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ABSTRACT

Minds are said to be systematic: the capacity to entertain certain thoughts confers to

other related thoughts. Although an important property of human cognition, its implication

for cognitive architecture has been less than clear. In part, the uncertainty is due to lack of

precise accounts on the degree to which cognition is systematic. However, a recent study on

learning transfer provides one clear example. This study is used here to compare transfer in

humans and feedforward networks. Simulations and analysis show, that while feedforward

networks with shared weights are capable of exhibiting transfer, they cannot support the

same degree of transfer as humans. One interpretation of these results is that common

connectionist models lack explicit internal representations permitting rapid learning.

Key words. Systematicity, learning transfer, connectionism, classicism, weight sharing,

normalization, Klein group
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INTRODUCTION

Mind is, to some extent, systematic: being able to think some thoughts confers to certain

other related thoughts. But the degree to which it is systematic, and what that implies for the

underlying architecture is to say the least controversial. Since Fodor and Pylyshyn's (1988)

seminal paper, numerous subsequent articles purport to address the issue in one way or

another. Yet, relatively few have proposed new connectionist models as a direct consequence

of the limitations expressed in the original article. Perhaps the so-called new connectionism

already provides for su�ciently powerful models, or perhaps the implications of systematicity

for (connectionist) cognitive architecture are not su�ciently well understood.

Part of the di�culty from a computational perspective is that it is not clear what con-

stitutes a de�nitive test for any particular model. If one considers systematicity as a type of

generalization (Hadley, 1994; Phillips, 1995), then what constitutes a fair test of generaliza-

tion? While one may accept that knowing \John loves Mary" implies the capacity to know

\Mary loves John", it is less clear how logical inference, for example, should extend from

thematic to abstract cases (van Gelder & Niklasson, 1994). Furthermore, even though the

\John loves Mary"-\Mary loves John" symmetry eliminates an elemental association based

architecture1, such symmetries are enforcible in a network augmented with an appropriate

learning function.

Adding a learning function to a network, makes certain network (weight) states inacces-

sible. When links are updated upon learning to represent the complex object \John loves

Mary", for example, they simultaneously represent the related object \Mary loves John".

Symmetry is enforced by `energy' minimization over an appropriate training set. Minimiza-

tion by gradient descent causes a change in state from not being able to represent either

1Brie
y, such architectures have states that permit the capacity to represent one instance but not the
other, by setting appropriate links from constituents (e.g., \John", \loves", etc) to just one of the two
complexes (e.g., \John loves Mary"). Such states have no correspondence in human cognition. And there is
nothing within the architecture itself that enforces this symmetry (Fodor & McLaughlin, 1990).
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complex object to being able to represent both. But, as a consequence of the shape of the

energy surface, it does not permit a change in state whereby only one of the two objects is

representable. It would appear, at least in principle, that energy minimization is su�cient

to account for certain symmetries in behaviour.

The use of generalization to explain systematicity, however, is crucially dependent on

what one regards as an appropriate training set. It is of no use if the proposed architecture

must make use of an unrealized number of training examples to attain a particular symmetry.

It is also necessary to justify the degree of generalization supported by the model.

One approach is to attempt to characterize the observed grouping of acquired cognitive

behaviours. Such characterizations become benchmark tests for generalization in network

models. In this way, Hadley (1994) identi�ed problems with connectionist claims of general-

ization. From language, Hadley proposed, in part, \generalization across syntactic position"

as a de�nition of systematicity. His analysis of generalization data for existing networks

showed no evidence of this degree of generalization. Subsequent simulation and analysis

showed why (Phillips, 1998). (See also Marcus, 1998, for another characterization and net-

work analysis.)

Although Hadley's de�nition of systematicity appears reasonable, this approach runs the

risk of presupposing a construct to which the behaviour is supposed to constrain. For in-

stance, according to Christiansen and Chater (1994), syntactic position is not even a standard

term in linguistics. A consequence of this approach is that systematicity becomes a property

of a particular model of cognitive behaviour, not of cognitive behaviour per se. That is why

Matthews (1994) regarded systematicity is an unresolvable issue for the connectionist, since

Fodor and Pylyshyn's original de�nition is speci�ed in terms of a particular architecture

(i.e., classical), leaving no room for an alternative theory.

An alternative, more theory-neutral approach is to propose a particular structure from
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which instances are generated, and test humans on their generalization capacity over this

set. Performance can then be compared to particular models over the same set, with the goal

of determining what computational properties are responsible for enforcing (the lack of) sys-

tematicity. In the next section, one such case is presented from learning transfer experiments

(Halford, Bain, Maybery, & Andrews, 1998). I then examine a feedforward network shown

to exhibit transfer using the technique of weight sharing (Hinton, 1990). The simulations

and analysis show that, although this network has the capacity to demonstrate transfer,

it cannot demonstrate the same degree of transfer as humans. Finally, some extensions to

the standard feedforward network are considered, which suggest greater emphasis should be

placed on networks that directly access their own internal representations for the purposes

of modeling higher cognition.

LEARNING TRANSFER IN NETWORKS AND HUMANS

Learning transfer is the phenomenon whereby performance (as measured by the number

of learning trials, for example) on one task is signi�cantly better having learnt a structurally

related task. Since Harlow (1949) it is known that the degree of transfer di�erentiates

species (see Kendler, 1995, for a review). Rats, for instance, show almost no transfer even

after hundreds of tasks, whereas humans show the greatest degree of transfer (Kendler, 1995).

The degree to which humans transfer learning suggests some form of symbolic representation.

Thus, it provides an interesting domain for connectionist modeling: A demonstration of

transfer by a connectionist model would provide the �rst step2 of a counter-example to

the claim that cognitive architecture must be classical3. Hinton (1990) invites this sort of

interpretation upon demonstrating generalization across isomorphic data sets using networks

with shared weights.

2The second step is to show that the connectionist solution is distinctly non-classical.
3Having syntactic representations, and processes sensitive to their structure (Fodor & Pylyshyn, 1988).
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Neural networks: Family trees task

In Hinton's work, a feedforward network was trained to make inferences about relation-

ships in two isomorphic family trees (see Figure 1). The network is required to learn the

mapping: Person 1, Relation ! Person 2 (e.g., John, Wife ! Mary) for each family tree.

The network consisted of input units for each family member in each family; and each family

relation. Input units were connected to a layer of hidden units, which encoded distributed

representations of local input vectors. The hidden units were connected to a common sec-

ond hidden layer, which was connected to a third hidden layer, which encoded distributed

representations of Person 2. Finally, the third hidden layer was connected to output units,

representing local target output vectors for Person 2 in each family. The network was trained

on 100 of the 104 possible person-relation pairs. In one simulation run, the network gener-

alized to all four remaining test cases. In the other run, it generalized to three test cases.

Insert Figure 1 about here

An analysis of input-to-hidden weights showed considerable similarity between the two

families (Hinton, 1990, Figure 5). Very similar representations were learned for corresponding

family members at the �rst hidden layer. Apparently, the shared weights between hidden

layers encoded common structure. If all the relations are learned for one member of a family,

then mapping the corresponding member for the other family to the same location guarantees

generalize to all its relations. Importantly, since there was no input similarity between vectors

representing the family members, generalization was based on common structure, not similar

input patterns. Hence, it apparently answers the criticisms of Fodor and Pylyshyn that

connectionist models are not structure-sensitive. But, the degree of generalization was very

limited, and at best only four cases in 104. It is questionable whether such demonstrations
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are indeed tapping the mechanisms of human inference.

Human subjects: Klein 4-group task

Halford et al. (1998) reported rapid transfer over a series of four tasks derived from the

Klein-4 group. Each task conformed to the following structure:

Klein a b c d

H b a d c

V d c b a

where a; b; c; d are states; and H and V are state transitions. When states are depicted

as vertices of a square, H and V appear as horizontal and vertical transitions, respectively

(Figure 2(a)). A task instance consists of four randomly generated strings and two shapes.

Subjects are presented with a string and a shape, and asked to predict the response string.

For example, in Figure 2(b), PEJ and 4 predicts BIP. In each trial, all eight possible

string-shape pairs are presented one at a time in random order. After making a prediction,

subjects are informed of the correct response. No reference is made to the structure and

underlying meaning of the task. Learning within a task instance continues until all eight

pairs are correctly predicted within a single trial, or to a maximum of six trials. After the

intra-task learning criterion is reached, or after six trials, the next task instance is presented,

until four task instances have been completed. By the fourth task, the �rst trial error rate

was 2.00 for a group of 12 participants.

Insert Figure 2 about here

Halford et al. showed that this degree of transfer can be obtained if one interprets strings

and shapes as states and state transitions. For example, given the two stimulus-response

pairs (from Figure 2(b)): 1. (PEJ, 4)! BIP; and 2. (SIY,
)! PEJ, one can make the
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interpretations:4 (PEJ, a); (4, H); (BIP, b); (
, V); (SIY, d); and (JAS, c). The third

stimulus pattern (BIP, 
) is predicted as JAS via the interpretation and task structure.

The three steps are: 1. BIP ! b; and 
 ! V; 2. (b, V) ! c; and 3. c ! JAS.

FEEDFORWARD NETWORKS WITH SHARED WEIGHTS

Before detailing and expanding upon an analysis of transfer initiated in Phillips and

Halford (1997), some justi�cation is given for the choice of local input/output representa-

tions5 for task elements used here, and in Hinton (1990). Generalization performance is

sensitive to the choice of input/output representations. In an extreme case, if all elements

are represented by a single real number, then arbitrarily many generalizations are possible

after training on only two examples in a linear system with one variable. Although there is

some similarity between elements between task instances (e.g., strings may share common

characters), this similarity is not the basis for generalization, since the assignment of task

elements is arbitrary across task instances. The use of local representations acts as a control

measure to eliminate any possibility of generalization on the basis of surface (input pattern)

similarity.

Simulation

A common method for demonstrating generalization is to partition data into training

and testing sets, where the inputs and outputs range over the same vector space. However,

in schema induction typically the stimulus and response materials do not appear in more

than one task. Therefore, particular attention must be given to the way input and target

vectors are represented in the network. One way is to use a di�erent group of input/output

units for each task, with learning transfer on the basis on common connections between

4(JAS, c) comes from the knowledge that they are the only remaining uninterpreted elements.
5That is, a single unit with activation 1, and the rest 0.
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hidden units (Figure 3(a)). This style of network is very similar to that used by Hinton

(see Figure 1). However, this approach is cumbersome for a longer series of tasks since

it adds many additional weights and units that are only updated during one of the tasks.

The approach adopted here was to use the same units and weights for each task, but to

reset the input-to-hidden and hidden-to-output connections. This approach simulates the

use of novel materials across tasks, while permitting knowledge transfer by not resetting the

hidden-to-hidden unit connections (Figure 3(b)). Dashed arrows indicate the actual weights

reset during simulations (see Method).

Insert Figure 3 about here

Another consideration is the number of hidden layers (at least two) and the number of

units within each layer. Importantly, the number of weights (free parameters) must be small

enough to facilitate generalization, but large enough to support a solution. Preliminary

simulations suggested a 6-3-2-4 network, where the six input units (four states plus two

operators) are connected to the �rst hidden layer of three units, connected to the second

hidden layer of two units, connected to the four output units. For units with linear threshold

activation functions (e.g., sigmoid: f(x) = 1

1+e�x
, used here), it can be shown that two is

the minimum number of units for the second hidden layer, and that two is a lower bound for

the �rst hidden layer, under the condition of local input/output vectors (Phillips & Halford,

1998, Appendix A). Preliminary simulations with a 6-2-2-4 failed to learn all patterns, so

the 6-3-2-4 network was used. Use of more hidden units only decreases the likelihood of

generalization as it introduces more free parameters for the same number of examples.
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Method

Preliminary simulations showed that the network failed to learn many of the patterns in

the second task despite successfully learning all patterns in the �rst task. This, despite the

fact that one of the solutions to the second task is the same set of weights learnt from the �rst

task, some of which were already speci�ed. The inability to learn the second task introduces a

methodological problem: how to examine generalization when the network cannot �nd any of

the available solutions to the training set. There are several ways to overcome this problem,

for example: use more trainable weights; �x fewer weights common to both tasks; or, use

more powerful learning methods. However, a failure to demonstrate generalization under

these circumstances is always subject to the \what if you tried ..." response. Alternatively,

one can take a bounds approach by identifying limits to the degree of generalization capable

by the network. If the limit falls below the generalization criterion then we can say the

architecture does not support learning transfer.

Accordingly, the following procedure was adopted: (1) train the network to predict the

�nal state given the initial state and operator for all �rst task instances; (2) reset only those

weights connected from the input unit corresponding to the test pattern for the second task;

and (3) retrain the network with all other patterns, and all other weights and biases �xed. In

e�ect, the network is being trained on all patterns for the �rst task and all patterns except

one for the second task. The exceptional pattern is used for testing. If the network cannot

demonstrate generalization under this condition, then it cannot support learning transfer

since there is no further information (training examples) available from the environment.

Therefore, support for learning transfer can only come from additional network speci�c

information biases. In other words, architectural properties that support learning transfer.

Figure 3(b) shows the weights (dashed arrows) reset for learning the second task. The

network weights were randomly initialized from a 0 mean 0.5 variance normal distribution,
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and updated using the standard backpropagation algorithm (Rumelhart, Hinton, &Williams,

1986) with squared di�erence between output and target patterns as the error function, and

a learning rate of 0.1 (no momentum). Training continued until the average squared error for

each output unit and pattern reached 0.01 training6. Networks were examined for transfer in

the cases where one and three weights from the input unit representing the state in the state-

operator pair for the test pattern were reset. Since local input/output vector representations

were used, this condition corresponds to retraining on all patterns for the new task except

the single test case where the input pattern corresponds to that unit. Results are reported

for the second task instance.

Results

When one weight was reset, after retraining the network correctly responded to all seven

training patterns in all 10 trials. The network correctly predicted the test pattern in seven

of 10 trials. When three weights were reset, after retraining the network correctly responded

to all seven training patterns in four of 10 trials. In the other six trials, the network correctly

responded six of the seven training patterns. For two of these six trials, the network correctly

predicted the test pattern. For the other eight trials, the test pattern was not predicted.

Analysis and discussion

Although the network demonstrated generalization when one weight was reset, there was

no evidence of generalization when three weights were reset. When three weights were reset

the test pattern was predicted in only two of 10 trials (20%), which is not better than chance

(25%). Furthermore, in both of these trials the di�erence between the two most activated

output units was only marginal (< 0:02), and in both cases the network did not respond

correctly to all seven training patterns.

6Su�cient for correct response to all training patterns.
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The most pertinent result is the four trials where all seven training patterns were learnt

without generalization to the single test pattern. In these cases, the network has learnt a so-

lution to the training set that was not a solution to the test set. Given the host of parameters

accompanying backpropagation, negative learning results may simply be attributed to un-

suitable parameter settings: a large step size may result in overstepping the global minimum;

an early (or late) stopping criterion may result in over-generalization or over-speci�cation.

Rather than attempt some `reasonable' coverage of the parameter space, a potentially more

informative approach is to plot the error surface for a region of weight space to gain an

understanding of the di�culty of the learning task.

Although it is not possible to view the entire (32-dimensional) error surface directly, we

can obtain an understanding of the di�culty of the task by viewing a portion of the error

surface around the global minimum. By plotting the error surface along two dimensions in

the vicinity of global minimum for both the seven training patterns and all eight patterns, we

can observe how the error surface changes with the additional test pattern (Phillips, 1997).

The network was trained until correct response on all eight patterns. Weights from one

input unit to all �rst layer hidden units were reset (Figure 3(b)). The network was retrained

to correctly respond to seven of the eight training patterns (simulating learning on the second

task). The error surface along two of the three reseted weights was plotted for the seven

training patterns (Figure 4(a)). The vertical z-axis indicates total error as a function of two

weights (x,y-axis). The 
at region (grey area) is the global minimum for the training set.

The error surface along the same two weights, but for all eight patterns (including the single

test case) is shown in Figure 4(b). The global minimum (grey area) in this case is much

smaller than for the training condition.

Insert Figure 4 about here

12



Clearly, the training set does not constrain the error surface to be the same as for the

test set. In other words, the network cannot guarantee generalization to even a single test

case. Similar results where found for the other two weight pairs, and for other trials. The

error surface plots make it clear that the two apparently successful trials were the results of

fortuitous initial weight settings.

It should be noted that the training method employed here does not guarantee that

shared weights will represent common task knowledge. The absence of subsequent task con-

straints when learning the �rst task means that both structural and speci�c knowledge could

be distributed across shared weights. Since these weights are frozen after learning the �rst

task, knowledge speci�c to the �rst task stored at the shared weights lessens the likelihood

of transfer as it is irrelevant to learning the next task. Hinton's method attempts to address

this problem by learning tasks in parallel. Task speci�c information represented on a limited

number of shared weights may leave the other task instance unrepresentable. Barring local

minima, the resulting error in the unrepresented task should force an alternative solution.

However, this approach appears psychologically implausible. Although task relevant infor-

mation must be used in learning subsequent task instances, it is unlikely to be of the form

of speci�c input/response patterns.7

Ideally, one wants the weight space that will facilitate the highest likelihood of transfer.

Independent of the serial/parallel training procedure, one can consider the smallest weight

space that will support a solution to each task instance. As well as number of weights, the

e�ective weight space of the network can be restricted by enforcing fewer activation states

for its units (e.g., binary, rather than real valued). In the extreme case, the smallest number

of identi�able states for the second hidden layer is four (i.e., one state for each possible

7Which could be checked by testing whether subjects remember responses for previous task instances.
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response). Fewer states means that at least one state must be mapped to two di�erent

responses. Such reduced representations can be implemented with a single binary valued

unit for each internal state and 0/1 weights connected to the output; or, by one real valued

unit and weights with non-monotonic activation functions at the output units. In the second

case, since it is not possible to partition four points on a line using single threshold units,

double threshold units are required. Gaussian functions, for example, have two thresholds

permitting each point to be separated from every other point.

In either case, how many patterns are required to learn a new task? The lower bound

is four (i.e., one pattern for each possible response). Each output unit must be trained to

discriminate between two types of points: the pattern it represents; and all other patterns.

With fewer patterns, at least one of the output units will be trained on only one type of

point (i.e., the patterns represented by the other output units). In this case, the training set

provides no information about discrimination for that output unit. Since the upper bound

on generalization is four patterns, this architecture cannot be said to support systematicity,

as de�ned in terms of learning transfer.

Before moving on to extensions to the feedforward network, it is also noted that this

analysis has implications for the simple recurrent network, which Elman (1990) and others

(Christiansen & Chater, 1994; Niklasson & van Gelder, 1994) have shown exhibits some

degree of generalization across common structure. A simple recurrent network applied to

the Klein 4-group task includes all the weights and units of the feedforward network, plus

additional weights for mapping the context (hidden unit vector from the previous time step)

to the hidden units. Since the additional connections in the simple recurrent network make

the weight space even less constrained than the feedforward network, it is highly unlikely

to exhibit generalization for the Klein 4-group task. Therefore, it also cannot be said to

support systematicity.
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VARIATION ON THE `STANDARD' MODEL

Reduced descriptions, or minimum description length codes are a recent popular con-

nectionist technique for improving generalization. Given their close connection to physical

concepts such as entropy, one may be tempted to hypothesize their existence in higher cogni-

tive mechanisms. However, the bounds identi�ed in the previous section raise an important

limitation: reduced descriptions, and the like cannot be the (sole) basis for learning transfer

in humans. Although reduced descriptions improve generalization, they do not make use of

the fact that in each task, one and only one task element was generated from one and only

one structural element.

One-to-one correspondence is routinely incorporated as a basic property of analogical

models (e.g., Hummel & Holyoak, 1997). Hummel and Holyoak's LISA model of analogical

reasoning and schema induction makes use of weight normalization to enforce one-to-one

correspondence between task and structure elements. While a full analysis of this model is

beyond the scope of this paper, it is important to consider the mechanism as it highlights

a change of philosophy in connectionist modeling: what I consider to be a move toward

explicit internal representations. What follows is a sketch of how weight normalization could

account for learning transfer as a prelude to a discussion on its characteristic di�erence from

standard (i.e., more common) connectionism.

Enforcing one-to-one correspondence

Realizing that each task element corresponds to one and only one structural element

permits greater transfer. For example, if we know from the �rst two stimulus-response trials

that elements A, B and D map to particular structural elements, then we can infer that

element C maps to the last remaining unaligned structural element, even though C does not

appear in the �rst two trials. Use of the one-to-one correspondence principle permits correct
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prediction after two training examples (for a detailed example see Introduction).

Suppose a group of input/output units (Ia, Ib, Ic, Id) for representing task stimuli, and

a group of hidden units (Ha, Hb, Hc, Hd) representing corresponding structural elements.

Following along the lines of Hummel and Holyoak's (1997) model, a procedure for ensuring

one-to-one correspondence is outlined in the following example:

� Suppose input pattern A is presented at the input/output units. The unit Ia becomes

active and propagates its activation to the hidden units. Mutual inhibition between

hidden units ensures only one unit (say, Ha) is most active.

� Weights linking co-active units have their weights increased. The outgoing weights

from a unit are normalized. Normalization increases the weight between the two most

co-active units (Ia-Ha) at the expense of the other outgoing weights. It ensures that

unit Ia only activates the hidden unit Ha (i.e., task element A is aligned to one and

only one structural element). However, at this stage unit Ha could be activated by

other input/output units.

� To constrain hidden units from being activated by other input/output units, incoming

weights to a common unit are also normalized. As with outgoing weights, normalization

increases one weight at the expense of others. In this case, it has the e�ect of ensuring

that a structural element corresponds to one and only one task element.

� If weights are bounded above by one, and normalized to sum to zero (Hummel &

Holyoak, 1997), then weights between aligned pairs (e.g., Ia-Ha) will approach one and

non-aligned pairs (i.e., Ii-Ha and Ia-Hj, where i; j 6= a) will be negative.

Suppose the �rst two trials consisted of stimulus-response patterns: (A,H) ! B; and

(D,V) ! A. By the end of the second trial, all three elements have been aligned to their

corresponding structural elements. For the sake of exposition, suppose elements are aligned
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by setting weights Ia-Ha, Ib-Hb and Id-Hd to one. By virtue of normalization, all other

weights into or out of these six units will have small negative values. This leaves the single

Ic-Hc connection. Although, this weight was not directly trained by the presence of the

C element (since it does not appear in the �rst two trials), it is indirectly trained by its

absence. All other connections from the unit Ic will have small negative weights, since they

are connected to non-aligned units (i.e., hidden units already aligned to other input/output

units). Similarly, all other connections to the unit Hc will have small negative weights.

Assuming a small positive starting weight for connection Ic-Hc, then normalization will force

this value to become strongly positive. On the third trial, when element C is presented to the

network it will already be aligned to the structural element represented at Hc, resulting in

correct prediction of the response element. After training on two patterns, non-local weight

modi�cation permits generalization to the other six patterns.

DISCUSSION

This paper was motivated by comments on earlier work from an anonymous reviewer

who questioned how it is possible to determine the systematic nature of human cognition,

given the di�culty of observing a subject's representational state, and their sensitivity to

contextual information. The answer lies in externalizing the underlying task structure by

speci�cation, and controlling context through structurally consistent but otherwise meaning-

less materials. The experimental paradigm devised by Halford et al. has these criteria, and

provides the basis for an objective measure of systematicity in both humans and networks.

Once a test for systematicity has been speci�ed it then becomes meaningful to analyze net-

work models for the same property. So, it was shown that standard feedforward networks do

not support systematicity, de�ned as a degree of learning transfer. The standard feedforward

network does not enforce one-to-one correspondence between input and internal representa-
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tional states. Weight normalization has this property and can, in principle, achieve the same

degree of transfer.8

This di�erence in generalization property highlights a number of points. Firstly, although

its not feasible to evaluate all of the almost in�nite variety of network architectures directly,

one can rule out a signi�cant subclass and thereby indirectly evaluate its speci�c members.

The limitation of the feedforward network lies in the shape of its error surface, which is

derived from the data set, connectivity, activation and error functions. In this regard, one

can eliminate the numerous variations based on step size and/or direction (e.g., acceleration

terms, conjugate gradient methods, etc). In general, these changes a�ect the time taken to

�nd the minimum, but not its shape relative to that determined by the test set.

Secondly, subtle di�erences in generalization levels transcend architectural boundaries.

Thus, generalization alone is not su�cient evidence for a particular hypothesis regarding the

nature of mental representation. For example, Hinton remarks that his family trees simula-

tions provide support for a componential (feature-set) representation of concepts, which had

been rejected for its lack of structure-sensitivity (Fodor & Pylyshyn, 1988):

\The family trees example shows that componential reduced descriptions can

be learned from structural information about how concepts go together within

propositions. Given a su�ciently powerful learning procedure, the structuralist

information can be converted into componential representations that facilitate

rapid intuitive inference."

(Hinton, 1990: p.59, emphasis here).

But, as is evident from the analysis presented here, any claim about the nature of concepts

8However, see Phillips and Halford (1998) where reverse inferences (e.g., what operator results in a
given start-end state transformation) were also considered, which has further implications for connectionist
architecture.
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is contingent upon quantifying the notion of rapid inference. Local feature set based con-

cepts were rejected by Fodor and Pylyshyn because there was no mechanism for enforcing

systematic generalizations. They assumed the same also applied to distributed features sets

(Fodor & Pylyshyn, 1988, footnote 10). Hinton's demonstration of generalization apparently

provides a counter-example. But, the work here shows that this method cannot achieve the

same level of generalization as humans. Hence, the distributed version of feature sets is also

rejected.

Finally, it is worth generalizing the di�erence between the feedforward network with and

without weight normalization in anticipation of how connectionism should depart from its

standard reliance on externally driven learning. This di�erence is characterized in terms of

implicit versus explicit internal representations. With normalization internal representations

are explicit in that learning is a function of weights within the same layer, which represent

the alignment of task to structure elements. By contrast, in standard backpropagation,

learning is a function of activation vectors, and possibly weights from outer layers. But,

weights within the same layer are not part of weight update function. In this sense, the

internal representations that these weights maintain are implicit to the learning function,

indirectly a�ecting learning by the output vectors they generate. But, why should this

indirect cause and e�ect matter? Because multiple internal representations can result in the

same response, only some of which are ultimately correct, further examples are needed to

isolate and correct the error. Conversely, a consequence of explicit internal representation

is that learning can proceed in the absence of external input. Thus, it was shown in the

previous section, weight normalization permitted correct alignment of the last remaining

pattern even though it did not appear anywhere in the training set. The distinction follows

from Kirsh's (1990) proposal that information is explicitly represented when it is e�ciently

accessible: explicit representation a�ords greater computational e�cacy, realized in this
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context as greater generalization.

The emphasis on explicit internal knowledge is a recurring theme in discussion on the

nature of cognitive architecture. Karmilo�-Smith (1992), for example, proposed that cog-

nitive development includes a process of redescribing one's internal representations, which

entails making them explicit: explicit representations are objects of manipulation by mental

processes. Clark and Thornton (1997) argued that a signi�cant class of problems are not

directly solvable from their input-output speci�cation. Instead, inputs must be recoded by

internal mechanisms, which is tantamount to explicitation. Both examples underscore a

need to move away from common �rst-order connectionism, where networks make explicit

use of external, but not internal states of a�airs, to what could be called second-order con-

nectionism, where internal states are also explicit, in at least the sense previously described.

Of course, this distinction in itself does not solve any speci�c problem - the critical question

is how to make use of those internal representations. But, failure to make the distinction

con�nes connectionism to the role of providing theories for biological transducers.

CONCLUSION

Rather than presuppose the structural basis for a grouping of particular cognitive be-

haviours, I have started with data generated from a particular structure and examined

whether networks exhibited the same grouping as human subjects. Networks that rely on

weight sharing alone cannot support the same degree of systematic generalization as humans.

Weight sharing may work for large tasks where the number of patterns approaches the num-

ber of shared weights, but not for tasks with fewer patterns. There are simply too many

possible solutions in weight space for the training set to su�ciently constrain the learning

mechanism. Many solutions to the training set lie outside the region that contains solutions

to the test set. Hence, generalization is highly unlikely.
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Generalization was improved to a level closer to that of humans using a learning mecha-

nism that implemented one-to-one correspondence between task and structure elements. In

this case, weight change is a direct function of other weights representing task knowledge.

By contrast, standard feedforward and recurrent networks have direct access to inputs and

target outputs only. Consequently, common task knowledge embedded in shared weights is

implicitly represented, and at best a�ords limited generalization. The results suggest re-

newed emphasis on a class of (second-order) connectionist models that have direct access to

their own internal representations.

It is fair to say that the systematicity debate has been largely con�ned to the philosophical

wing of cognitive science. Connectionists, for the most part, having sighted(/cited) the furor

proceed in the belief that a little tuning and a generous amount of interpretation will resolve

the issue. Yet, systematicity made su�ciently rigorous narrows the scope for interpretation

leaving, in one case, no room to maneuver. That should be reason enough to reconsider

what should be the basic elements of a connectionist cognitive architecture.
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Figure Captions

Figure 1. Feedforward network with shared weights used in \family tree" simulations

(adapted from Hinton, 1990).

Figure 2. Klein 4-group with two operators (a) and task instance (b).

Figure 3. Feedforward network with di�erent (a) and same (b) input/output units for each

task.

Figure 4. Error surface for 7 (a) and 8 (b) patterns.
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