1.2). 

Architectures can be divided mainly into models based on a product operation, either tensor 

product (Halford et al., 1994; Smolensky, 1990) or circular convolution (Plate, 1995) and 

models based on synchronous oscillation (Hummel & Holyoak, in press; Shastri & 

Ajjanagadde, 1993a). Other networks exist which learn to represent relations, for example, the 
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recursive autoassociative memory (Pollack, 1988) and BoltzCONS (Touretzsky, 1990). 

However, the large number of training examples needed to learn appropriate representations 

makes them unsuitable for models of working memory so they are not considered here. 

4.1.1 Tensor and convolution models represent bindings by performing some type of 

product operation on vectors representing bound entities. Tensor and convolution models can 

use either role-filler bindings or symbol-argument-argument bindings.  

4.1.1.1 Role-filler bindings. In the model of Smolensky (1990) the role-filler binding is 

represented by the outer product of role and filler vectors, whereas in the model of Plate (1995) 

it is represented by the circular convolution of the vectors. Thus loves(John,Mary) can be 

represented in essence by tr = vrole1⊗ vJohn + vrole2⊗ vMary or by vR = vrole1∗ vJohn + vrole2∗ vMary 

where ⊗ and * represent tensor product and circular convolution respectively, and tr and vr 

represents the relation symbol r in the tensor and convolution models respectively. A tensor 

product net that can represent a role-filler binding is shown in Figure 1A, with an arithmetic 

example in Figure 1B. In these models all vectors representing roles are superimposed on a 

single set of units, and vectors representing fillers are superimposed on another set of units. A 

circular convolution of the vectors in Figure 1B is shown in Figure 1F. A circular convolution is 

like a compression (technically a projection) of the tensor product matrix, computed by adding 

along the curved lines as shown. For a lucid explanation of circular convolution see Plate 

(1995). The elements within the matrix are the binding units and their activations are computed 

in one shot, rather than by incremental adjustment over trials as occurs in learning algorithms. 

Therefore the matrix represents a dynamic binding in the sense that it represents the currently 

activated representation, rather than a product of past learning. 

Insert Figure 1 here 

Using circular convolution the number of elements is constant (as illustrated in Figure 

1F); for example, the number of elements in each of vrole1 and vJohn is the same as the number in 

vrole1∗ vJohn, whereas the tensor product of vectors with n and m elements contains nm elements 

(as illustrated in Figure 1A and 1B). The implications of this for computational cost will be 

discussed in 5.2.3.  

Retrieval from circular convolution representations is noisy (Plate, in press) and requires 

a cleanup memory, whereas tensor product representations produce an unambiguous output, 
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provided all vectors used form an orthonormal basis (that is, they form a basis for the vector 

space they span, their lengths are 1, and inner products of distinct vectors are all zero). Though 

orthonormal vectors are convenient they do not enable crosstalk (interference between similar 

representations, or similar tasks) to be modeled. This can be done using sparse random vectors, 

in which similar entities share some units (Wilson, Street, & Halford, 1995). There is then the 

possibility of confusion and crosstalk. 

4.1.1.2 Symbol-argument-argument bindings were illustrated in 2.2.1.2. With this type of 

model a relational instance is effectively represented by computing the outer product of symbol 

and argument vectors (Halford et al., 1994). A collection of relational instances can be 

superimposed on the same representation, by adding up the outer products. Thus 

representations of loves(John,Mary) can be represented as Vloves⊗ VJohn⊗ VMary and 

loves(Tom,Wendy) can be represented as Vloves⊗ VTom⊗ VWendy. These representations can be 

superimposed by summing the outer products, yielding Vloves⊗ VJohn⊗ VMary  + 

Vloves⊗ VTom⊗ VWendy.  

The resulting sum of outer products is referred to as a tensor.  Thus the relational instance 

r(a1,a2,�,an) would be represented in a tensor product space VR⊗ V1⊗ V2⊗ .�⊗ Vn, where VR 

represents alternative relation symbols including r, and vi (i>0) represents concepts appropriate 

to the ith argument position. A unary relational instance r(a) can be represented in a rank 2 

tensor product space VR⊗ V1. A binary relational instance r(a1,a2) can be represented in a rank 

three tensor product VR⊗ V1⊗ V2. The net in Figure 1A represents a unary relation by this 

method if one vector represents the relation symbol and the other vector represents the 

argument. Similarly for the arithmetical example in Figure 1B.  Binary relations are illustrated 

by this method in Figures 1C and 1D. The arithmetic examples of outer products in Figures 1B 

and 1D show that each element in the matrix (rank 2 outer product) is the product of a 

component from each of the symbol and argument vectors. Arguments to a relation may also be 

regarded as role-fillers, and �argument� and �filler� are used interchangeably in this context 

depending on whether symbol-argument-argument or role-filler models are being considered. 

Insert Figure 2 about here 

Tensor product implementations of relations from unary to quaternary are shown 

schematically in Figure 2. In each case there is a vector representing the relation symbol and a 
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vector representing each argument. A ternary relational instance r(a1,a2,a3) can be represented 

in a rank four tensor product space VR⊗ V1⊗ V2⊗ V3. Notice that the example used in Figure 2 

represents arithmetic addition and multiplication which, as noted earlier, are ternary relations, 

superimposed on the same tensor product. If 2 addends (multiplicands) are entered in the 

argument units (using the retrieval procedure in 4.2.1), and the vector representing addition 

(multiplication) is entered in the symbol units, the output represents the sum (product). 

Changing the symbol vector changes the relation that is implemented, and is an example of 

modifiability as discussed in 2.1.12. Our simulations have shown addition and multiplication 

can be superimposed in this way on a rank 4 tensor product without interference. A quaternary 

relational instance r(a1,a2,a3,a4) is represented in a rank five tensor product 

VR⊗ V1⊗ V2⊗ V3⊗ V4, the example in Figure 2 being a composition of two binary operations.  

In symbol-argument-argument models roles are determined positionally, a type of coding 

also used in language. This implies that roles do not need to be explicitly represented and 

role-filler bindings are unnecessary. The role to which an argument is assigned is defined by its 

position in the representation. In the tensor product implementation, roles are not represented 

by vectors, but separate sets of units are used for each argument vector. A procedure is required 

to ensure structural correspondence, so arguments are represented on the correct set of units. 

The criteria for valid representation mentioned in 2.2.1.1 are sufficient to ensure this.  

To illustrate how roles need not be explicit if arguments are defined relative to each other, 

consider an instance of the ternary relation arithmetic addition, +(3,5,8). Now suppose we want 

to superimpose another instance +(2,4,6). This can be done using tensor product representations 

of symbol-argument-argument bindings as mentioned above. If we were to misalign the 

representations by superimposing +(2,6,4) on +(3,5,8), that is interchanging the second and 

third arguments, the error would be detected by the tests for structural correspondence (in 

2.2.1.1). Thus a valid relational representation can be established without roles being explicitly 

represented. The arguments are assigned to the correct role position by ensuring that they are 

correctly related to each other (in the current example this means that they are in the correct 

order).   

4.1.2 Synchronous oscillation models 

In synchronous oscillation models units representing a role oscillate in phase with units 

representing the filler bound to that role, and out of phase with units representing other roles 
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and fillers. The relational instance loves(John,Mary) would be represented by units 

representing the agent role of loves oscillating in synchrony with units representing John, while 

units representing the patient role of loves oscillated in synchrony with units representing Mary 

(see Figure 3). However units representing the agent role (filler) would oscillate out of 

synchrony with units representing the patient role (filler). The model of Shastri and 

Ajjanagadde (1993a) utilises synchronous oscillation for role-filler binding, but much of its 

power comes from additional nodes and connections. The analogy model of Hummel and 

Holyoak (in press) uses synchronous oscillation to perform mappings between analogs, but 

much of its power also comes from other systems, including a distributed semantic memory 

representation. 

Insert Figure 3 

Relational instances can be superimposed on the representation, as illustrated in Figure 3. 

Thus kisses(John,Mary) and marry(John,Mary) can be superimposed on the representation of 

loves(John,Mary), by having corresponding roles of all relational instances oscillate in 

synchrony. Notice that no additional phases are required for the superimposed instances, and 

this is analogous to tensor product representations of symbol-argument-argument bindings 

discussed in 4.1.1.2, where relational instances can be superimposed on the same set of vector 

spaces. To foreshadow a point to be made in 5.1, Shastri and Ajjanagadde (1993a) have shown 

that the major limitation is in the number of distinct phases, rather than the amount of 

information represented in each phase. This corresponds to the limitation in human processing 

capacity, which is defined by the number of arguments a relation has, rather than by total 

information processed. 

4.1.3 Comparison of models 

Tensor product and synchronous oscillation models appear to be equally capable of 

representing higher cognitive processes, and the similarity of their properties is at first sight 

somewhat surprising. However Tesar and Smolensky (1994) have proposed that the 

architectures are formally reducible to one another, the primary difference being that tensor 

product models use spatial role vectors whereas synchronous oscillation models use temporal 

role vectors. Another possible explanation is that their similar properties are due to additional 

features designed to give them the power to simulate higher cognitive processes. As we will 



38 

see, the similarity of their properties extends to the processing capacity limitations that are 

inherent in them. 

It is important that, in order to account for working memory, a model must deal with 

relations.  As noted in 2.2.1.2 representation of relations by role-filler bindings requires that 

each relational instance be stored separately, or be uniquely identified. We will now develop 

this point further by considering a ternary relation, the binary operation of addition. There are 

three roles, corresponding to the two addends and the sum, which we will represent as a1, a2 and 

s. Using the role-filler approach we could bind numbers to each role, thus: 

a1.2 a2.3 s.5 

a1.4 a2.5  s.9 

a1.3  a2.4 s.7 

a1.5 a2.2  s.7  and so on. 

If we were to represent all addition facts in this way, then every number would be bound 

to every role, since any number can serve as first or second addend, or as sum. If all these 

role-filler bindings are entered into the same representation (e.g., by adding the resulting 

vectors, as in the models discussed above), and without specific identification of the tuples, 

then we cannot recover role-filler bindings or relational instances. If we ask �what number is 

bound to the first addend role?� the answer is �every number�, and the same is true for the other 

two roles. Furthermore, we have only stored role-filler bindings rather than relational instances, 

so there are no links between addends and sum. Thus even the fact that a1.2 and a2.3 are 

associated with s.5 is not represented, so it is not possible to access a component of the instance, 

given the remaining component. Thus we cannot ask: if the addends are 2 and 3, what is the 

sum? Suppose, for example, we were to identify first addend roles that are bound to 2. We 

cannot then determine which of these cases have 3 bound to the second addend role, because no 

link has been stored between first and second addends. We cannot retrieve the sum, given the 

first and second addends, for the same reason.  

The solution of identifying each relational instance also has its problems, first because 

individual identification of every relational instance is implausible when the number of 

instances is very large. A relational instance such as 2+3=5 is identified by its content (e.g., 

2+3=?; ?+3=5) rather than by an index, such as a context vector, that identifies the relational 
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instance.v It is implausible that every addition fact we know is individually identified. Second, 

notice also that, even were instance identification to be used, every role-filler binding in a 

relational instance would require the same identifier. Thus if we identify this instance as add2,3, 

we must bind the identifier to all three role-filler bindings, thus:  

add2,3:  (add2,3).a1.2  (add2,3).a2.3  (add2,3).s.5 

In other words, the context in which the three role-filler bindings are learnt/memorized 

must be sufficiently stable as to result in the same identification vector across all three 

role-filler pairs. Notice also that this representation bears a close resemblance to 

symbol-argument-argument bindings. Furthermore, the identifier increases the computational 

cost of the representation, and appears to require an additional rank in the outer product (i.e. 

rank 3 rather than rank 2, as in Smolensky�s (1990) model). 

Contrast this with representations based on symbol-argument-argument bindings. 

Omitting the relation symbol (as with role-filler bindings), we would represent the same facts 

as: 

2.3.5 

4.5.9 

3.5.8 etc. 

The computational cost is high for one relational instance (a ternary relation requires a 

rank 4 tensor, including the relation symbol vector), but there is no increase in cost for further 

relational instances because they can be superimposed,  the tuples are inherently identified by 

the bindings, the links between addends and sums are represented, and the other properties of 

relational knowledge are implemented, as explained in 4.2. Thus while the initial cost of 

symbol-argument-argument bindings is high, their power is considerable. 

Although the synchronous oscillation models of Shastri and Ajjanagadde (1993) and the 

tensor product symbol-argument-argument binding model of Halford et al. (1994) are very 

different, they have a common property that is important to capacity limitations. This is that 

they both map dimensions of the relations (as defined in 2.3.5) to separate dimensions of the 

representation. In the synchronous oscillation model each argument is assigned to a separate 

phase in the oscillation (as illustrated in Figure 3). In the symbol-argument-argument binding 

model each argument is assigned to a separate vector space (illustrated in Figure 1C and 1D). 
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This means that the dimensions of the relation  are mapped directly into phases of oscillation, or 

into vector spaces. The role-filler models based on tensor productsvi (Smolensky, 1990) or 

circular convolution (Plate, in press) do not have this property, because all roles are 

superimposed, as are all fillers (see 4.1.1.1). As we will see in Section 5, models which map 

dimensions of the relation to dimensions of the representation imply similar capacity 

limitations.vii  

4.2. Modeling relational knowledge  

The manner in which these models implement the properties of relational knowledge 

defined in 2.2 will now be considered. The role-filler model of Smolensky (1990), based on 

tensor products, handles the storage and retrieval of relational instances, but in its original form 

it does not appear to incorporate the other features of relational knowledge. The 

symbol-argument binding model (Halford et al., 1994) was based on Smolensky�s tensor 

product formalism, but with modifications and extensions to handle all features of relational 

knowledge. The circular convolution model of Plate (in press) handles storage and retrieval of 

relational instances and gives a good account of similarity, but it does not appear to handle 

conceptual chunking (see 4.2.4) nor does it provide a general solution to systematicity (see 

4.2.9). Role-filler binding models based on synchronous oscillation (Hummel & Holyoak, in 

press; Shastri & Ajjanagadde, 1993a; 1993b) appear to have been designed to incorporate the 

properties of relational knowledge in section 2.2. We will emphasise those models that have 

been designed to implement the properties of relational knowledge.   

4.2.1 Retrieval of information 

Information stored in a tensor memory can be retrieved by representing a question as a 

tensor product and computing the inner product (dot product) of the question and memory 

tensors. The query is a partial relational instance and can be expressed as an outer product with 

one entity deleted. For example given r(a1,a2,a3) stored as part of the rank four tensor Tpqrs in the 

tensor product VR⊗ V1⊗ V2⊗ V3, then say, a3 can be retrieved by computing the generalised 

inner product vr⊗ va1⊗ va2⊗_ �T, where vr is the vector representing the relation-symbol r, va1 is 

the vector representing the argument a1, and va2 is the vector representing the argument a2. 

Generalised inner products are described in Appendix B: the _ signifies the component of the 

tensor which is �retrieved� by computing this generalised inner product. Effectively, the query 

r(a1,a2,?) has been used as input to the tensor memory, and a3 has been obtained as output. The 
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details of how this generalised inner product may be computed are contained in Appendix B, 

where it is listed as operation (3). 

An analogous procedure is specified for synchronous oscillation models by Shastri and 

Ajjanagadde (1993a, section 4.3). 

4.2.2 Truth value of a proposition can be assessed by matching against memory, in what 

is essentially a recognition process. The proposition bark(cats) can be represented by a rank 2 

tensor product, which can be matched against semantic memory by computing a generalised 

inner product (dot product) of the tensor with the representations in semantic memory 

(Humphreys, Bain, & Pike, 1989). The relational instance bark(cats) is treated as a query by 

representing it as the tensor vbark⊗ vcats as shown above and the dot product of this tensor and 

tensor representations in memory is computed, as in 4.2.1 (the procedure corresponds to 

operation (0) in Appendix B). This can be done in parallel for superimposed memories. If the 

product is non-zero, the proposition is recognized. Thus bark(cats) and bark(dogs) would 

produce zero and non-zero dot products respectively, so the latter is recognised whereas the 

former is not. For example:  

vbark⊗ vcats • (vbark⊗ vdogs  + . . + vsing ⊗ vbirds) = 0 but 

vbark⊗ vdogs • (vbark⊗ vdogs  + . . + vsing ⊗ vbirds) > 0 

The procedure defined by Shastri and Ajjanagadde (1993a, section 4.4) provides a way of 

assessing truth value of a proposition in synchronous oscillation models.  

4.2.3 Relation symbols  are represented as separate vectors in the vector space VR. In 

synchronous oscillation models the symbol can be represented as a unit firing in a separate 

phase in the oscillation, or by an additional node connected to role and filler nodes.   

4.2.4 Conceptual chunking serves to reduce the rank of a tensor product representation of 

a relation. It can be implemented by convolution, concatenation (illustrated in Figure 1E), 

superposition (in which vectors representing arguments are added), and by defining a special 

function that associates an outer product to a single vector. The outer product representation of 

r(a,b,c) can be reduced to r(a,b/c), by concatenating or convolving vectors b and c  into a single 

vector. Features of b and c can still influence the computation of the relation with a because 

activation can be propagated from units in b and c to a (Figure 1E), but the representation 
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functions as a binary relation, and neither the relation between b and c, nor the three-way 

relation between a,b and c is directly accessible. 

Unchunking can be achieved by differentiating vectors into other vectors. Algorithms for 

this have been defined in the STAR analogical reasoning model (Halford et al., 1994; Halford, 

Wilson, & McDonald, 1995; Halford, Wilson, & Phillips, 1996). In general, lower rank 

representations can be differentiated yielding more complex relations. For example, in Figure 

2E, if the vector representing b/c were differentiated into separate vectors representing b and c, 

and if all four vectors including the relation-symbol vector (not shown) were then appropriately 

interconnected, as for a Rank 4 tensor product, a ternary relation could be represented.  

A chunked representation is wholistic in that features are represented but are not 

differentiated into dimensions. Many concepts are wholistic initially and progress to 

dimensional representation (Smith, 1989). This is like unchunking in that it entails 

differentiation of a vector into two or more vectors, and to representation of the relation 

between them.  

It is unclear how Plate�s (1995) circular convolution model would handle conceptual 

chunking, at least without significant additions. Chunking involves a compression of a 

relational instance into an unstructured whole, so the relations between components become 

inaccessible. However the circular convolution is already a compression (a projection of the 

tensor product) and it is not clear how a further compression that incorporates the psychological 

properties of conceptual chunking could be achieved. A further problem is that circular 

convolution relies on component vectors randomly generated from a guassian or uniform 

distribution. This has the effect that there is no similarity (as measured by the dot product) 

between chunked and unchunked representations. Thus, for example, features from b and c 

would not, in general, could not influence that computation of the relation with a in R(a,b/c). 

Hummel and Holyoak (in press) represent the equivalent of a chunk in a synchronous 

oscillation model by having units that represent part or all of a proposition. For example 

loves(John,Mary) can be represented as features, as roles and fillers, or as an intact proposition. 

In the latter case it can be an argument to a proposition such as knows(Sam,loves(John-Mary)).   

4.2.5 Higher-order relations and hierarchical structures can be modeled by representing 

higher-order relational instances with chunked lower-order relational instances as arguments. 

Consider the relational instance; 
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cause(shout-at(John,Tom),hit(Tom,John)).  

The relational instance shout-at(John,Tom), normally represented as a rank 3 outer 

product in our model, is chunked into a single vector shout-at1, as described in 4.2.4, and 

hit(Tom,John) is chunked similarly as hit1.  The higher-order relation cause(shout-at1,hit1) is 

then represented as a rank 3 outer product. 

The repeated variable constraint requires that fillers be bound to the correct roles, as 

pointed out in 2.2.5. The STAR analogy model (Halford et al., 1996) can achieve this by 

ensuring hierarchical structures are in correspondence. Consider the relational instances;  

cause(shout-at(John,Tom),hit(Tom,John)), 

cause(shout-at(Mary,Wendy),hit(Wendy,Mary))  

These would be represented as chunked relational instances, as described above. The 

model maps one level of the hierarchy at a time, then moves to another, usually lower, level and 

recursively matches corresponding arguments of source and target. Thus the model would first 

map cause(shout-at1,hit1) to cause(shout-at2,hit2). It would then unchunk shout-at1 and shout-at2 

and map shout-at(John,Tom) to shout-at(Mary,Wendy). The model has a bias to maintain the 

mappings of John to Mary and Tom to Wendy when processing other parts of the structure.  It 

would map hit(Tom,John) to hit(Wendy,Mary), consistent with previous mappings, thereby 

maintaining structural consistency. It would also compute a goodness-of-mapping score that 

reflects degree of structural correspondence. The score would be higher for this mapping than 

for the inconsistent mapping;  

cause(shout-at(John,Tom),hit(Tom,John)) to;  

cause(shout-at(Mary,Wendy),hit(Mary,Wendy))  

The model enforces the repeated variable constraint as a consequence of maintaining 

structural consistency. Because the person bound to the agent role of �shout-at� is bound to the 

object role of �hit� in the source, this constraint is maintained in the target because of biases in 

the algorithm to ensure structural correspondence between base and target. 

Shastri and Ajjanagadde (1993a, section 4.5) provides a synchronous activation based 

mechanism that enforces the repeated variable constraint. 
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4.2.6 Omni-directional access is implemented by the retrieval process in 4.2.1 because a 

query can be composed of a relational instance with any component missing. Thus a ternary 

relation represented as vR⊗ v1⊗ v2⊗ v3 can be queried by any of the following means: 

vR⊗ v1⊗ v2⊗_   •  vR⊗ v1⊗ v2⊗ v3 = v3 

vR⊗ v1⊗_  ⊗ v3  •  vR⊗ v1⊗ v2⊗ v3 = v2 

vR⊗_⊗  v2⊗ v3  •  vR⊗ v1⊗ v2⊗ v3 = v1 

_⊗ v1⊗ v2⊗ v3  •  vR⊗ v1⊗ v2⊗ v3 = vR 

The procedure for answering wh-queries specified by Shastri and Ajjanagadde (1993a, 

section 4.7) essentially embodies the omni-directional access property. 

4.2.7 Role representation  

The role that an argument fills can be indicated by its position relative to other arguments, 

as discussed in 2.2.7, and its implementation in symbol-argument-argument bindings is described 

in 4.1.1.2. The synchronous oscillation model of Shastri and Ajjanagadde (1993a) uses role-filler 

bindings as described in 4.1.2. 

4.2.8 Decomposability of relations 

The relation represented can be decomposed into the derived relations  by replacing the 

vector in any role with a special vector, namely the sum of all the basis vectors used to represent 

fillers on that axis of the tensor. Thus a representation of the ternary relation R(x,y,z) can be 

reduced to representation of R3 = (x,y) by entering this special vector on the units representing 

z. Such "collapsing" of a representation to a lower rank has been employed in models of 

memory (Humphreys et al., 1989) and of analogical reasoning (Halford et al., 1994). 

In the tensor product representation of an n-ary relation with instances r(a1,a2,�,an), the 

effect of variations in any proper subset of {a1,a2,�,an} on the remaining argument(s) can be 

computed. For example, suppose that one wishes to use the fixed value b in the final role (the an 

role) and consider the induced (n-1)ary relation Ran=b = {(a1,a2,�,an-1) | (a1,a2,�,b) ∈  R}. This 

effect can be achieved by clamping the value in the an role of the tensor network to be b. This 

can, of course, be done with any role, not just the an role, and can be iterated so that, eventually, 

any desired set of roles are fixed in this way. For synchronous oscillation models, the 
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representation of partially instantiated relations in Shastri and Ajjanagadde (1993a, section 3.1) 

effectively decomposes relations in analogous manner. 

4.2.9 Relational Systematicity can be handled by using higher-order relations, as in 4.2.5. 

For example implies(>(a,b),<(b,a)) can be represented by the tensor product of vectors 

representing implies and chunked representations of >(a,b) and <(b,a). Systematicity is 

achieved in the synchronous oscillation model of Shastri and Ajjanagadde (1993a, Section 4.2) 

by connections that ensure that corresponding arguments oscillate in synchrony (e.g., that the 

first role-representation in >(a,b) oscillates in synchrony with the second role-representation in 

<(b,a)). 

The circular convolution model of Plate (1995) incorporates systematicity, but there is 

some doubt as to the generality of the procedure used. In order to enable the model to recognize 

the structural similarity between �Spot bit Jane, causing Jane to flee from Spot� and �Felix bit 

Mort, causing Mort to flee from Felix� (by contrast with the superficially similar, but 

structurally dissimilar �Rover bit Fred, causing Rover to flee from Fred�), Plate used 

contextualised representations. These entailed adding the property �flee-from� to the 

representation of Spot, Felix, and Rover, and the property �bite-object� to the representation of 

Jane, Mort, and Fred. This handles some structurally similar higher-order relational instances, 

but depends on representing dogs as entities people flee from and people as entities dogs bite. 

This approach lacks plausibility in relational instances such as �Jane smiled at John, causing 

John to like Jane� because it is implausible that smiling should be part of the representation of 

Jane (she may not always smile, even at John), or that liking should be part of the representation 

of John (he may not always like people). The circular convolution model appears to require 

additional means of representing structure in order to handle systematicity, and the 

computational cost of these additions is unknown.  

4.2.10 Dimensionality of relations 

The dimensionality of a relation was defined in 2.3.5 as the number of arguments. In 

symbol-argument-argument tensor product representations, a separate vector is used for the 

relation-symbol and for each argument, so  rank is one more than dimensionality. We have used 

the convention of specifying number of arguments by n , and we will use the convention of 

specifying ranks by k.  Therefore in this type of model k = n + 1. The components of a 
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representation are the relation symbol and the argument representations, so the number of 

components  = k. Furthermore if k-1 ranks are known there is at least some potential to predict 

the kth rank (illustrated in 2.3.5) so dimensionality = k-1 = n. Even if relations are represented 

by formalisms other than tensor products, symbol and arguments must be represented 

independently of each other, or be individually identified, so that they retain their identity when 

linked (bound) to other components. Note also that, in the context of neural net models, the 

dimensionality of a relational concept should not be confused with the number of elements in a 

vector, which is also sometimes referred to using the term �dimension�. As noted in 4.1.3 the 

models of Halford et al., (1994) and Shastri and Ajjanagadde (1993a) map dimensions of 

relations directly into dimensions of representations, whereas other models do not. 

4.2.11 Analogy, planning and modifiability 

Analogy can be successfully modeled using the tensor product representations of 

relations outlined in 4.1 (Halford et al., 1994; 1995; 1996). A sophisticated model of analogy 

based on synchronous oscillation has been presented by Hummel and Holyoak (in press). 

With symbol-argument-argument models based on tensor products, relations can be 

modified on line by changing the relation symbol, which selects a new set of relational 

instances. Relational instances are stored as outer products of symbol and argument vectors, 

and outer products are summed to form a tensor. We will illustrate with arithmetic addition and 

multiplication. Addition would be stored as vadd⊗ v2⊗ v3⊗ v5 + vadd⊗ v3⊗ v6⊗ v9 + . . . , while 

multiplication would be stored as vmult⊗ v2⊗ v3⊗ v6 + vmult⊗ v3⊗ v6⊗ v18 + . . . Changing the 

symbol vector from vadd to vmult selects a new set of relational instances, and changes the 

mappings between addends and sum or product. 

4.2.12 Strength can be represented by multiplying the outer product representing the 

relational instance by a scalar, before adding it to the tensor. Typically the scalar would have a 

value between 0 and 1 indicating how frequently the relational instance is found to be true: for 

example bigger-than(dog, cat) would have a scalar a little less than 1 to take account of the 

small minority of dogs (e.g., chihuahuas) that are smaller than cats. 

4.2.13 Operations on relations. Operations on relations can be implemented using tensors. 

For completeness we provide one tensor implementation for each of the relational operators. 

The simplest implementation assumes local (with all unit values 0 except  for a single unit with 
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value 1) argument vector representations. Relaxing this assumption introduces other properties 

such as cross-talk, but at the expense of not implementing exact analogues of relational 

operators. Under the local vector assumption, then, the set operators union, intersection and 

difference are implemented by pairwise addition, multiplication and subtraction (respectively) 

of binding units with the same index. The upper limit on activation eliminates multiple 

occurrences of the same element (consistent with set union), and the lower limit prevents 

subtraction of nonexisting elements (consistent with difference).  

The select operator retrieves relational instances satisfying condition C. Since C is an 

arbitrary boolean expression, the select operator is a very general and powerful operator. For 

our purposes, however, we consider a restricted version, where C has the form of a conjunction 

of filler-role pairs: (a1,A1) ^ ... ^ (am,Am) (i.e., select with filler a1 at role A1 and filler a2 at role 

A2, etc). The corresponding tensor implementation is to compute the outer product of the fillers 

a1 to am at the specified tensor axes A1 to Am, respectively. Axes with unspecified fillers use a 

special filler vector I = (1,...,1). Thus, the rank of the tensor (TC) representing the condition C is 

the same as the rank of the tensor (TR) representing relation R. Next, we perform a pairwise 

multiplication TC . TR, resulting in a tensor (Ts) representing the selected relational instances. 

The project operator returns the relation between components at the specified roles. The 

equivalent tensor operation is summation onto the corresponding axes. Formally, given a 

relation R with attributes (roles) A1, ..., Ak and a corresponding tensor T with axes labeled 

A1, ..., Ak, then projectA R, is implemented as Σ<A1, ..., Ak>-A, where A is the list of projected 

attributes (or tensor axes) and <A1, ..., Ak>-A is the difference of the two lists (i.e., sum onto the 

axes not in the list of projected attributes). The rank of the resulting tensor is the same as the 

arity of the projected relation. 

Often one wants to cue a k-ary relational memory with k-1 components to retrieve the 

target at the kth role. At the relational level, the target is retrieved by successive application of 

the select and project operators. The select operator retrieves instance(s) containing all k-1 

components at the specified roles, and the retrieved instance(s) is applied to the project operator 

which returns the target at the nth role. At the tensor level, this combination of select and project 

is realised by taking the inner product of the k-1 components with the tensor, resulting in a 

vector representing the retrieved target(s). This tensor operation is specified in Section 4.2.1. 
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The outer join of two relations is simply the outer product of the corresponding tensors. 

The equi-join, however, is more complicated as it requires only joining those instances that 

share a common argument at the specified roles. Suppose the relation Taller = 

{(John,Mary),(John,Bob), (Mary,Tom)}, and its corresponding tensor T = vJohn ⊗  vMary + vJohn 

⊗  vBob + vMary ⊗  vTom (the relation symbol is not part of the join operation). One way of 

implementing the equi-join of the Taller relation with itself is to first, cue the tensor T, with a 

possible argument at the Person1 role (e.g., vMary . T). This results in the vector vTom. Then, cue 

the tensor again, but at the Person2 role (i.e., T . vMary). This results in the vector vJohn. Provided 

one maintains the cue vector vMary and the two retrieved vectors vJohn and vTom, one can 

construct the tensor representing the equi-join as vJohn ⊗  vMary ⊗  vTom. Other instances are 

retrieved in the same manner by cueing with different fillers at the joined roles and adding the 

result to the tensor representing the equi-join. 

To summarise section 4, the properties of relational knowledge can be incorporated in 

neural net models based on either symbol-argument-argument bindings using tensor products, 

or on role-filler bindings using synchronous oscillation. Representing these properties 

effectively depends on a number of additional features, but the basic properties of the 

representations are important. Despite their differences, both types of model have the property 

that the dimensions of a relation, the symbol and arguments (fillers) are mapped into 

dimensions of the representation, either vector spaces or phases of oscillation. This means that 

components of the relation are represented as intact entities, which retain their identity in the 

binding, and this is a major factor in the computational cost of representing relations.  

5.0 Relational complexity and processing load  

So far we have been considering properties of human cognitive functioning, with the aim 

of accounting for processing capacity limitations observed in psychological data. We have 

defined cognitive complexity intuitively in terms of the number of interacting variables 

represented in parallel, and have conceptualised it in terms of the number of arguments in a 

relation. However we wish to explain processing capacity limitations, and two approaches to 

neural net modeling of relational knowledge have independently identified possible 

explanations (Halford et al., 1994; Shastri & Ajjanagadde, 1993a). To explain how processing 

loads are imposed by relations we need to consider computational complexity which refers to 

the amount of computation required to perform a task. 
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Complexity analysis at the computational level is a very general, potentially 

algorithm-independent method of determining the inherent difficulty of a particular problem. 

The classic results from computer science have been to identify two very broad classes of 

problems, called P and NP. In the most general terms, complexity of the former is a polynomial 

function of some measure of the input, while for the latter it is an exponential (or worse) 

function. Intuitively, an NP-complete problem is intractable, in the sense that the time required 

by any known algorithm to solve the problem grows explosively with the size of the problem 

(the n). NP-complete problems can be approached in a number of ways including using an 

approximate/heuristic algorithm, by avoiding large instances of the problem, or by considering 

only subclasses of the problem.  An algorithm-independent analysis is performed by showing 

that the problem can be transformed in polynomial time to another problem of known 

complexity. The power of this method was demonstrated by Tsotsos (1990) with respect to 

vision, by showing that certain problems in vision transform to NP-complete problems. 

However while analysis at this level has been successful with vision, it does not seem to 

capture processing capacity limitations in cognitive tasks such as reasoning and language. The 

paradox is that while aspects of vision are intractable by this analysis (Tsotsos, 1990), vision 

tasks do not appear to impose the kind of demand defined in 2.1.3, and which has been observed 

in higher cognition processes. The computationally complex tasks of vision appear to be 

performed without measurable processing demands of the kind discussed in 2.1.3, the standard 

explanation being that the visual system is a module with high capacity for specialised input, as 

noted in 1.1. By contrast, many computationally simple tasks in higher cognition impose high 

processing demands. Ordinary arithmetic, for example, requires relatively little computation, 

but imposes a high cognitive demand on the human performer, and even such computationally 

simple tasks as transitive inference problems, in which for example >(a,b) and >(b,c) has to be 

integrated into monotonically-larger(a,b,c) impose a measurable processing load on adult 

humans. Tsotsos (1990) shows that visual search is inherently complex because of the 

combinatorial explosion that occurs as the number of elements to be searched increases. 

However no such combinatorial explosion occurs in ordinary arithmetic operations or transitive 

inferences. We must seek the explanation for observed processing demands of such tasks in the 

architectures employed in higher cognitive processes, for which algorithm complexity is more 

relevant. 
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Algorithmic complexity analysis considers how many steps, or how much space is 

required to compute a given problem for a given algorithm. In the former case, complexity 

depends on the function which links the number of computational steps required to the size (or 

length) of the input.  A linear time algorithm will complete in Θ(n) steps (i.e. of the order of n 

steps), where n is size of problem (e.g. number of inputs).  A polynomial-time algorithm will 

complete in Θ(p(n)) steps for some polynomial p(n). viii An exponential-time algorithm will 

complete in Θ(cp(n)) steps, so the number of steps grows explosively with size of input. Problem 

complexity is the least of the complexities of all algorithms to solve the problem. 

Both synchronous oscillation and tensor product/convolution models predict limitations 

on the complexity of relational schemas that can be activated in parallel, though the bases of the 

limitations are somewhat different. We will examine both types of model in an attempt to find 

explanations for the limitations observed in the psychological data reviewed in 3.3. 

5.1 Synchronous oscillation models are limited by the number of distinct oscillations. 

This is determined by the ratio of the period of oscillation to the window of synchrony (which is 

related to the duration of peak, and is approximately the maximum temporal spacing between 

peaks that are recognized as in phase). This ratio is estimated by Shastri and Ajjanagadde 

(1993a) to be about five, and by Hummel and Holyoak (in press) to be four to six (to illustrate, 

notice that in Figure 3, approximately 5 distinct oscillations would be possible). Given the 

criteria for relational knowledge in 2.2, five distinct entities would permit quaternary relations 

(a relation symbol and four arguments) to be represented without crosstalk. However Shastri 

and Ajjanagadde suggest that up to 10 entities could be related with crosstalk. Psychological 

data discussed in 3.3 appears to correspond to Shastri and Ajjanagadde�s prediction of capacity 

without crosstalk, possibly because performance criteria used in experiments (e.g., low error 

rates to facilitate analysis of latencies) would tend to preclude crosstalk. However, as noted in 

4.1.2, the power of models by Shastri and Ajjanagadde, and by Hummel and Holyoak, depend 

on additional features, and there does not appear to be any way of calculating the cost of these 

using computational complexity theory. 

5.2 Tensor product models entail a computational cost in space and time.  We will 

consider tensor product representations of relations using symbol-argument-argument bindings 

as proposed in 4.1.1.2, focusing on the process of accessing the kth component of a relation, 

given the k-1 other components, as described in 2.2.6 and 4.2.6.  Then we will consider 
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role-filler bindings, first based on tensor products to facilitate comparison, and because existing 

circular convolution models do not appear to incorporate all properties of relational knowledge 

(as noted in 4.2). Then we will consider circular convolution models insofar as they can be 

directly compared with tensor product models. Computational cost can be considered from 

either a parallel or a sequential processor point of view, but the former is more appropriate to 

emphasise here. 

5.2.1 Complexity for symbol-argument-argument bindings 

We will consider time complexity then space complexity for the 

symbol-argument-argument binding models. 

5.2.1.1. Time complexity. In the parallel processing model, one assumes that there is a 

processor for each unit of the vectors representing symbol and argument(s), a processor for 

each binding unit, and some addition units, to be described below. In order to access the kth 

component of a relational instance, given arguments a1,�,ak-1, it is necessary to propagate the 

component values to all the relevant binding units (1 step); each binding unit then multiplies its 

binding memory contents with the values propagated for the k�1 arguments - this requires k�1 

multiplications. Then it is necessary to add up all these products. How long this takes depends 

on the rank of the tensor and on the length of the vectors - let us suppose all vectors are of length 

n (so that there are nk binding units in the tensor network). It will be necessary to add up nk�1 

products to form each component of the symbol output. This is done by the addition units 

referred to above. The most rapid way to add many items with many processors is to cascade 

the additions (see Figure 4 for a binary cascade adder): 

Insert Figure 4 here 

This arrangement adds 23 items in 3 steps. In general m items can be added together in 

ceiling(logb(m)) steps, where b is the fan-in of the adders (two in the diagram). If we assume 

enough processors in the addition unit pool, then the addition step requires ceiling(logb(nk�1)) 

= ceiling((k�1)logb(n)) steps, for a total of 

 k  +  ceiling((k�1)logb(n)) (2) 

steps. If b is made large enough, then the second term can be made small, though always at least 

one. 
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Neurons may have of the order of 10,000 input connections, but as not all connections 

may be appropriate to the computation, 10,000 should probably be regarded as the upper limit. 

A two-level cascade of 10,000-to-1 adders permits addition of 100 million binding units, so we 

could approximate the second term by the constant 2.  Thus at most k+2 steps are required to 

access a missing component of a relational instance. 

Similar computations for a sequential implementation to access the kth component of a 

relational instance, given arguments a1,�,ak-1 yields the expression (2k-1)nk for the number of 

steps. The important finding however is that with full parallel implementation the tensor 

product representation is not expensive in terms of time (number of steps), but its spatial 

complexity is quite large, as shown below. 

5.2.1.2. Space complexity. The basic requirement is for the nk binding units of the rank k 

tensor and the kn input/output units. In addition to this, in a parallel implementation there would 

be a need for cascade adders for each side of the tensor network. Assuming that a two-stage 

cascade is adequate (i.e. that b2 ≥ nk�1, so that b ≥ n(k�1)/2), each cascade would use at most b + 1 

adders, and there would be n cascades per side (one for each component) and k sides - at most 

nk(b + 1) adders in all.  The nk binding units dominate the space complexity, providing of course 

that b is not larger than necessary, that is, not significantly larger than n(k�1)/2.  Therefore the 

limiting factor with this representation is the number of binding units, which increases 

exponentially with dimensionality.  

The representation of a single relational instance is quite expensive in terms of space, 

requiring nk units to represent that instance, but all combinatorially possible other relational 

instances can then be represented in the same tensor. (Here n is the length of the vectors, and k 

is the number of vectors; i.e. one more than the number of arguments). Thus superposition does 

not incur additional computational cost. 

To achieve dynamic binding, the binding units must be interpreted as activations as noted 

in 4.1.1.1, and activations demand processing resources (Just & Carpenter, 1992). Therefore the 

rank of relations will be limited by resources available, that is by capacity as defined in 2.1.5. 

This is a soft limit, because tensor product representations have the property of graceful 

degradation (Wilson & Halford, 1994). More recent simulations in our laboratory have 

extended this finding. For example, a rank 5 tensor of side 16 (i.e. n=16, k=5) with up to 93.75 

percent of of the binding units deleted, reliably distinguished stored facts (relational instances) 
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from nonfacts. Such a tensor has the same number of active binding units as an intact rank 4 

tensor with side 16. Initial results suggest that the robustness increases significantly as the n 

increases. Thus it appears to be possible to simulate a rank k+1 tensor with the number of 

binding units available to an (intact) rank k tensor, over part of the range of k, but with 

processing becoming progressively poorer at successively higher ranks. 

This is a soft limit, because tensor product representations have the  property of graceful 

degradation (Wilson & Halford, 1994). More recent simulations in our laboratory have 

extended this finding to tensor product networks of ranks up to 7. For example, a rank 5 tensor 

of side 16 (i.e. n=16, k=5) with up to 93.75 percent of of the binding units deleted, reliably 

distinguished stored facts (relational instances) from nonfacts. Such a tensor has the same 

number of active binding units as an intact rank 4 tensor with side 16. Our results suggest that 

the robustness depends on the ratio of number facts stored to number of binding units: the lower 

the ratio the more robust the network. Provided the value of n, the number of components in 

each representation vector, is reasonably large (32 was typically adequate in our simulations, 

for tensors of rank 3 and up, and up to 4000 facts stored) it appears to be possible to simulate a 

rank k+1 tensor with the number of binding units available to an (intact) rank k tensor, for k = 2 

to 6 (at least). Another way of looking at this is to say that the apparently very regimented 

architecture of a tensor product network is not necessary in order to achieve acceptable memory 

performance, as 85% or more of the binding units can be removed (i.e. caused to have zero 

output) with impunity. 

5.2.2 Complexity for the role-filler method. Relations can be represented using role-filler 

bindings, as explained in 4.1.1.1, provided relational instances are identified. We will assume 

this is done using a separate set of units, because of the implausibility of an identifying code. 

Smolensky (1990) used tensor products, and Plate (1994, Appendix I) used circular 

convolution. For the purposes of direct comparison with 5.2.1, we calculate the time and space 

complexity of accessing relations using the tensor product. Again, we consider the case of 

accessing the kth argument of a k-ary relation given k-1 arguments. 

5.2.2.1. Time complexity. 

Given that the complex cue has already been composed, then the role-filler method of two 

major steps: (1) determining the tensor (representing the relational instance) with the highest 

similarity (dot product) to the complex cue; and (2) retrieving the target from that tensor. 
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Assuming k roles and n fillers, then each relational instance requires nk binding units. 

Further, since each relational instance is represented by a separate set of units, the dot product 

of the cue with each instance can be performed in parallel. Therefore, the time to compute the 

highest match is: 1 step to propagate the activations of each cue unit to each tensor unit plus 1 

step to multiply cue and tensor elements (pairwise multiplication step of the dot product); and at 

most 2 steps to sum the activations of each multiplication (summation step of the dot product) - 

assuming a fan-in of at most 10,000 units as for the symbol-argument method. Theoretically, a 

winner-take-all network can compute the highest match in 1 step assuming exponential 

functions and complete interconnection between competing units (Yuille & Geiger, 1995). 

However, with limited fan-in at most 10,000 relational instances can be compared in parallel. 

Once the winning tensor is determined, it must be reinstantiated into working memory so that 

the target component can be retrieved. We will assume that this takes 1 step. In all, at most 6 

steps are required, for relations of less than 10,000 instances.  

The time required to access the target component is: 1 step to propagate the target's role 

activations to the binding units, 1 step to multiply the role and tensor activations, plus 1 step to 

sum activations (since we can assume that the number of roles will be small).  The total time for 

the role-filler is 9 steps. 

Although the time complexity is independent of the number of roles, we have not 

considered the time to compose the cue, which is necessarily O(k) steps since each of the k-1 

arguments in the cue must be presented serially over the same group of binding units. The time 

complexity for composing the cue in the symbol-argument method depends on whether the cue 

arguments are presented to each separate group of units in parallel or in series. The total time to 

compose the cue and retrieve the target is k steps (parallel cues), or 2k-2 steps (serial cues). 

Either way, the time for both methods is low (i.e., linear in k). 

5.2.2.2 Space complexity 

Each relation is represented as the sum of outer products of role and filler vectors. This 

requires a rank 2 tensor with n possible fillers by k possible roles. Therefore the number of units 

required to represent any one relational instance is nk. Under the assumption that each relational 

instance is stored on a separate group of units, the total number of units needed to store the 

entire relation is |R|nk, where |R| is the number of instances in the relation. In addition, we 

require nk units to compute the complex cue, and |R| winner-take-all units to compute the 
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winning instance. Finally, we need nk units to store the retrieved instance, and n units for the 

retrieved argument. In total, there are |R|nk + nk + |R| + nk + n = (|R| + 2)nk + n units (i.e., 

O(|R|nk)). Clearly, the space complexity depends on the growth in number of instances as a 

function of n and k. In the worst case (|R| = nk - all possible instances), the space complexity is 

O(knk+1). In the best case (|R| = 1 - all one instance relations), the space complexity is O(nk). 

Average case depends on knowing how many instances are likely to be in any one relation. 

Under the condition that working memory can store at most C then tasks requiring storage of 

more instances would force a serial strategy. Under this scenario, the savings in space are traded 

for an increase in time. 

5.2.3. Role-filler models using circular convolution 

As noted in 4.2.9 Plate�s (in press) circular convolution model does not appear at present 

to incorporate all properties of relational knowledge, and the computational cost of the 

additional features required cannot be estimated. Nevertheless, we will examine time and space 

complexity of circular convolution models for the insights that can be obtained. 

The time complexity for circular convolution is the same as for the role-filler tensor 

method, discussed in 5.2.2.1. Assuming appropriately connected units for implementing 

circular convolution, each role-filler convolution requires 1 step to propagate activation for 

each argument, with the remaining processing requiring only a constant number of steps. Thus, 

the time complexity is still O(k).  

Space complexity for circular convolution models is more difficult to determine. Plate 

(1994) used 840 unique role-filler combinations superimposed over 512 units. Thus, circular 

convolution permits more role-filler pairs than there are units. However, this method assumes a 

cleanup memory which does not appear to have been implemented as a neural net. To avoid 

ambiguity, each relational instance needs to be represented on a different set of units (unless we 

assume an implausible label attached to each relational instance). The required cleanup 

memory has essentially the same form as the tensor product implementation of role-filler 

bindings, the complexity of which is discussed in 5.2.2. In the worst case, where most relational 

instances must be stored, complexity of the role-filler representation is worse than for 

symbol-argument-argument representations. Plate�s (1994) circular convolution model has 

achieved interesting results, and the approach has a lot of potential, but its restricted ability to 

implement the properties of relational knowledge, and the requirements of the cleanup memory, 
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mean that in the context of working memory theory the savings in computational cost may be 

more apparent than real. 

5.2.4 Neural net limits on relational complexity 

Although there are still some unresolved issues in neural net representation of relations, 

there is a strong indication that the limit is in the number of dimensions, or number of entities 

related, rather than in the total amount of information. Shastri and Ajjanagadde (1993a) showed 

that synchronous oscillation models can represent quite large amounts of information in 

parallel, but only a small number of distinct entities can be related (they present many complex 

cases of reasoning without more than three distinct entities being represented in parallel). 

Tensor product symbol-argument-argument models also imply a limit in the number of distinct 

entities, rather than in amount of information. In these models computational cost is polynomial 

in vector size but exponential in the number of dimensions, so the amount of information that 

can be represented by a single vector is not significantly limited, but the number of vectors that 

can be bound in one representation of a relation is limited. Both types of neural net models are 

consistent with psychological data in implying that the limit is in the number of distinct entities 

that can be related in parallel. 

It is natural to ask why these two models share this limitation. The probable reason is that 

the synchronous oscillation models, and tensor product symbol-argument-argument models 

have been designed to comprehensively model higher cognitive processes, and consequently 

incorporate the properties of relational knowledge defined in 2.2. The computational cost is 

attributable to dimensions of relations being mapped to dimensions of representations, either 

vector spaces or phases of oscillation, as noted in 4.1.3 and 4.2.13. Thus the computational 

costs that we have observed are not inherent in specific architectures, but are inherent in 

processing relational knowledge. The more adequately a model incorporates the features of 

relational knowledge the more clearly it entails these costs. 

Tensor product role-filler binding models (Smolensky, 1990) incorporate some but not all 

the properties of relational knowledge, and their computational cost depends on both number of 

arguments and number of instances stored. Importantly, in general they do not map dimensions 

of relations to dimensions of representations, and so their computational cost is less clearly 

related to dimensionality of relations.  These models are efficient with few relational instances, 

but their cost relative to symbol-argument-argument binding models increases when many 
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instances are stored. Circular convolution models (Plate, 1995) appear at first sight to avoid 

computational costs in space because vector size is constant in the number of entities related. 

However it is not clear that circular convolution models incorporate all properties of relational 

knowledge, and the cost of the additional features required is unknown. Furthermore, they 

produce ambiguous output and depend on cleanup memories that store every relational 

instance. This incurs a major computational cost that depends on the number of arguments and 

on the number of instances stored, but in the worst case can exceed the computational cost of 

symbol-argument-argument bindings. 

Synchronous oscillation models suggest about five entities can be processed in parallel, 

and this would permit one quaternary relation to be represented (symbol and four arguments). 

The empirical literature reviewed in 3.3 indicated quaternary relations are processed in parallel, 

so there does not appear to be a major disagreement here. Shastri and Ajjanagadde (1993a) 

suggest up to 10 entities can be related with crosstalk. Our model agrees to the extent that it 

implies a soft limit on processing capacity, with performance degrading gracefully as 

processing load increases.  

The ability to process relations more complex than quaternary, though with increased 

error, may be important in creativity, where early ideas are often imprecise and difficult to 

communicate. Creative thought also probably requires processing of complex relations, 

because it entails integrating known relations, and producing new relations which we do not yet 

know how to chunk or segment. It is possible that processing of relations of high dimensionality 

is important in creativity, but the increased risk of error would make confirmation and 

explicitation essential. 

6.0. Empirical evidence 

Processing load should be a function of relational complexity, which should limit the 

complexity of tasks that can be performed where chunking or segmentation are inhibited, either 

by task structure (e.g., indecomposable relations), or by experimental manipulation.  

Performance predictions depend on analyses of the relations processed, and these analyses in 

turn need to be confirmed empirically.  Therefore testing the theory entails three steps: 

1. Develop a process model of the task and empirically verify the model.  This can entail 

an extensive programme of developing and testing models. 
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2. Analyse relations that must be processed. Where possible, apply the reduction 

technique outlined in 3.4.3 to determine effective relational complexity.  If the task entails steps 

performed serially, the relevant step is the one in which the largest number of relations is 

processed (i.e. the peak load).  Chunking and segmentation must be controlled (see 3.4.1). 

When analysing tasks, it is useful to think of the number of interacting variables that are 

processed in parallel in a given step. Features which remain constant do not contribute to 

complexity because they can be readily chunked. 

3.  Test predictions derived from (2) by manipulating relational complexity, with other 

factors controlled. It is necessary to manipulate the information which needs to be processed in 

parallel in order to make a decision. This sometimes entails preventing serial processing (an 

example is given in 6.1.4). 

6.1 Complexity and processing load 

Our purpose in this section is to show how relational complexity analysis may be applied 

to tasks which are already well understood, and for which reasonably well validated process 

models already exist.  We adopt a �breadth first� approach, with the aim of showing that 

relational complexity is applicable to a wide range of phenomena in higher cognition, and 

therefore offers worthwhile generality. 

6.1.1 Transitive inference.  Transitive inference has been shown to be a ternary relation 

by the reduction technique in 3.4.3. This is consistent with a number of well substantiated 

models (Sternberg, 1980; Trabasso, 1975) which show that transitive inferences are made by 

integrating the premise elements into an ordered triple.  For example, the premises "Tom is 

smarter than John, John is smarter than Stan� can be integrated into the ternary relational 

instance monotonically-smarter(Tom,John,Stan). Maybery, Bain, & Halford (1986) showed 

that premise integration, which entails a ternary relational instance, should impose a higher 

processing load than premise coding, which entails binary relational instances, such as 

smarter-than(Tom, Stan).  The middle term can be ignored once integration has occurred, so 

generating a conclusion entails only a binary relational instance smarter(Tom,Stan). Previous 

models predicted that processing of negatives (e.g., �John is not as tall as Tom�) would increase 

processing load but these models had not predicted the processing load of premise integration 

because it occurs in every form of the task, and the models were oriented to accounting for task 

differences. 
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Maybery, et al. (1986) tested the prediction that premise integration would impose a high 

processing load using a sentence verification format for transitive inference, with adult 

participants.  Segmented presentation was used, so the second premise did not appear until the 

participant indicated that first premise had been encoded.  When the participant indicated that 

the second premise was encoded and the premises had been integrated, a target appeared to 

which the participant responded by pressing one of two buttons indicating whether the target 

was consistent with the premises.  Probe reaction time, saying "beep" to a tone, was used to 

assess information processing loads. The control task required verification of separate premises 

without integration; for example, "Tom is smarter than John, Peter is smarter than Stan".  

Experimental and control tasks were very closely matched in other respects.  

Relational complexity theory predicts there should be significantly longer probe reaction 

time when the probe occurs while the second premise is being processed than during processing 

of the first premise or the target, but there should be no such effect with the matched 

nonintegration control task.  Maybery et al. (1986) found a significant probe position by 

integration/nonintegration interaction of this form, and showed that alternative explanations 

based on response interference and similar processes could not account for the effects. 

Processing negatives, previously thought to impose high demands, imposed less load than 

premise integration. 

6.1.2. Verifying relations. The prediction that binary relations impose higher processing 

loads than unary relations is supported by letter-match data. Posner and Boies (1971) showed 

that in the letter-match task processing load, as indicated by a  probe reaction time secondary 

task, was greater when the second letter was presented.  Coding of one letter is equivalent to a 

unary relation; e.g., letter(c), representing that the stimulus is the letter "c". When the second 

letter is presented it also must be encoded, but then a binary relation such as same(c,c), or 

different(c,k), must be represented. The theory accounts for the higher load observed in the 

comparison task, because coding requires a unary relation, whereas comparison requires a 

binary relation. Dimensionality does not preclude other factors, such as memory retrieval, 

contributing to difficulty, as suggested by the finding that name match is harder than physical 

match (Posner & Boies, 1971). 

6.1.3. The Tower of Hanoi (TOH) puzzle is another task for which there are well 

validated process models, and it is a good example of a task that entails planning, which 
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depends on relational knowledge.  TOH comprises three pegs and a variable number of discs.  

The discs are placed initially on peg A with the largest on the bottom, the next largest above it, 

and so on.  The goal is to move all discs from peg A to peg C, without moving more than one 

disc at a time, or placing a larger on a smaller disc. Complexity in TOH depends on the levels of 

embedding of the goal hierarchy, a metric that has been commonly used to assess complexity 

(Just et al., in press).  The more difficult moves require more levels of embedding of subgoals in 

the goal hierarchy.  However the goal hierarchy metric can be subsumed under the relational 

complexity metric because, as shown in Table 1, moves with more subgoals entail relations 

with more dimensions of complexity.  The first and every fourth move thereafter are shown 

because it is only these that require planning (VanLehn, 1991). 

Insert Table 1 about here 

Consider a 2-disc puzzle.  To shift disc 2 from A to C, it is necessary to first shift disc 1 

from A to B.  The main goal is to shift 2 to C (2C) and the subgoal is to shift 1 to B (1B).  The 

goal hierarchy therefore is 2C 1B, and has two levels (see Table 1).  However the task can be 

expressed as a relation: 

Prior(shift(2,C),shift(1,B)). 

Shift is a relation, so shifting 2 to C can be expressed as shift(2,C).  Similarly for shifting 

1 to B.  The essence of the goal hierarchy is to perform a set of moves in order to perform 

another move.  This can be expressed as the higher order relation �Prior�, the arguments of 

which are shift; that is Prior(shift2(-,-),shift1(-,-)).  As with other relations, complexity is a 

function of the number of dimensions or roles to be filled, four in this example, so the task is 

prima facie 4 dimensional. 

Now consider the more complex 3-disc puzzle: In order to shift 3 to C, it is first necessary 

to shift 2 to B, in order to do which it is necessary to shift 1 to C (Table 1).  There are now 3 

levels of goals, and the corresponding relations are also more complex: 

Prior(shift(3, C),Prior(shift (2,B),shift(1, C)))  

There are now 6 roles so the task is 6 dimensional.  By similar argument, the first move on 

the 4-disc puzzle entails four levels of goals, and can be expressed by the relation: 

Prior(shift(4,C),Prior(shift(3,B),(Prior(shift2,C),shift(1,B)))) 
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This is 8 dimensional.  Thus number of embedded subgoals corresponds to relational 

complexity, as Table 1 shows.  Conceptual chunking and segmentation can be used to reduce 

complexity, as with other relational tasks.  The first move of the 3-disc puzzle can be simplified 

by chunking discs 1 and 2: 

 Prior(shift(3, C),shift (1/2,B/C)). 

Shift(1/2,B/C) can be unchunked, yielding:  

(Prior(shift(2, B),shift(1,C)).   

Thus conceptual chunking and segmentation enable the task to be divided into two 4 

dimensional subtasks.  This captures the recursive subgoaling strategy that underlies successful 

performance (VanLehn, 1991), and a conceptual chunk of this kind is called a �pyramid�. 

Just, et al. (in press) have shown that processing resources are related to the number of 

new goals that have to be generated for a move. Planning only requires representation of new 

goals, so the relations that correspond to new goals provide a more realistic estimate of 

dimensionality of a move.  These are shown in Table 1 by underlining the new goals at each 

step.  Where number of goals is reduced, relational complexity is reduced correspondingly. 

Our estimate that humans are limited to processing approximately 4 dimensions in 

parallel implies that humans would normally process no more than one goal and one subgoal in 

a single move.  That is they would process one relation of the form (Prior(shift(2,C),shift(1,A)), 

or Prior(shift(3, C),shift (1/2,B/C). This is consistent with protocol information (VanLehn, 

1991, Appendix, pp. 42-47).  A number of predictions based on this analysis have been tested 

with positive results (Loveday, 1995). 

The relational complexity metric subsumes the metric based on levels of embedding of a 

goal hierarchy, because number of levels of embedding can be mapped directly into relational 

complexity. However relational complexity also applies to tasks that do not entail subgoals, 

including tasks where decisions can be made in a single step.  It therefore has greater generality.  

Just as importantly, relational analysis gives insights into the kind of decisions that are made to 

construct the goal hierarchy.  For example it enables us to determine how much information is 

likely to be processed in one step when a decision is made that in order to move 3 to C, 1 and 2 

must be moved to B.  Notice that TOH can be performed without processing steps more 

complex than a quaternary relation.  Relational complexity also has the advantage that there is 
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extensive developmental data, to be reviewed in 6.2, indicating ages at which children can 

typically process each level of complexity. This enables predictions to be made about typical 

successes of children on specific decisions within the TOH task.  

6.1.4 Sentence comprehension 

Sentences with reduced relative clauses (i.e. without syntactic markers), with a 

centre-embedded structure, and without semantic cues, make it difficult for most English 

speakers to identify cases without parsing the whole sentence. We assume that participants 

normally segment sentences into constituents which are processed serially as far as possible. In 

all our modeling, in this and other contexts, we have found it a fruitful assumption that 

participants tend to minimise processing demand, implying that they never process more 

information in parallel than necessary. However this type of structure tends to preclude serial 

processing, thereby preventing the processing load from being reduced by segmentation. This 

logic has been used by Just and Carpenter (1992), and by Henderson (1994) to test processing 

load predictions from the theory of Shastri and Ajjanagadde (1993a). An example of such a 

sentence was mentioned in 2.0: 

 The boy the girl the man saw met slept.   (1) 

The subjects and objects of the verbs cannot be identified individually (Kimball, 1973), 

and such sentences are associated with high processing loads (Just & Carpenter, 1992). Because 

such sentences tend to inhibit serial processing, they can be used to explore our capacity to 

process relations in parallel. The meaning of the sentence can be expressed in the following 

propositions; 

slept(boy) 

met(girl,boy) 

saw(man,girl) 

There are five roles to be filled, corresponding to subject and object of the verbs: 

slept(Subject1) 

met(Subject2,Object2) 

saw(Subject3,Object3) 
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The sentence can be parsed by applying a set of rules (not necessarily the only possible set) 

shown in Appendix C, which collectively constrain a unique parsing, shown as P10. Given that 

serial processing is effectively inhibited, parsing the sentence amounts to finding an assignment 

of noun phrases to roles that fits a set of constraints, that correspond to the rules.  There are five 

roles that must be filled, so the task is five-dimensional, and beyond the capacity of most adults, 

even exceptional individuals finding it at the limit of their powers. 

Andrews and Halford (1994) tested these predictions using centre-embedded and 

right-branching sentences, with reversible content (e.g "The cow followed the horse") or 

nonreversible content (e.g., "The boy patted the puppy"). Nonreversible sentences reduce the 

need for parallel processing (e.g., boy can be assigned directly to the subject role and puppy to the 

object role) whereas in reversible sentences there are no semantic constraints to assist with 

identification of subject and object. This again illustrates the point in 3.6 that effects of content 

can operate through the complexity of relations that have to be processed in parallel. 

Examples of centre-embedded sentences of each dimensionality, together with the 

corresponding propositions, follow (centre-embedded and right-branching structures are not 

distinguishable with one-dimensional sentences): 

One-dimensional: 

 "The dog ran."     Ran(dog) 

Two-dimensional (ignoring initial clause in parentheses, which is used to make the 

centre-embedded structure meaningful, was the same for all two-dimensional sentences, and can 

be processed before the remainder of the sentence): 

"(The boy saw) the dog that the cat chased."  Chase (cat,dog) 

Three-dimensional: 
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"The emu that the kangaroo passed slept."   Sleep(emu)     

                 

      Passed(kangaroo,emu) 

Four-dimensional: 

"The baker that the fireman introduced the doctor to died."   

      Die(baker)  

      Introduce-to(fireman,doctor,baker) 

Five-dimensional: 

"The clown that the teacher that the actor liked watched laughed." 

      Like(actor,teacher) 

      Watch(teacher,clown) 

      Laugh(clown)  

Participants rated sentences for ease of comprehension, with content controlled. Rated 

difficulty increased monotonically with dimensionality, but this was modified by an interaction 

with surface form, so dimensionality had a significantly stronger effect with centre-embedded 

structure. Dimensionality was also modified by reversibility, but not as strongly as by 

centre-embedded/right-branching structure. The difficulty ratings strongly reflect the number of 

bindings that had to be processed in parallel. Participants also indicated if they found a sentence 

to be incomprehensible. Only four- and five-dimensional sentences were judged to be 

incomprehensible, and 88 percent of judgments applied to five-dimensional sentences. Of these, 

96 percent were applied to centre-embedded sentences. Reversibility did not affect 

comprehensibility.  
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These results suggest that when serial processing is inhibited by a centre-embedded 

structure, people have difficulty assigning words to more than four case roles. The fact that the 

same limitation does not occur with right-branching sentences supports the dimensionality 

interpretation in preference to an alternative explanation in terms of the repeated variable 

constraint, because this would apply equally to right branching-sentences.    
 

6.2 Relational complexity and cognitive development 

The theory also predicts that children's performance will be poorer where relational 

complexity is greater.  Furthermore, if children's processing capacity, or the efficiency with 

which they use their available capacity, develops (Case, 1985; Halford, 1993), they should be 

able to represent concepts of higher relational complexity with increasing age. 

6.2.1 Infancy Content-specific representations appear to be possible in infancy.  

Baillargeon (1987a; 1987b), has shown that 4-5 month olds can represent attributes and 

position of vanished objects, at least within the immediate spatio-temporal frame. They 

dishabituate when a rotating drawbridge moves through the space that should have been 

occupied by a hidden object, suggesting they can represent its position in the apparatus in front 

of them. They are also sensitive to attributes such as height and compressibility of the vanished 

object. Such performances are consistent with representation of the object in the immediate 

spatio-temporal frame. However there is no evidence that semantically interpretable relations 

are represented, or that inferences go beyond the perceptible properties of objects. For example, 

there is no evidence that infants infer that an object must have been removed if a drawbridge 

moves through the space which it should have occupied. 

6.2.2 Unary relations appear to be processed at one year of age, as indicated by category 

membership (Sugarman, 1982; Younger, 1993)  and by disappearance of the A not-B error. 

This paradoxical phenomenon in infant object constancy research (Wellman, Cross, & Bartsch, 

1986), can be interpreted as inability to treat hiding place as a variable, reflecting lack of 

variable-constant binding (a unary relation, see 2.3.1). That is, when an infant has repeatedly 

retrieved an object from hiding place A, then continues to search for it at A despite having just 

seen it hidden at B, the infant is treating hiding place as a constant. To treat hiding place as a 
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variable requires representation of the binding between the variable, location, and the object; 

i.e. location(object1). 

Performance on this task deteriorates as a function of delay between hiding and retrieval, 

and this effect is greater for younger children (Wellman, et al., 1986). This would follow from a 

representation with the form of a Rank 2 outer product of vectors representing a variable and a 

constant, if we make the reasonable assumptions that the representation degrades with delay, 

but becomes clearer with age, so older children can tolerate more degradation before the 

representation becomes uninterpretable.  

6.2.3. Binary relations such as "larger", "more" etc. appear to be well understood by two 

years of age, even though there may be some confusion as to which relation is referred to by a 

particular term (Halford, 1982; 1993). Proportional analogies of the form a:b::c:d are frequently 

based on binary relations, and there is evidence that young children can perform such analogies 

in familiar domains (Goswami, 1992). Proportional analogies do not require processing 

quaternary relations: they require processing two binary relational instances belonging to the 

same relation. Since the relation is constant to both sides of the analogy, only a single binary 

relation need be considered. For example, in the analogy "mother is to baby as horse is to 

what?", (mother, baby) identifies the relation mother-of, and mother-of and mother-of(horse, ?) 

identifies foal.  

This point can be illustrated by comparing a proportion with an analogy. A proportion a/b 

= c/d is a quaternary relation in that the relation between each of a,b,c,d and the other three 

entities is defined, whereas this is not true for an analogy. Thus 8:4::27:2 is a valid analogy in 

that the same relation �>� holds between 8:4 and 27:2, but it is obvously not a proportion. To 

illustrate it another way, we can define proportion as the quaternary relation 

proportional(a,b,c,d). Now knowing four of the elements (i.e. any four out of 

�proportional/non-proportional�, a, b, c, d) we can determine the fifth, as in 2.3.5 (e.g., given 

4,8,3,6 we know it is proportional, but 4,8,3,5 is not proportional). However this is clearly not 

possible with the analogy 8:4::27:2. Thus a so-called proportional analogy bears only a 

superficial resemblance to a proportion and they differ markedly in relational complexity. 

6.2.4. Ternary relations. A number of concepts based on ternary relations have been 

associated with persistent difficulties for young children. Transitivity and class inclusion are 

the best-known examples. Attempts at explanation based on stages of development, or on 



67 

flawed methodology leading to false negatives, have provided many insights and yielded 

improved assessments, but still leave important sources of difficulty unexplained (Halford, 

1989; 1992; 1993). 

6.2.4.1. Transitivity has been a source of difficulty for young children, the reasons for 

which not been wholly explained (Breslow, 1981; Bryant & Trabasso, 1971; Halford, 1982; 

1989; 1992; 1993; Thayer & Collyer, 1978; Trabasso, 1977). We suggest that the unrecognized 

factor is the processing load imposed by premise integration, which also affects adults (see 

6.1.1) but has a greater effect at younger ages (Halford, Maybery, & Bain, 1986). 

Piaget's (Piaget, 1950) contention that transitivity is a concrete operational task was 

challenged by Bryant and Trabasso (1971) who trained children in the premises and found 

above chance performance in 3-4 year olds. However subsequent work suggested that the 

children may have been given undue assistance in ordering the premise elements (ie. given 

premises a<b, b< c etc., both children and adults typically integrate the premises into the 

ordered set {a,b,c, . , }). The elimination of children who failed to learn the premises might have 

biased the results, because premises would be difficult to learn if they could not be integrated. 

When these factors were controlled, children under five no longer succeeded (Halford & Kelly, 

1984; Kallio, 1982). Evidence for transitive inference, in children, adults, or other animals, only 

provides evidence of processing ternary relations if participants are not assisted in ordering the 

premise elements. 

More recent work (Pears & Bryant, 1990) has shown that if 4-year olds are given 

premises in the form of pairs of colored blocks stacked one above the other (e.g., red above 

green, green above blue, etc.) they can infer the order of blocks in a tower (e.g., red above blue). 

However Andrews and Halford (submitted) showed that 4-year olds� performance is marginal 

at best, and is influenced by relational complexity. This work is consistent with the present 

theory, and with the empirical work of Halford (1984), in showing that when children under 

five were required to consider two binary relations in a single decision, they had very little 

success, but they virtually always succeeded when they could process one relation at a time. 

Children older than five succeeded on both tasks. We again find evidence that relational 

complexity affects performance when other factors are controlled, and the effect is greater with 

younger children. 
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6.2.4.2. Class inclusion entails undertanding that a and a� are included in b (e.g. apples 

and nonapples are included in fruit), and therefore b>a (assuming a and a� to be nonempty). 

Like transitivity, class inclusion was regarded by Piaget (1950) as concrete operational, and 

unattainable before 7-8 years of age There have been alternative explanations, including 

misapplication of the rule that a set is counted only once (Klahr & Wallace, 1976; Trabasso et 

al., 1978; Wilkinson, 1976), and misinterpretation of the question as requiring subclass 

comparison (Grieve & Garton, 1981; Markman & Seibert, 1976; McGarrigle, Grieve, & 

Hughes, 1978; Shipley, 1979).  These issues have been discussed elsewhere and, although some 

sources of false negatives have been discovered,  class inclusion presents a source of difficulty 

for children under five that has not been fully explained (Halford, 1992; 1993; Halford & 

Leitch, 1989; Hodkin, 1987).  

Class inclusion and the part-whole hierarchy are essentially ternary relations. A class 

inclusion hierarchy has three components, a superordinate class, a subclass and a 

complementary class (e.g. fruit, divided into apples and non-apples). More extended 

hierarchies are obviously possible, but the concept of inclusion necessarily entails a class and 

its complement being included in a superordinate class. More extended hierarchies can be 

handled by conceptual chunking or segmentation. For example, the inclusion of apples, 

bananas, pears etc. in fruit can be handled by chunking bananas, pears etc. in �nonapples�. 

Where there are more than two levels they can be handled by segmenting the hierarchy into 

sub-hierarchies and processing two levels at a time. Both the models of Hummel & Holyoak (in 

press) and Halford et al. (1996, 1997) entail this process.  However to chunk apples and 

nonapples would make the concept of inclusion inaccessible. Part-whole hierarchies, which 

cause difficulties for young children in arithmetic word problems (Cummins, Kintsch, 

Reussler, & Weimer, 1988; Halford, 1993; Kintsch & Greeno, 1985) are similar, and comprise 

a whole divided into two complementary parts.  

The difficulty children have with these problems supports the hypothesis that children 

under 4-5 years have difficulty with ternary relations. Furthermore, as with transitivity, 

relational complexity has been shown to interact with age, children under 5 succeeding when 

the task required them to consider only one binary relation, but not when they had to integrate 

binary relations, while older children succeeded in both cases (Halford & Leitch, 1989). The 

same finding has been made with matrix classification (Halford, 1980). 
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6.2.4.3. Concept of Mind. Two reviews of children�s concept of mind (Astington, 1993; 

Halford, 1993) have noted phenomena that, though at first they seem anomalous, can be 

interpreted in terms of relational complexity.  Very young children seem to have difficulty 

understanding that a person can have two representations of an object.  For example, the 

perceived colour of an object may be modified by a coloured filter (the appearance-reality and 

perspective-taking tasks), or a person�s knowledge of an object�s whereabouts might depend on 

whether they know it has been moved since they last saw it  (the false-belief task). Flavell, 

Green & Flavell (1990) have proposed, based on an extensive assessment of the literature, that 

young children cannot handle two ways of representing an object (e.g., as both blue and white), 

but they have not explained why young children should be limited in this way. However some 

recent analyses (Frye, Zelazo, & Palfai, 1995; Halford, 1993; 1996) converge on the same 

explanation. 

The essence of the problem is that children can represent the relation between a person�s 

knowledge (which we call percept) and the properties of an object or situation. This is a binary 

relation between percept and object-attribute. However they cannot represent the fact that this is 

conditional on a third variable. Consider for example, a person who sees an object as white 

(without filter) and as blue (with filter). This entails representing a ternary relation between 

viewing-condition, object and percept: 

Seen-Object2(<condition>,<object-colour>,<percept>) 

Instances of this relation would be: 

Seen-object2(no-filter,object-white,percept-white) 

Seen-object2(blue-filter,object-white,percept-blue) 

This is a ternary relation between the conditionix, the object and the person�s 

representation of the object. Young children seem unable to do this, and seem to represent the 

relation between an object and one percept only. That is they represent either: 

Seen-Object1(object-white,percept-white), or 

Seen-Object1(object-blue,percept-blue). 

Both of these are instances of a binary relation, and either could be represented alone by a 

person who could not represent ternary relations.  However to represent the fact that a person 

can see an object in either of two ways entails conditionalising these relational instances on a 



70 

third variable, which is equivalent to integrating the binary relations into a ternary relation. 

Notice that the ternary relation is not decomposable in the sense that it is not reducible without 

remainder to instances of the binary relation Seen-Object1, because this relation does not 

represent the fact that alternate ways of viewing the same object are conditional on the viewing 

condition. 

The same limitation would occur with false belief, which entails representing the relation 

between an object and two different representations of its location, one based on knowledge of 

where it is, the other based on a false belief about its location. For example, a person sees an 

object placed in a box, then leaves, and the object is shifted to a basket. Young children have 

difficulty understanding that the person will believe the object to be in the box though it is really 

in the basket (Wimmer & Perner, 1983). This can be expressed as the ternary relation: 

Find-Object(<known-event>,<actual-location>,<believed-location>), instances of which are: 

Find-Object(<saw-moved>,<obj-in-basket>,<believe-obj-in-basket>) 

Find-Object(<not-seen-moved>,<obj-in-basket>,<believe-obj-in-box>).     

The somewhat paradoxical difficulty that young children have with appearance-reality, 

perspective-taking and false belief can be interpreted in these terms:  They readily understand 

any of the component binary relations, yet they cannot �put the situation together� and integrate 

two object-percept relations into a single representation (notice that this is analogous to 

transitivity which entails integrating two binary-relational premises into a ternary relation, see 

6.1.1).  Young children�s apparently anomalous performance in the concept of mind tasks is 

perfectly consistent with their performance on other tasks that entail ternary relations.  There is 

already evidence suggesting that processing capacity is a factor in children�s concept of mind 

(Davis & Pratt, 1995; Frye et al., 1995) but the predictions offer scope for more empirical work. 

6.2.4.4. Contrary evidence. The most recent, and probably strongest challenge to the 

proposition that children under five have difficulty with ternary relations comes from Goswami 

(1995). In Experiment 1 she presented 3- and 4-year old children with two sets of three stacking 

cups. The experimenter indicated a cup (smallest, middle, or largest) in one set, and the child 

had to identify the corresponding cup in the other set (smallest, middle, or largest respectively). 

Performance was high, and appears to provide impressive evidence that 3-4 year olds can 
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process ternary relations. However there was little attempt to analyse the processes by which 

children made their discriminations. 

We can perform at least a first analysis using the reported sizes of the cups, as shown in 

Table 2. As with Goswami's report, the 12 cup-sizes are shown as the values 1-12, the four sets 

used being: 1,5,9; 2,6,10 etc. Table 2 indicates three types of cases. 

Insert Table 2 here 

The first is where the corresponding cup can be selected on the basis of absolute size 

(indicated by a "1" in Table 2). For example, if the Experimenter's set is 1,5,9, and the child's set 

is 2,6,10, and if the Experimenter indicates cup 5, the correct choice for the child is cup 6, 

because it is in the corresponding ordinal position (middle). However cup 6 is also closest to 

cup 5 in absolute size. Therefore a child who paid no attention to binary or ternary relations, and 

judged on the basis of absolute size (a unary relation), would be likely to choose cup 6, which is 

the correct answer. This is true in every case where a "1" is entered in Table 2. The critical case 

is Goswami's different-size cup group in the different spatial position condition, because it is 

only here that cups were neither identical, nor in the same spatial position, in the two sets. This 

case corresponds to the off-diagonal entries in Table 2. There are 24 out of 36 cases, or 66.67 

percent, where the correct cup can be determined on the basis of absolute size. There are a 

further 8 cases, or 22.22 percent, where absolute size gives two equally likely answers, one of 

which is correct (indicated by ".5" in Table 2). These would be expected to yield a further 11.11 

percent correct answers. Thus the expected performance if children attended only to absolute 

size, without processing any relations of higher rank than unary, is 78 percent correct. 

Furthermore some additional correct answers could be obtained by processing binary relations 

(to be discussed below). Goswami reports 86 percent success for 4-year olds, and 70 percent 

success for 3-year olds (averaging over the analogy/no-analogy treatment, which is not relevant 

to our present argument). Thus these superficially impressive performances provide no 

evidence for processing ternary relations by 3-year olds, and doubtful evidence by 4-year olds. 

In Experiment 2 Goswami had 3- and 4-year old children map fractions from one set to 

another. For example, given three glasses of lemonade, 1/4, 1/2 and  full, the child would be 

asked to see the correspondence between 1/2 glass of lemonade and 1/2 box of chocolates. In 

the different spatial position condition, the performance of 4-year olds was 87 percent correct, 

and that of 3-year olds 54 percent. Absolute size matching is not possible in this experiment, but 
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it is necessary to ask what success can be achieved using binary relations. Two elements in an 

ordered set of three can be chunked, reducing the task to the binary relation larger/smaller; for 

example 1/4 might be labeled "smaller", whereas 1/2 and full are chunked as "larger" (this is an 

example of the kind of chunking in Figure 1E). If the correct item is 1/4, (p = .33) this leads to 

100 percent correct. If the correct item is either 1/2 or full (p = .67), it leads to 50 percent. The 

overall expected percentage correct is therefore .33 + .67x.50 = .67. The three-year olds are 

clearly not above the binary-relation baseline, and no test was made to see whether 4-year olds 

were significantly above this baseline.  

Experiment 3 entailed mapping between levels of loudness, pitch, hardness, height, etc., 

which did not permit use of absolute cues. There is the possibility of chunking to binary 

relations as discussed above, but we will not pursue that issue here. The 4-year olds were again 

successful but, in both Experiments 2 and 3, the mean age of the 4-year olds was 4 years 11 

months, range 4.8-5.1. No data for 3-year olds is reported on this task, so the only evidence for 

mapping ternary relations is obtained from children who are at, or very close to, 5 years old. 

The data actually support the proposition that ternary relations are first processed at a median 

age of 5 years. 

6.2.4.5 Summary of ternary relations evidence. The fundamental problem here is that 

cognitive development research must take account of actual cognitive processes to be 

theoretically meaningful (Halford, 1982; 1989; 1993; Siegler, 1981). The more important 

evidence however comes from those studies in which relational complexity has been varied 

while holding other factors constant. It appears that tasks which entail ternary relations are 

consistently found to cause difficulty for young children, even though they readily process 

binary relations. This suggests that relational complexity is an important factor in children's 

cognitive performance, and it offers a solution to the mystery as to why these tasks have seemed 

unaccountably difficult. 

6.2.5 Quaternary relations. Proportion (see 2.3.4) and the balance scale entail quaternary 

relations, because they entail relations between four variables, and both have been found 

difficult for young children, but there is more extensive research on the balance scale. 

6.2.5.1 The balance scale entails the quaternary relation balance-state(Wl , Dl ,Wr , Dr). 

The task is difficult for children below about 11 years, and they tend to use lower rank rules, but 

even adults rarely use the cross products rule without specific instruction (Siegler, 1981; Surber 
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& Gzesh, 1984). The task can be segmented by, for example, computing the moments on each 

side then comparing them to see which side will go down, or whether the beam will balance: Wl 

× Dl = Ml; Wr ×  Dr= Mr. Each of these steps requires processing a ternary relation. The 

comparisons entail the rules: Ml = Mr → balance; Ml > Mr → left side down; Ml < Mr → right 

side down. Each is a comparison of two values and is a binary relation. Therefore the task can 

be performed by processing ternary relations one at a time. However planning this strategy 

means being able to represent the fact that the moments are determined by weight and distance 

on each side (see 2.2.12). This entails representing the ternary relation relation balance-state(Wl 

, Dl ,Wr , Dr). 

6.2.5.2. Neural net model of balance scale. McClelland (1995) has shown that a 

three-layered net (with input, hidden and output layers of units) can be trained to indicate 

whether a beam will balance, given weight and distance on left and right as input. The model 

accounts for a number of important empirical observations which challenge earlier theories of 

children's balance scale performance. However this model does not fully represent the principle 

of the balance scale, and the particular way it differs from the models in Section 4 is instructive. 

The fundamental difference is that McClelland's model does not incorporate the 

omni-directional access property (see 2.2.6 and 4.2.6). Weight and distance on left and right 

must always be inputs, and only one output, balance/left-down/right-down can be calculated. 

However an implementation of a quaternary relation that met the specifications in 2.2.6 can 

take any subset of N-1 variables as input and generate the Nth variable as output. For example, 

given weight and distance on the left, distance on the right, and the fact that the beam is 

balanced, it can decide what weight must be on the right.  This is realistic because such tests are 

used in assessment (e.g., Surber & Gzesh, 1984), and because we would be unwilling to 

attribute understanding to a child who could compute only one type of output (such as whether 

the beam would balance), but could say nothing about (for example) which weights and 

distances were required to produce a given state of balance or imbalance. Thus while 

McClelland's three-layered net efficiently computes a specific function of four variables, it does 

not meet the criteria for relational knowledge. 

6.3   Capacity development redefined 

The question whether processing capacity changes with age can be reformulated by 

proposing that relational complexity of representations would increase because representations 
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become differentiated into more vectors, with appropriate reconnection, as noted in 4.2.4. This 

would not necessarily change the total amount of information that can be processed, but it 

would increase the complexity of the relations that could be represented.  

6.3.1 Predictions in advance. It has not been common practice for information processing 

theorists to publish predictions of developmental performance prior to obtaining data. However 

if the conceptual basis for capacity limitations advanced in this paper is more objective than 

previous proposals it should be possible to do this. Halford (1993, Chapter 9) made a number of 

such predictions. One was that two- and three-year olds should be able to make balance scale 

judgments based on weight or distance, but not both. The reason is that comparison of weights 

(or distances) on the two sides of the balance entails a binary relation, and norms indicate this is 

possible at age two (see 6.2.3). By contrast, Siegler (1981) found no evidence of weight or 

distance rules before approximately age five, and Case (1985; 1992) predicts children will not 

be able to judge which side will go down until three and a half to four years. Weight is likely to 

be easier initially because children have more experience with the downward force of weights. 

However with appropriate experience children should be able to make either weight or distance 

comparisons. This prediction was confirmed by Halford and Dalton (1995). 

A further prediction was that taking account of weight and distance requires integration of 

binary relations, which is equivalent to at least a ternary relation, depending on the basis of the 

integration (see Halford, 1993, pp. 413-422 for details of the prediction). Therefore ability to 

consider both weight and distance in a single judgment should develop at a median age of five 

years, and should be predicted by performance on other measures of ternary relations. This was 

tested by Harper (1996) using three tasks that require ternary relations processing, but are from 

different domains than balance (cardinality, class inclusion, transitivity). Both predictions were 

confirmed.  

6.3.2 Capacity and cognitive development. Halford (1993) has suggested that the 

observations which gave rise to cognitive developmental stage theory (Piaget, 1950) might be 

attributable to progressive differentiation of representations with age. In very broad terms, 

Piaget's secondary circular reactions, with minimal representation, correspond to single vector 

representations, preconceptual reasoning corresponds to unary relations (a binding of two 

vectors), intuitive reasoning to binary relations (a binding of three vectors), concrete 
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operational reasoning to ternary relations (a binding of four vectors), and formal operational 

reasoning to quaternary relations (a binding of five vectors).  

Tasks which have been considered to belong to a particular stage tend to have a common 

level of relational complexity. For example, transitivity and class-inclusion, which are 

considered to be concrete operational, entail ternary relations, as noted in 6.2.4. Each increase 

in complexity of relations that can be processed in parallel would enable a new level of tasks to 

be processed. However the fact that the theory can explain some phenomena that have been 

attributed to stages does not mean that all aspects of stage theory are automatically entailed. 

Because there is considerable potential for misinterpretation on this point we will amplify 

implications for cognitive development theory.   

It is a common assumption that cognitive development theories that have a role for 

capacity ipso facto have no role for experience. However nothing in this theory implies that 

attainment of a given level of processing capacity automatically furnishes the mind with all 

concepts at that level.  Defining a role for capacity in no way diminishes the importance of 

learning, induction, categorization and other acquisition processes. We have proposed that 

development depends on the interaction of processing capacity and acquisition processes, so 

that what is acquired depends both on experience and capacity (Halford, 1971; Halford, 1980; 

Halford & Fullerton, 1970; Halford et al., 1995; Halford & Wilson, 1980). Acquisition of 

transitive inference, for example, depends on experience with relations, but children who can 

process ternary relations will develop strategies that are more powerful and comprehensive than 

children who are restricted to processing one binary relation at a time. This effect has been 

simulated in the model of Halford et al., (1995). 

Another common misconception is that capacity theories emphasize what children cannot 

do, and imply insurmountable barriers to performance. On the contrary, good complexity 

analyses can actually lead to previously unrecognized capabilities, as our work on the balance 

scale in 6.3.1 illustrates. Also, the discussion of chunking and segmentation in Section 3.4 

shows that capacity limitations do not constitute barriers to performance. Ultimately, capacity 

theories are about processes rather than barriers. Saying that a particular group of participants 

process relations of a given complexity in parallel implies that the task must be chunked or 

segmented to keep within this capacity. It therefore leads to predictions about the kinds of 

strategies that must be employed. Thus saying that 3-year olds process binary relations in 
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parallel implies that they will employ different strategies from 6-year olds who process ternary 

relations in parallel. It does not imply that they can never process transitive inferences, or other 

ternary relations tasks, any more than evidence that adults process quaternary relations in 

parallel implies we can never understand force, which ultimately depends on more than four 

dimensions (as discussed in 3.4.1). Capacity limitations only imply inability to perform when 

chunking and segmentation are inhibited, as  with centre-embedded sentences in 6.1.4. 

Capacity theory points the way to questions that need to be investigated: For example, what 

chunking and serial processing abilities do children of a given age and background have in a 

particular domain, and how does this influence their performance? We can investigate new 

questions, and reexamine old questions, with this orientation. 

The influence of relational complexity on cognitive development does not imply that 

development is discontinuous, and it is important that relational complexity theory should not 

be confused with traditional stage theory in this respect. Processing capacity is an enabling 

factor, but development is experience-driven and continuous, so acquisition of concepts at a 

given level will occur gradually after capacity becomes sufficient. There is an unlimited 

number of concepts belonging to a given level of complexity and acquisition of each will be a 

function of experience in the relevant domain, with what is learned being influenced by 

capacity. Furthermore acquisition of less complex concepts does not cease once capacity 

increases to a higher level of dimensionality, because there is an unlimited number of concepts 

at all levels, so when a child becomes capable of processing (say) ternary relations she does not 

cease acquiring concepts based on unary or binary relations.  

The ages at which each level of relational complexity is typically attained should be seen 

as medians, with the proportion of children who attain a given level increasing gradually, in 

accordance with a biological growth function. The specific ages are determined empirically, 

and are essentially normative. Thus if it could be shown that (say) three year olds could 

represent ternary relations this would revise the age norms, but would not in itself invalidate the 

theory.  

However there should be correspondence between attainment of different concepts of the 

same level of complexity, provided domain knowledge is adequate. For example transitivity, 

class inclusion and other concepts requiring ternary relations, and which there is plenty of 

opportunity to learn, should have the same acquisition function, a prediction confirmed by 
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Andrews (1996). Capacity to process relations of a given level of complexity should predict 

ability to acquire concepts at that level. Thus training asymptotes for concepts at a given level 

of complexity are the best data for testing the theory, and this methodology has been used by, 

for example, Halford (1980) and Halford & Leitch (1989). 

The theory would be invalidated if it were found that relational complexity did not predict 

processing demand. However this can be tested in many ways, including some that are not 

developmental. Research discussed in 6.1 illustrates how relational complexity can be 

manipulated precisely, with other factors controlled, resulting in clearcut effects on processing 

demand as indicated by objective indicators such as concurrent probe reaction time. There is 

potential to use the same methodology with brain imaging techniques. 

The cognitive developmental aspect of relational complexity grew out of levels of 

representational structure defined by Halford and Wilson (1980), and is consistent with 

neo-Piagetian theories (Case, 1985; 1992; Chapman, 1987; Pascual-Leone, 1970). There is 

consensus here that growth of processing capacity is an enabling factor that has an explanatory 

role in cognitive development, with the important caveat that it is not the only factor, as noted 

above. The relational complexity metric has potential to refine theories of processing capacity 

by providing a clearer mathematical definition, which should facilitate objective task analyses. 

It also opens up possibilities for computational modeling of growth in capacity, by 

differentiating neural nets into more dimensions, with consequent increases in the complexity 

of interactions. 

Although no other cognitive developmental theory has used the metric proposed here, 

there is a broad parallel to the major stages defined by Case (1985, 1992), Fischer (Fischer, 

1980) and Piaget (1950), the M-space levels defined by Pascual-Leone (1970), and the number 

of representational schemes defined by Chapman (1987) but there are also many differences. 

We will focus on the theory of Case (1985, 1992) who proposes that cognitive development 

progresses through four major stages, the sensorimotor, relational, dimensional and vectorial. 

There are four substages, operational consolidation (preliminary), operational coordination, 

bifocal coordination and elaborated coordination, which recur in each major stage. The 

executive processing load (equivalent to demand) is defined as OP + S. OP is specific to the 

major stage, so there is OPsensorimotor, OPrelational, OPdimensional and OPvectorial, but no quantitative 

value is specified for OP. One role of the present theory is to fill that gap. 
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The substages are quantified by the demands they make on short term memory: 

. �. . the number of goals children can maintain (and hence the complexity of problem 

they can solve) is determined by the size of their short-term memory for the particular class of 

operations in question.  . . this Short-Term Storage space (STSS) can hold 1,2,3, and 4 items at 

the preliminary, first, second, and third substage of each period, respectively.� (Case, 1992, p. 

32).   

Notice that processing capacity, defined in terms of number of goals, ultimately depends 

on short-term storage capacity, rather than being defined in terms of information that is being 

processed, as in the relational complexity metric. More importantly, this progression described 

by Case (1985, 1992) occurs recursively in each of the major stages, so S is maximal when the 

highest substage is reached, and minimal when transition is made to the next major stage. This 

means that a task which imposes an executive processing load of 4 when performed at (say) the 

relational stage imposes a load of 1 when performed at the dimensional stage. The metric 

applies to progression within each major stage, but does not transcend major stages, so it is not 

possible to compare (say) the operational coordination substage of the relational stage, and the 

bifocal coordination substage of the vectorial stage, using a common metric (the values would 

be 2 and 3 respectively, but they are on different scales). Task demands are therefore assessed 

according to the major stages to which they are considered to belong.  

However the relational complexity metric proposed here is not stage dependent in this 

way. It applies throughout the age range, and is also applicable to nonhuman primates, to be 

discussed in 6.4. If participants of any age perform the same task, encoded in the same way and 

using the same strategy, task demand is the same. Processing demand may well change as 

expertise is acquired, because rules may be discovered which simplify decision making. For 

example, demand may be reduced in the TOH once participants realise that the difficult 

decisions need only be made on the first and every fourth step thereafter, but this can be taken 

into account in the analysis of processing demands. Demand can vary with coding (e.g., if 

dimensions are chunked) or as a function of strategy (e.g., if the task is segmented into more 

steps requiring less information to be processed in parallel), but these factors are not stage 

dependent.  A well-validated model of task performance enables processing demand to be 

analysed objectively without assignment to substages. 
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Case (1985) also proposes that total processing space is constant over age, and is flexibly 

allocated to operating space plus short term storage space, but the expected tradeoff between 

processing and storage does not occur (Halford et al., 1994). Perhaps the most important 

difference between the present theory and that of both Case (1985) and Pascual-Leone (1970) is 

that in the present theory processing capacity is not just a matter of space availability, but is 

linked to the way vectors representing dimensions of a task are connected together. As Figures 

1 and 2 illustrate, processing capacity ultimately depends on connections between related 

entities. 

This formulation also differs from Piagetian and neo-Piagetian theories in that it does not 

postulate substages. This is not an oversight, but is a natural consequence of the way the theory 

is formulated. As noted above, development is continuous, and depends both on growth of 

processing capacity and on acquisition processes. Substages may be used for descriptive 

convenience, but they are no more necessary to account for development than to account for 

(say) acquisition of expertise in adulthood. This should not be misinterpreted to mean that 

performance does not change over short periods of time. The way a task such as the Tower of 

Hanoi is performed may well change radically, even over a few trials, because of changes in 

encoding of sub-problems (e.g., chunking into pyramids as noted in 6.1.3). Acquisition 

mechanisms, including learning, induction, and categorization can operate over a short or a 

long time-frame, and are only modified by processing capacity insofar as it operates as an 

enabling factor. 

6.4 Relational complexity and other primates 

Though there is little doubt that non-human mammals have representations (Gallistel, 

1990) only the primates appear to be able to process explicit relational representations that meet 

the criteria in 2.2. We will briefly review this evidence. 

Premack (1983) reports that tasks which require symbolic representations differentiate 

chimpanzees and monkeys from lower mammals, whereas tasks based on perceptible 

similarity, or on inferences about spatial location, do not. We propose that relational 

representations subsume symbolic processes, because of the properties of relational knowledge 

in 2.2. One of Premack's procedures requires chimpanzees (Pan troglodytes) to identify the 

relation, given a pair of arguments, or to identify an argument, given the relation and the other 

argument (omni-directional access as defined in 2.2.6). In the former case, for example, they 
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would be shown two objects and asked to produce a symbol indicating whether the objects were 

the same or different. They also seem to know that a knife corresponds to the relation between 

an intact and a cut object, a key to the relation between a closed and an open lock, and so on. 

These tasks seem to require recognition of a symbol for a binary relation; a knife is a symbol for 

the relation between an intact and a cut object (the knife functions as a relation symbol, see 

2.2.4 and 4.2.3). 

Another task used by Premack has been analysed in terms of relational complexity by 

Holyoak and Thagard (1995). Chimpanzees were required to choose a pair of objects which had 

the same relation as a sample pair. We will call it "relational-match-to-sample task". In one 

variant, the sample comprised two objects that were the same (XX). The participant had to 

choose another pair of objects that were the same (YY), in preference to a pair that were 

different (CD). The task is a form of analogical reasoning, as Premack (1983) points out, and 

requires representation of the relation between elements in the pair. The sample is the base, and 

the comparison pair is the target. Following Holyoak and Thagard (1995) we can code the 

sample as O-same(X,X), where "O-same" means "same object". The correct comparison 

(target) object is represented as O-same(Y,Y). In the  alternate  task, the base would be coded as 

O-different(X,Y), and the correct target as O-different(C,D). Only chimpanzees, and only those 

that had been language trained, could perform this task. It seems reasonable to conclude that 

chimpanzees can process binary relations, albeit only after extensive experience with symbols. 

However there appears to be no evidence that analogies based on binary relations can be 

attributed to lower animals.    

The one-object match-to-sample entails presenting a sample, X, and rewarding animals 

for choosing the comparison object that is the same as the sample, X, in preference to the one 

that is different, Y. Chimpanzees and some monkeys can generalize the performance beyond 

instantiations on which they have been trained. This requires responding to an attribute or a 

category label, which can be coded as a unary relation (as shown in 2.3.1). For example, if the 

sample were an apple, this can be represented as apple(object1). If the comparison objects were 

an apple and an orange, they would  be represented, as apple(object2), orange(object3). The 

one-object match-to-sample task is an analogy based on a unary relation: it is a mapping from 

apple(object1) to apple(object2).  Thus some species of  monkeys appear to process unary 

relations. 
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6.5 Role of frontal lobes 

In a review of the literature, Robin and Holyoak (1995) propose that the prefrontal cortex 

functions as an overall system for constructing and maintaining relational representations that 

guide thought and action. They argue that many of the functions that are impaired with frontal 

lobe lesions, including planning and control, entail 2- and 3-dimensional representations, with 

dynamic binding. According to this hypothesis the species- and age-differentiations discussed 

earlier would be attributed to the observation that the frontal lobes evolve later and are slower to 

myelinate. This formulation, together with associated empirical work, enables relational 

complexity of tasks to be manipulated with other factors controlled. These techniques have 

reached high levels of refinement (e.g., Andrews, 1996) and are now ready to be used with 

brain imaging techniques. It would be predicted that tasks which require more complex 

relations to be processed in parallel would produce more activation in the prefrontal cortex, 

with other factors controlled. 

7.0 Conclusions  

The empirical data base in cognitive psychology, and current neural net models of 

relational knowledge, indicate that processing capacity is not limited by amount of information 

or number of items per se, but by the number of independent dimensions that can be related in 

parallel. Relational complexity, defined as the number of independent sources of variation that 

are related, constitutes a major factor underlying the difficulty of higher cognitive processes. It 

is related to processing load, to differences between higher animal species, and to age in 

children. There is potential to explain processing loads by modeling neural net representations 

of relations. 

The theory provides a way of blending serial and parallel processes, by proposing that 

serial processing is necessitated by limitations in the complexity of structures that can be 

processed in parallel. Empirical data and contemporary neural net models of relational 

knowledge indicate that the most complex structure that can be processed in parallel, and 

without crosstalk, is equivalent to one quaternary relation. More complex representations must 

either be chunked into fewer components, with the result that some of the relational structure 

becomes temporarily inaccessible, or the task must be segmented into smaller components that 

are processed serially, or both. Thus the need for serial processing strategies can be seen as a 

consequence of processing capacity limitations. 



82 

The theory implies that the traditional approach of defining limitations in terms of items is 

inappropriate for processing capacity, although some common ground is found with Miller's 

(1956) suggestion that the limit was defined by the number of independent components, rather 

than the amount of information. The concept of a chunk has been retained, but has been extended 

to include conceptual chunks, which represent compressed relational instances. The definition of 

capacity in terms of relational complexity, and the exploration of possible neural net 

implementations, has given a new way of looking at many issues, and one which integrates a 

wide-ranging data base. In cognitive development it means that the issue is no longer simply 

whether capacity changes with age, but whether representations become differentiated into 

higher dimensionalities, so more complex relations can be processed.      
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Appendix A: Relations derived by decomposing higher-rank relations 

  We will consider the example MONOTONICALLY-LARGER(a,b,c) discussed in 2.2.9. Let 

us abbreviate MONOTONICALLY-LARGER to ML. Then it is interesting to look at the derived 

relations (projection relations) ML1, ML2, and ML3. ML1(b,c) means that b > c and there is 

some item x such that x > b. Similarly, ML2(a,c) means that a > c and there is some item x such 

that a > x > c. Thus each MLi is a sub-relation of the relation > (GREATER-THAN). Thus the 

ternary relation induces a number of binary relations, and in this case ML(a,b,c) can be 

reconstructed from the induced relations in the sense that ML(a,b,c) ≡ ML1(b,c) & ML2(a,c) & 

ML3(a,b). By contrast, the ternary relation R(x,y,z) ≡ x > yz, where x,y, and z are positive 

rational numbers, is not reconstructable, since each of the induced relations is the �trivial 

relation� - e.g., for each pair of numbers y and z, there exists an x such that x > yz (for example 

yz+1). Thus R1(y,z) is true for all y and z, and the same is true for R2 and R3. Thus R is not 

effectively decomposable, basically because of the presence of the binary operation yz. 
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Appendix B: Retrieval from tensor product representation of symbol-argument-argument 

bindings. 

The outer product T of a set of three vectors u, v, w, is a multi-dimensional object like a 

generalized matrix with 3 subscripts i, j, k. The (i, j, k)-th entry in the outer product is defined to 

be the product of the corresponding entries in each vector: Tijk = uivjwk. This definition 

generalizes in a natural way to as many vectors as required. 

Generalised Inner Products: For a tensor T of a given rank, a number of retrieval 

operations can be defined. For example, with a rank 4 tensor T = Tpqrs (storing relational 

instances of the form r(a1, a2, a3), say) one may wish to: 

(0) check the validity of a particular relational instance r(a,b,c); 

(1) find the X�s such that r(X,a2,a3) is stored in the tensor; 

(2) find the X�s such that r(a1,X,a3) is stored in the tensor; 

(3) find the X�s such that r(a1,a2,X) is stored in the tensor; 

(4) find the X�s such that X(a1,a2,a3) is stored in the tensor; 

Other retrievals are possible, such as finding the pairs X,Y such that r(X,Y,a3) is stored in 

the tensor, but we shall restrict ourselves to modes (0)-(4) here. Each of the five operations 

required is a kind of generalized inner product. For convenience, let us define notation that 

distinguishes between the five kinds of generalized inner product: 

(0) vr⊗ va1⊗ va2⊗  va3�T checks validity;  

(1) vr⊗ _⊗ va2⊗  va3�T retrieves a1�s;  

(2) vr⊗ va1⊗ _⊗  va3�T retrieves a2�s;  

(3) vr⊗ va1⊗ va2⊗  _�T retrieves a3�s;  

(4) _⊗ va1⊗ va2⊗  va3�T retrieves r�s; 

Now we give the computation required for each kind of retrieval. Let rp signify the pth 

component of the vector vr representing r; and let (a1)q, (a2)r, and (a3)s signify respectively the 

qth, rth, and sth components of the vectors va1, va2, and va3 representing a1, a2, and a3. 

(0) Let D = ∑pqrs rp(a1)q(a2)r(a3)sTpqrs. If D = 1, then r(a1,a2,a3) is stored in T. Otherwise 

D=0, and r(a1,a2,a3) is not stored in T. 
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For (1)-(4), let v be the vector representing the missing concept X, e.g. a1 in operation (1). 

(1) vq = ∑prs rp (a2)r(a3)sTpqrs 

(2) vr =∑pqs rp(a1)q (a3)sTpqrs 

(3) vs =∑pqr rp(a1)q(a2)rTpqrs 

(4) vp =∑qrs (a1)q(a2)r(a3)sTpqrs 

Similar operations can be specified for tensors of lower and higher ranks. For rank 2, the 

operations reduce to matrix pre- and/or post-multiplication by vector(s). 

It may be useful to spell out the details of retrievals for a set of binary operations 

represented in a rank 3 tensor product space, as another example. 

We assume a rank three tensor Tijk ∈  VP⊗ V1⊗ V2 and consider the three possible 

�directions� of access: (a) we know the two arguments, represented by vectors u ∈  V1 and v ∈  

V2, and we want to know the relation-symbol(s) p ∈  VP such that  p⊗ u⊗ v, that is, p(u,v) is a 

fact �known to the tensor�; (b) we know p and u, and want to find out the v for which p(u,v) is 

known; (c) we know p and v, and want to find out the u for which p(u,v) is known. In fact, ∑j∑k 

Tijku jvk is the answer to (a), in the sense that this expression is a vector (subscripted by i) which 

is the sum of all the vectors representing symbols p such that p(u,v) is known. Similarly, ∑i∑j 

Tijkpiuj is the answer to (b), and that ∑i∑k Tijkpivk is the answer to (c). Because the value of any 

argument can be computed given the values of all the other arguments, variations in any 

dimension as a function of the others can be computed. 
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Appendix C. Parsing of centre embedded sentence. 

slept

man

The boy the girl the man saw met slept.

SUBJ SUBJ SUBJ

met metmet

girl

SUBJ SUBJ SUBJ SUBJ SUBJ SUBJ

SUBJ(saw)=girl SUBJ(saw)=boy SUBJ(saw) = girl SUBJ(saw) = boy SUBJ(saw) = man

met

man boy

OBJ OBJ

met

boy girl

OBJ OBJ

met

boy man

OBJ OBJ

met

boy girl

OBJ OBJ

met

girl man

OBJ OBJ

met

man girl

OBJ OBJ

slept(boy)
saw(man, girl)
met(girl, boy) A

B

C

D

E

P1 P2 P3 P5 P6 P8 P9 P11 P12 P13 P14 P17 P18P4 P7 P10 P15 P16

boy

boy boymangirl man

saw saw saw saw saw saw saw saw saw saw saw saw

boy boyman

OBJ OBJOBJ

girl man girl

OBJ OBJOBJ

man manboy

OBJ OBJOBJ OBJ OBJOBJ

boy girl girl man man

OBJ

boy boygirl

OBJ OBJ OBJ OBJOBJ

girl

SUBJ(saw) = man

girl

 
 
Combinatorial Rules:  

 1 subjects of distinct verbs must be distinct 

 2 objects of distinct verbs must be distinct 

Combinatorial/Grammatical Rule:  

 3 a single noun phrase cannot be both the subject and the object of the same verb 

Case/Grammatical Rules:  

 4 NP�TV  → S\NPOBJ: SUBJ(TV) = NP 

 5 NP1�S\NPOBJ  → NP2: OBJ(VERB(S\NPOBJ)) = NP1 

 6 TV�NP  → VP: OBJ(TV) = NP; NP�VP  → S 

 7 NP�IV  → S: SUBJ(IV) = NP 

In the case/grammatical rules, TV signifies Transitive Verb, and IV signifies Intransitive Verb. 

The rules are context-free rules written back to front, augmented with case assignments. Thus 

rule 5 could be read: "if you find an NP1 (noun phrase) followed by an S\NPOBJ  (sentence with 
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omitted object NP) then you have found a (higher-level) noun phrase NP2: set the object slot of 

the verb in the S\NPOBJ  to be the noun phrase NP1. 

Commentary: The tree at the top shows the combinatorial choices for analysis of the sentence 

The boy the girl the man saw met slept.  Subject to rules 1-3, there are 18 combinatorial 

possibilities, labelled P1-P18. 

Levels are shown at right: the 3-way split at level A shows the three-way choice of subject for the 

verb slept. 

The split at level B for the subject of met is 2-way, since rule 1 eliminates one of the possibilities 

- for example, in the left most sub-tree at level B, the SUBJ cannot be man since man has already 

been used as the subject of slept.. At level C, similarly, there is only one choice in each case for 

the subject of saw.  

At level D, as the subject of met has already been chosen, because of rule 3, there are only two 

remaining choices for the object of met.  

At level E, when choosing the object of saw, the NP both must not have been chosen as the object 

of met,  (rule  2) and must not have been chosen as the subject of saw (rule 3). The intersection of 

these possibilities is sometimes just one NP, sometimes two. For example, with P16, OBJ(saw) 

cannot be girl because OBJ(met) is girl, and cannot be man because SUBJ(saw) = man. 

However, with P17, P18, SUBJ(saw) = OBJ(met) = man, so both girl and boy are possible for 

OBJ(saw). 

Now the case/grammatical rules: 

Apply rule 4 to the man saw → SUBJ(saw) = man [Possibilities satisfying this: P10, P11, P12, 

P16, P17, P18]. 

Apply rule 5 to the girl the man saw → OBJ(saw) = girl [Possibilities: P10, P12, P17]. 

Apply rule 5 to the boy the girl the man saw met → OBJ(met) = boy [Possibility: P10]. 

Apply rule 7 to the boy the girl the man saw met → SUBJ(slept) = boy [Possibility: P10]. 

Rule 6 is not used in the example sentence above, but would be used in The boy the girl met hit 

Tom. 
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Endnotes 

1  A dimension A is independent of another dimension, B,  if, when classifying entities according to their values on 

dimensions A and B, knowing the value of an entity according to dimension A does not always determine the value 

of the entity according to dimension B. 

2 Though their significance could not be determined. 

3  Actually the problems of instance of identification are even greater than this. Not only must each relational 

instance be bound to a unique context vector (i.e., the context in which the relational instance was memorized), but 

each vector must be orthogonal (dissimilar) so as to avoid the problem of cross-talk (role vectors bound to fillers 

from different relational instances). The orthogonality requirement introduces a dilemma: if we choose random 

dissimilar vectors, then in general relational instances are not distinguishable on the basis of their contents. On the 

other hand, if we generate identification vectors on the basis of contents, these vectors will no longer be orthogonal 

since many relational instances share the components. These problems can be overcome by defining each instance by 

its components and linking them together, but notice that this effectively entails adopting 

symbol-argument-argument bindings. 

4 In the special case, where each role is represented by a unique local basis vector (e.g., [1 0 0], etc), the tensor 

role-filler method also maps each relation dimension onto a separate tensor subspace. However role-filler methods 

may entail the psychologically unrealistic assumption that each relational instance can be uniquely identified by a 

context independent vector. 

5 This property can be linked to compositionality (Fodor & Pylyshyn, 1988) but it is not appropriate to develop that 

link in this paper. 

6  Order notation Θ(.) identifies the term in n with the largest power, so that 100n2; n2 + 10n; and 0.001n2 are 

considered to be of the same order (i.e., Θ(n2) - quadratic). 

7  Frye et al. (1995) refer to this as a �setting condition�. 
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Table 1.   

Tower of Hanoi moves which require planning, showing goal(s) and  

dimensions.   

 

Problem/Move Current State Move New State Goal(s)* Dimensions 

      all     new 

2 disc      

1 12,_,_ 1 to B 2,1,_ 2C 1B     4       4 

3 disc      

1 123,_,_ 1 to C 23,_,1 3C 2B 1C     6       6 

5 _,12, 3 1 to A 1,2,3 2C 1A  

4 disc      

1 1234,_,_ 1 to B 234,1,_ 4C 3B 2C 1B    8        8 

5   4, 3,12 1 to A 14,3,2 4C 2B 1A    6        4 

9 _,123,4 1 to C _,23,14 3C 2A 1C    6        6 

13 12,_, 34 1 to B 2,1, 34 2C 1B    4        4 

5 disc      

1 12345,_,_ 1 to C 2345,_,1       5C 4B 3C 2B 1    8        8  

5   45,12,3 1 to A 145,2,3         5C 4B 2C 1A    8        4 

9 5,4,123 1 to B 5,14,23          5C 3B 2A 1B    8        6 

13 125,34,_ 1 to C 25,34,1         5C 2B 1C    6        4 

17 _,1234,5 1 to A 1,234,5         4C 3A 2C 1A    8        6 

21 3,4,125 1 to B 3,14,25         4C 2A 1B    6        4 

25 123,_,45 1 to C 23,_,145 3C 2B 1C    6        4 

29   _,12,345 1 to A 1,2,345 2C 1A    4        2 
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*New goals are underlined 
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 Table 2.  

Mapping ordered triples, based on absolute size 

  Experimenter�s set 

  1   5   9 2   6   10 3   7   11 4   8   12 

    1  5   9 1   1   1 1   1   1 .5  .5   1 0   0    1 

Children�s    2  6  10 1   1   1 1   1   1 1   1    1 .5  .5   1 

set    3  7  11 1   .5  .5 1   1   1 1   1    1 1   1   1 

    4  8  12 1   0   0 1   .5  .5 1   1    1 1   1   1 

 

1 = absolute size gives correct answer 

.5 = absolute size gives 2 answers, one of which is correct 

0 = absolute size gives incorrect answer 
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Figure Captions 

Figure 1. Neural net capable of tensor product representation of role-filler binding or unary 

relation (A) and as arithmetic example (B). A binary relation shown as a tensor product net (C) 

and as an arithmetic example (D). A ternary relation is chunked to a binary relation R(a,b/c) in 

E (with symbol vector omitted for simplicity). A circular convolution calculated from the tensor 

product in Figure 1B is shown in Figure 1F. The circular convolution is computed by adding 

along the curved lines and is:  

[0.50 0.71 0.50] ∗  [-0.5  0.71 -0.50] = [-0.25 -0.25 0.00]  

The shadings in Figures A and C are to make the spatial layout clear, and do not represent levels 

of activation. 

Figure 2. Four levels of relational complexity, with dimensionality and schematic outer product 

representations. 

Figure 3. Synchronous oscillation representations of relational instances love(John,Mary), 

kiss(John,Mary), and marry(John,Mary). 

Figure 4.  A 3-level binary cascade adder 

Figure 5. Decision process for parsing centre-embedded sentence. 
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    Figure 3.  Synchronous oscillation representations of relational instances love(John,Mary),  
                    kiss(John,Mary), and marry(John,Mary).
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Figure 4.  A 3-level binary cascade adder 
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Figure 5. Decision process for parsing centre-embedded sentence. 

 

                                                 

i  More precisely, �x:dog(x) is bigger than y:cat(y)� has no truth value because of the variables present. 

However, the corresponding family of propositions referring to particular dogs and cats will be true in some cases 

(presumably most cases) and false in others, as when x is a Chihuahua and y is a decent-sized cat. 

ii  Note that the structural correspondence principle does not necessarily imply the person in the lover role must 

always be first in the expression, but it does mean that entities in a given role must always be in the same position 

relative to other roles.  Thus if �John loves Mary� is represented by loves(John,Mary) then �Peter loves Angela� 

must be represented by l (loves(Peter,Angela), and so on. 
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iii  A dimension A is independent of another dimension, B,  if, when classifying entities according to their 

values on dimensions A and B, knowing the value of an entity according to dimension A does not always determine 

the value of the entity according to dimension B. 

ivThough their significance could not be determined. 

v  Actually the problems of instance of identification are even greater than this. Not only must each relational 

instance be bound to a unique context vector (i.e., the context in which the relational instance was memorized), but 

each vector must be orthogonal (dissimilar) so as to avoid the problem of cross-talk (role vectors bound to fillers 

from different relational instances). The orthogonality requirement introduces a dilemma: if we choose random 

dissimilar vectors, then in general relational instances are not distinguishable on the basis of their contents. On the 

other hand, if we generate identification vectors on the basis of contents, these vectors will no longer be orthogonal 

since many relational instances share the components. These problems can be overcome by defining each instance by 

its components and linking them together, but notice that this effectively entails adopting 

symbol-argument-argument bindings. 

vi In the special case, where each role is represented by a unique local basis 

vector (e.g., [1 0 0], etc), the tensor role-filler method also maps each relation dimension onto a separate tensor 

subspace. However role-filler methods may entail the psychologically unrealistic assumption that each relational 

instance can be uniquely identified by a context independent vector. 

vii This property can be linked to compositionality (Fodor & Pylyshyn, 1988) but it is not appropriate to develop that 

link in this paper. 

viii  Order notation O(.) identifies the term in n with the largest power, so that 100n2; n2 + 10n; and 0.001n2 are 

considered to be of the same order (i.e., O(n2) - quadratic). 
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ix  Frye et al. (1995) refer to this as a �setting condition�. 


