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Computing phase-locking values (PLVs) between EEG signals is becoming a popular measure for quantifying
functional connectivity, because it affords a more detailed picture of the synchrony relationships between
channels at different times and frequencies. However, the accompanying increase in data dimensionality
incurs a serious multiple testing problem for determining PLV significance. Standard methods for controlling
Type I error, which treat all hypotheses as belonging to a single family, can fail to detect any significant
discoveries. Instead, we propose a novel application of a hierarchical FDR method, which subsumes multiple
families, for detecting significant PLV effects. For simulations and experimental data, we show that the
proposed hierarchical FDR method is most powerful. This method revealed significant synchrony effects in
the expected regions at an acceptable error rate of 5%, where other methods, including standard FDR
correction failed to reveal any significant effects.

© 2009 Elsevier Inc. All rights reserved.

Introduction

Investigating changes in functional connectivity associated with
task variables raises two closely related issues: (1) determining a
suitable measure of functional connectivity; and (2) assessing its
reliability. For EEG, computing phase-locking values (PLVs) has
become a popular measure for quantifying functional connectivity
in terms of synchronization between brain regions (Lachaux et al.,
1999). PLVs are computed by wavelet decomposition, providing
instantaneous measures of phase differences between two signals at
any desired frequency. This method has an advantage over methods
based on correlation, covariance, or spectral coherence, in that PLV
measures are directly applicable to non-stationary signals and treat
phase and amplitude independently (see Lachaux et al., 1999).

Although PLV analysis affords a more detailed picture of the
synchrony relationships between channels at different times and
frequencies, the accompanying increase in data dimensionality incurs
a seriousmultiple testing problem for assessing the significance of PLV
effects. As the test statistics among neighboring frequency and time
bands, and electrode pairs are likely to be dependent, standard
Bonferroni correction is often too severe. Moreover, researchers are
also interested in the direction of these effects, so Type III (direction)
error along with Type I error may also be inflated.

There are several approaches to controlling false-positives arising
from mass univariate statistical maps of neuroimaging data. Among

the Family-Wise Error Rate (FWER) controlling procedures, Random
Field Theory (RFT, Worsley et al., 1992) and resampling-based maxT
correction (Nichols and Holmes, 2002; Pantazis et al., 2005; Singh et
al., 2008) are the most established methods. RFT method has been
applied to the analysis of voxelwise EEG synchrony (see, e.g.,
Mizuhara and Yamaguchi, 2007), however it requires that EEG be
done in conjunction with fMRI. Resampling-basedmethods have been
used in testing EEG synchrony, but not for multiple testing correction
(e.g., Lachaux et al., 1999). Another approach, pursued here, is to
employ the widely used False Discovery Rate (FDR) control, which
controls the proportion of false-positives to total number of detec-
tions (Benjamini and Hochberg, 1995). This approach differs from
Bonferroni and other FWER methods, which control the probability of
there being even a single false-positive. FDR is of more practical
benefit to researchers who are willing to accept a small number of
false-positives as the cost of increased power.

FDR is now a standard approach for controlling Type I errors in
statistical maps obtained from fMRI, EEG/MEG, and fNIRS (Genovese
et al., 2002; Chumbley and Friston, 2009; Hemmelmann et al., 2005;
Singh and Dan, 2006). But, applications of FDR to maps of EEG
synchrony are almost nonexistent. Hemmelmann et al. (2005)
compared variations of FDR, FWER and other methods for coherence
analysis, and concluded that FDR and FWER were also applicable to
high dimensional EEG. For our purposes, though, FDR failed to detect
significant PLV effects unless the significance threshold was relaxed to
a far less conservative level (e.g., q=0.2). In the absence of suitable
methods, researchers have resorted to region of interest analysis,
informed by prior studies in the literature, or visual inspection for
maxima in the measures of interest (e.g., Phillips and Takeda, 2009).
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The alternative has been to conduct descriptive analyses using
uncorrected significance tests (Bhattacharya and Petsche, 2005;
Fingelkurts et al., 2003; Razoumnikova, 2000; Rodriguez et al.,
1999; von Stein et al., 1999; Weiss and Rappelsberger, 2000).

Standard (direct) FDR treats all hypotheses as belonging to a
single family. For multi-dimensional data like EEG, or research
questions with multiple facets, it is often more appropriate to group
hypotheses into different families depending on the dimension or
type of question. This problem arises in microarray analysis, which
has been the primary motivation for recent advances in FDR
methods. But, it also arises in EEG research, where the distribution
of neural events are typically not uniform and are likely to be
dependent on time and frequency. For example, synchrony within
different frequency bands has been implicated in subserving different
cognitive functions, such as top–down versus bottom–up driven
shifts in visual attention (Buschman and Miller, 2007). So, the
standard FDR (like Bonferroni), which treats all the tests as single
family may fail to account for the underlying dependence structure,
and tends to be overly conservative.

Recent advances in FDRmethods accommodate multi-resolutional
testing (Yekutieli et al., 2006; Reiner et al., 2007; Yekutieli, 2008). The
advantage of this approach is similar to multi-stage testing as the
large proportions of hypotheses that are unlikely to reveal significant
effects are excluded from subsequent stages. Yekutieli et al. (2006)
and Yekutieli (2008) proposed a hierarchical framework for FDR to
estimate an overall FDR bound for the entire study while controlling
FDR for each dimension separately at level q. If the number of
discoveries for the entire study exceeds the number of dimensions,
then the overall FDR bound for the entire study also converges to q. In
this study, we apply hierarchical FDR to the analysis of PLVs computed
from EEG data. We use this method in combination with an
improvised FDR procedure that also controls for directional (Type
III) errors (Benjamini and Yekutieli, 2005). The power and robustness
of this method are evaluated using simulation, and verified with
existing experimental data (Phillips and Takeda, 2009). Our main
result is that hFDR reveals significant synchrony effects in the
expected regions at a overall false discovery rate of 5%, while standard
FDR failed to detect any significant effects at this level.

Materials and methods

Here, we summarize the methods used to control Type I and Type
III errors associated with tests of PLV significance. Since our focus is on
FDR control, details for computing PLV (Lachaux et al., 1999) and with
specific application to visual search (Phillips and Takeda, 2009) are
not repeated here. FDR is defined as the expected proportion of false-
positives (V) among the detected-positives (R)1 (see Table 1),

FDR = E V = Rð Þ; if R N 0
0; otherwise

�
ð1Þ

and FWER as the probability of there being at least one false-positive,

FWER = P Vz1ð Þ: ð2Þ

Linear step-up FDR (FDRBH)

A linear step-up procedure (FDRBH, Benjamini and Hochberg,
1995) uses ordered p-values P1 bP2b . . . bPm corresponding to
hypotheses H1,H2, . . . ,Hm. Control at a specified level q is achieved by
rejecting hypotheses hypothesisH1, . . . ,Hk, where k = max i : Pi≤ i

m q
� �

If such a k does not exist, all hypotheses are accepted. This
procedure controls FDR at the level q under the assumption of

independence or a certain form of positive dependence (Benjamini
andHochberg, 1995; Benjamini andYekutieli, 2001); the later hasbeen
assumed to be the case with the test statistics obtained from most
practical neuroimaging data (Genovese et al., 2002).

Mixed directional FDR (mixed FDR)

Testing multiple null hypotheses against two-sided alternatives
potentially results in directional (Type III) errors that are in addition
to Type I errors. For example, in simultaneous testing of null
hypotheses H0i : θi=0, against the alternatives, H1i+ : θiN0 or H1i− :
θib0, for i=1, . . . , m, researchers may falsely accept H1i+ (or, H1i−)
when in fact θi b 0 (or, θiN0). Mixed directional FDR (mixed FDR)
procedures control the expected proportion of both Type I and Type
III errors (Benjamini and Yekutieli, 2005). The procedure for the
assumption of independence of test statistic is as follows: apply
FDRBH at level q to H0i : θi=0 with two-sided p-values, Pi. Let R

denote the number of discoveries made. Declare θiN0 (or, θib0) if

Pib
Rq
m and θiN0 (or, θib0).

The assumption of positive dependence as mentioned above is
difficult to verify with two-sided test statistics. In this case, the
authors have suggested separately testing each of the m one-sided
hypotheses, as follows: apply FDRBH at level q/2 to test the m null
hypotheses, H0i+: θi≤0 using their corresponding one-sided p-
values, Pi, and null hypotheses, H0i− : θi≥0, with p-values, 1−Pi.
Reject R=R+ ∪ R−, where R+ and R− denote the rejected nulls
from H0i+ and H0i−, respectively. This alternative method for
controlling Type III error is less powerful than the previous one,
but it ensures that FDR is controlled separately for both positive and
negative differences, even when the two-sided statistics are not
positively dependent.

Hierarchical FDR (hFDR)

The previousmethods assume that all hypotheses belong to a single
family. Greater efficiency can be obtained by organizinghypotheses into
a family–subfamily tree hierarchy,where each (sub)family is associated
with a single hypothesis (hFDR Yekutieli et al., 2006; Yekutieli, 2008).
We use our PLV example to illustrate the hierarchical approach. Each
PLV test statistic is associatedwith anelectrode pair in a given frequency
and time dimension. Suppose the tests are grouped into M frequency
and N time families based on the frequency and time band associated
with the test. TheM frequency families may constitute the first level of
the hierarchy. In this case, there are N time subfamilies at the second
level for each frequency family, and within each time subfamily are the
test statistics, one for each electrode pair, at the third (lowest) level.
Alternatively, time may be regarded as the first level, in which case,
there are M frequency subfamilies at the second level for each time
family. For each(sub)family there is anassociatedhypothesis. In ourPLV
example, a hypothesis associated with a first level frequency family
corresponds to a significant effect at that frequency band. A hypothesis
associated with a second level time family corresponds to there being a
significant effect at that frequency and time band, and so on. If a null
hypothesis is accepted then all descendants for the associated family are
no longer considered for further analysis. Pruning the hypothesis tree in
this way prevents control of FDR becoming overly conservative by

1 FDR can be expressed equivalently as FDR = Pr(R N 0)E(V/R | R N 0) + Pr(R = 0)E
(V/R | R = 0) = E(V/max(R, 1)).

Table 1
Variables associated with the number of true-negatives (TN), false-negatives (FN),
false-positives (FP) and true-positives (TP), for multiple testing of m null hypotheses.

Declared non-significant Declared significant Total

True H0 U (TN) V (FP) m0

False H0 T (FN) S (TP) m−m0

Total m-R R m
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ignoring groups of hypotheses that are unlikely to be relevant. This
process continues by recursively checking each child hypothesis of a
parent whose null hypothesis was rejected, and terminates when no
children are left to be tested.

Depending on the research question, hFDR procedure can be
employed to control FDR for identifying discoveries at all levels (full-
tree analysis), at a specific level (level-restricted analysis), or at outer
nodes only (end-node analysis). In this article, our focus is on the
illustration of the full-tree hFDR application, which can also be used in
level-restricted analysis.

The FDR bound on a hypothesis tree is defined recursively as the
sum of the expected proportion of the number of false discoveries to
total discoveries for each family. Yekutieli (2008) derived an
approximate bound using the following equation

bound = qδ
Nd + Nf

Nd + 1
ð3Þ

where q is the threshold for controlling FDR in each single family, Nd

is the number of observed discoveries, Nf is the number of families
tested, and δ is a multiplicative constant, typically about 1, when the
number of tests is not high. Nd (and Nf) may either represent all the
discoveries (and families tested) in a full-tree analysis, or only the
discoveries (and families tested) at the specified level k, in a level-k
restricted analysis. For several hundreds of tests, δ with an upper
bound of 1.4 is needed.

The value of hFDR bound depends on the distribution of the data,
the FDR tree constructed, and the set of FDR tree discoveries that are
of interest. If number of discoveries greatly exceeds the number of
families tested (Nd≫Nf), so that the multiplier Nd + Nf

Nd + 1 ≈1, then hFDR
bound ≈ q in both full-tree and level-restricted analyses. Otherwise,
hFDR bound may exceed q. See appendix for more on approximation
of hFDR bounds (Appendix A). Any reasonable value of hFDR bound,
even if it is higher than q, can be presented to support the hFDR
inference. Alternatively, the q level used in hierarchical method can be
made more stringent by substituting it with q⁎ to ensure that hFDR
bound does not exceed q:

q4 = q
Nd + 1
Nd + Nf

· ð4Þ

Simulation

Simulations were conducted to assess the viability of hFDR for PLV
analysis, and to compare this method with standard FDR. We
associated PLV differences (between conditions) with 4 frequency

bands, 12 time bands, 10 participants, and 171 electrode pairs (i.e., all
unique pairwise combinations of 19 electrodes) constituting a
4×12×10×171 array, and q was set at 0.05.

As already mentioned, there is more than one way to construct a
hierarchy. Ideally, families that are likely to be rejected should be
placed higher in the hierarchy so that their member hypotheses are
removed from further analysis. So, for example, if the true-positives
are clustered within a particular frequency band, but distributed
throughout all time bands, then a hierarchy with frequency at the first
level and time at the second level is likely to be more efficient than a
hierarchywith time at the first level and frequency at the second level.
For similar reasons, within a level of the hierarchy, efficiency is likely
to be greater when true-positives cluster within a single family, rather
than partially distributed over many.

To assess the effect of dimension order and partitioning on
hFDR sensitivity, we constructed a series of synchrony patterns
and hypothesis trees. The synchrony patterns were subsets of the
48 ( =4×12) possible frequency–time bands (windows). The first
four patterns were designed to assess the sensitivity of hFDR to
dimension order and partitioning by defining windows of
significance that were either within a single family, or spanned
multiple families (see Fig. 1A to D). The fifth pattern was designed
to test the effect of identifying multiple synchronies distributed
throughout the families (see Fig. 1E). This situation may arise
when a cognitive process invokes multiple phases of synchrony at
different frequencies, and the experimenter does not have strong
prior reasons for asserting particular regions of interest. For
frequency–time windows containing significant effects (shaded
regions), 12 out of 171 pairs were defined as truly significant.
Synchronized pairs were assigned non-zero PLV differences,
randomly generated from a normal distribution with parameters
chosen from a real PLV dataset. Other pairs were assigned values
from a standard normal distribution with mean zero and standard
deviation one.

Hypothesis trees were constructed by systematically varying the
association between (frequency, time) dimension and the (first,
second) level of the tree, and the “width” of each family (i.e. the
number of contiguous windows covered by a family). Trees are
identified by a two-letter scheme, where the first/second letter
corresponds to the first/second level of the tree and subscripts
indicate the number of families at the associated level per parent
family. So, for example, a T12F4 tree indicates 12 time families at the
first level each having 4 frequency families at the second level.
Families were arranged contiguously to cover the entire dimension.
So a T6F2 tree means that there were six time families each covering

Fig. 1. Patterns of frequency–time windows containing true-positive effects (gray regions).
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two time bands consecutively, and within each of those time bands
there were two frequency families covering two frequency bands
consecutively. The trees were F4T12, F4T6, F4T4, F4T2, F2T12, F2T6,
F2T4, F2T2 and F1T12; plus all previous trees with order reversed
(e.g., T12F4, etc.), totalling 18 trees. In every case, the third level of
the tree consisted of 171 hypotheses (corresponding to the
significance of the effect of condition on PLV at each electrode
pair across the 10 participants) for each second level family.

FDR procedures (using mixed FDR for independence assumption)
were applied to p-values, generated from single-sample two-tailed t-
tests on PLV samples. For each simulation the total number of tests
was 8028. Reported numbers of false and detected discoveries, and
hFDR bounds are averages over 1000 runs. hFDR bounds were
computed for full-tree and level-3 restricted hFDR analyses.

Experimental data analysis

To confirm the effectiveness of hFDR, we reanalyzed EEG data
acquired from a visual search experiment (Phillips and Takeda, 2009).
The purpose of the experiment was to test the hypothesis that top–
down driven control of visual attention in humans is accompanied by
frontal-parietal synchrony in the lower gamma-band. The design of
the experiment followed an early study on monkeys using implanted
electrodes (Buschman and Miller, 2007). Top–down signals were
induced using distractors that share a feature (e.g., colour, or
orientation) with the target, yielding a steep search slope (search
time increasing with display set size)—inefficient search. Bottom–up
signals were induced using distractors with no feature in common
with the target, yielding a flat slope (search time independent of set
size)—efficient search. Monkeys showed significantly greater syn-
chrony between frontal and parietal electrodes in the lower gamma-
band during inefficient than efficient search. For the human study, a
corresponding increase in phase-locking as the measure of synchrony
between frontal and parietal scalp electrodes was also observed for
the same contrast and frequency band (Phillips and Takeda, 2009). In
this case, the significance of the difference between the inefficient and
efficient conditions was established by analysis of variance of PLVs
obtained from 10 subjects averaged over 768 trials for the pairs and
time–frequency regions of interest.

For the purpose of comparing methods in the current study, data
were confined to 25 electrode pairs for each of the subject, i.e., five
frontal electrodes (F7, F3, Fz, F4, F8) by five posterior electrodes (T8, P3,
Pz, P4, T6), located according to the International 10–20 system.
Frequencywaspartitioned into lower (22–34Hz) andupper (36–48Hz)
gamma bands, corresponding to the original studies (Buschman and
Miller, 2007; Phillips and Takeda, 2009). Time was partitioned into
twelve 50 ms windows for the first 600 ms after stimulus (search
display) onset. For each subject, efficient–inefficient contrast values
were generated by computing mean PLVs difference between the
conditions for these frequency–time windows for each of the 25
electrode pairs. A random effect analysis using one-sample two-tailed
t-test on subjects' contrast samples was performed to test multiple
hypotheses involved in the following procedures.

For direct FDR, all 600 (=2×12×25) hypotheseswere regarded as
a single family, and a mixed FDR procedure was applied on the
resulting p-values for multiple testing correction.

For hierarchical FDR, we used a 3-level F2T12 tree for applying full-
tree and level-3 restricted analyses. The first level testing involved
testing a single family containing 2 hypotheses corresponding to each
frequency band, H0

i: μi=0, where μi is the mean PLV for ith frequency
band. The resulting p-values were thresholded by mixed FDR
procedure. The second level testing followed for only the significantly
identified frequency band(s). The test family for each significant
frequency band included 12 hypotheses for each time band, H0

ij :
μij=0, where μij is the mean PLV for ith frequency and jth time band,
using mixed FDR. The third-level testing followed in a similar way. For

each of the significantly identified frequency–time bands, a family of
25 hypotheses corresponding to the electrode pairs, H0

ijk : μijk=0,
were tested, where μijk is the mean PLV for ith frequency, jth time
band, and kth electrode pair. The full-tree hFDR bound and q-value
(q⁎) required for this bound to be maintained at 5% were calculated
using Eqs. (3) and (4). The level-3 restricted hFDR bound was
computed by using the same q-level (q⁎) in Eq. (3).

Results

Simulation

Simulation results are summarized in Table 2. For all combinations
of hypothesis hierarchy and synchrony pattern, the false discovery
rate for hFDR was found to be lower than FDRBH; and for most
combinations, the number of pairs of electrodes detected as
significant was greater with hFDR. The level-3 restricted bound was
lower than full-tree bound for all combinations of hypotheses and
synchrony patterns.

For hFDR, the number of discoveries (i.e., families and pairs) and
detected pairs varied with hierarchy and synchrony pattern. Dimen-
sion order affected the number of detections for a given pattern. With
the first pattern, for example, where synchrony was confined to a
single frequency band but spanned several time bands, there were
generally more detected pairs with frequency than time at the first
level (e.g., 21 detections for tree F4T12 versus 6 detections for T12F4).
For a particular dimension order, the number of detections also varied
with the family width (i.e., number of windows covered by a family).
For the F4Ti trees (i.e., those with four frequency families at the first
level), tree F4T4 provided the greatest number of detections (24),
where the width and location of the time family coincided the
synchrony pattern (see Fig. 1F).

Similar effects were observed for the second, third and fourth
patterns. For the third pattern, for example, where synchrony was
confined to a single time band, but spanned several frequency bands,
the converse effect was observed—trees with time as the first level
generally detected more pairs, and tree T12F4 provided the greatest
number of detections. For some trees (e.g., F4T2), however, the
number of detections (1) was less than for FDRBH.

For the fifth pattern, containing multiple synchrony windows
throughout the frequency and time domains, trees F2T12 and F2T4
provided the most detections, identifying 19 and 20 pairs, respec-
tively. In this case, half of the trees provided fewer detections than
FDRBH.

Experiment

For the experimental data, hFDR detected 34 full-tree discover-
ies, including 1 frequency band at the first level, 7 time bands at the
second level, and 26 electrodes pairs with significant synchrony
(Fig. 2) at the third level, with an estimated FDR bound of .0491 at
q=0.04. The value of q was set according to Eq. (4). It revealed
significantly greater synchrony for the inefficient than efficient
condition in the lower gamma band (22–34 Hz) predominately at
300–500 ms post-stimulus onset. For two time bands, 250– 300 ms
and 500–550 ms, the frequency–time families were significant, but
not at the level of individual electrode pairs. Synchrony in the
inefficient condition was not significantly greater than in the
efficient condition for the high gamma band (36–48 Hz). hFDR did
not reveal significantly greater synchrony for the efficient than
inefficient condition in any frequency or time band. The level-3
restricted hFDR bound corresponding to 26 level-3 discoveries, i.e.,
electrode pairs with significant effects was 0.0488 at q=0.04.
FDRBH did not reveal any significant differences in synchronization
even at q=0.05. The results from the two versions of mixed FDR
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Table 2
Simulation results for synchrony patterns (P) and hierarchy trees (T) direct (FDRBH) and hierarchical (hFDR) procedures.

P FDRBH hFDR

NP, FDR (SD) T NF ND NF3 NP FDR (SD) bound (SD) bound3 (SD)

1 2.69, 0.057 (0.15) F4T12 4.14 24.50 2.27 21.35 0.032 (0.03) 0.067 (0.02) 0.054 (0.00)
T12F4 2.41 7.35 0.71 5.94 0.028 (0.04) 0.084 (0.02) 0.053 (0.01)
F4T6 3.30 22.45 1.42 20.15 0.030 (0.03) 0.066 (0.02) 0.053 (0.00)
T6F4 2.48 12.74 0.75 11.26 0.029 (0.04) 0.077 (0.02) 0.052 (0.01)
F4T4 2.76 25.49 0.88 23.73 0.031 (0.03) 0.065 (0.02) 0.051 (0.00)
T4F4 2.75 24.91 0.89 23.16 0.030 (0.03) 0.065 (0.02) 0.052 (0.00)
F4T2 2.75 20.93 0.87 19.18 0.031 (0.03) 0.066 (0.02) 0.052 (0.00)
T2F4 2.22 14.50 0.63 13.28 0.031 (0.04) 0.076 (0.02) 0.051 (0.00)
F2T12 2.59 9.21 1.00 7.62 0.030 (0.04) 0.082 (0.02) 0.053 (0.01)
T12F2 2.42 6.12 0.72 4.70 0.029 (0.05) 0.085 (0.02) 0.054 (0.01)
F2T6 2.42 11.31 0.82 9.89 0.032 (0.04) 0.078 (0.02) 0.052 (0.00)
T6F2 2.46 10.43 0.72 8.97 0.032 (0.04) 0.078 (0.02) 0.053 (0.01)
F2T4 2.21 14.75 0.62 13.53 0.033 (0.03) 0.076 (0.02) 0.051 (0.00)
T4F2 2.72 20.52 0.86 18.80 0.033 (0.03) 0.066 (0.02) 0.052 (0.00)
F2T2 2.17 10.13 0.58 8.95 0.031 (0.04) 0.078 (0.02) 0.052 (0.00)
T2F2 2.19 10.35 0.59 9.16 0.031 (0.04) 0.078 (0.02) 0.052 (0.00)
F1T12 1.82 2.87 0.40 2.05 0.018 (0.04) 0.092 (0.01) 0.053 (0.01)
T12F1 1.70 4.31 0.70 3.61 0.030 (0.05) 0.084 (0.02) 0.056 (0.01)

2 11.30, 0.051 (0.08) F4T12 7.73 53.03 4.94 46.30 0.032 (0.02) 0.059 (0.01) 0.055 (0.00)
T12F4 9.33 60.00 5.44 51.67 0.031 (0.02) 0.058 (0.00) 0.055 (0.00)
F4T6 5.88 48.17 3.09 43.29 0.032 (0.03) 0.058 (0.01) 0.053 (0.00)
T6F4 5.89 52.41 3.14 47.52 0.031 (0.02) 0.056 (0.00) 0.053 (0.00)
F4T4 4.70 54.83 1.91 51.14 0.031 (0.02) 0.056 (0.01) 0.052 (0.00)
T4F4 4.23 63.12 2.12 59.89 0.031 (0.02) 0.053 (0.00) 0.052 (0.00)
F4T2 4.63 45.05 1.84 41.42 0.032 (0.03) 0.057 (0.01) 0.052 (0.00)
T2F4 4.17 51.21 2.10 48.04 0.033 (0.02) 0.054 (0.00) 0.052 (0.00)
F2T12 5.28 63.83 3.21 59.55 0.031 (0.02) 0.054 (0.00) 0.053 (0.00)
T12F2 6.85 59.24 2.96 53.39 0.031 (0.02) 0.056 (0.00) 0.053 (0.00)
F2T6 4.13 57.78 2.06 54.65 0.032 (0.02) 0.054 (0.00) 0.052 (0.00)
T6F2 4.55 53.43 1.80 49.88 0.031 (0.02) 0.054 (0.00) 0.052 (0.00)
F2T4 3.19 61.79 1.12 59.60 0.031 (0.02) 0.053 (0.00) 0.051 (0.00)
T4F2 3.23 62.07 1.12 59.84 0.031 (0.02) 0.053 (0.00) 0.051 (0.00)
F2T2 3.17 50.50 1.10 48.33 0.033 (0.02) 0.053 (0.00) 0.051 (0.00)
T2F2 3.15 50.45 1.08 48.29 0.033 (0.02) 0.053 (0.00) 0.051 (0.00)
F1T12 4.66 44.55 2.72 40.89 0.033 (0.03) 0.058 (0.01) 0.053 (0.00)
T12F1 3.89 46.71 2.89 43.82 0.034 (0.03) 0.055 (0.00) 0.053 (0.00)

3 2.66 ,0.061 (0.15) F4T12 1.75 3.89 0.37 3.14 0.030 (0.04) 0.091 (0.02) 0.052 (0.01)
T12F4 5.09 32.73 2.98 28.64 0.030 (0.03) 0.058 (0.00) 0.055 (0.00)
F4T6 1.70 2.92 0.32 2.22 0.022 (0.04) 0.093 (0.01) 0.052 (0.01)
T6F4 4.09 19.56 2.10 16.47 0.031 (0.04) 0.066 (0.01) 0.056 (0.00)
F4T4 1.68 2.45 0.30 1.77 0.019 (0.04) 0.093 (0.01) 0.052 (0.01)
T4F4 3.31 11.84 1.43 9.53 0.029 (0.04) 0.074 (0.02) 0.056 (0.01)
F4T2 1.71 2.07 0.33 1.36 0.023 (0.05) 0.094 (0.01) 0.055 (0.01)
T2F4 2.26 4.13 0.63 2.88 0.021 (0.05) 0.088 (0.02) 0.056 (0.01)
F2T12 1.87 7.77 0.45 6.90 0.029 (0.03) 0.085 (0.02) 0.051 (0.00)
T12F2 4.00 29.30 1.89 26.29 0.030 (0.03) 0.057 (0.00) 0.053 (0.00)
F2T6 1.83 6.05 0.41 5.22 0.029 (0.04) 0.087 (0.02) 0.052 (0.01)
T6F2 3.45 19.90 1.46 17.45 0.032 (0.04) 0.063 (0.01) 0.054 (0.00)
F2T4 1.84 5.05 0.42 4.21 0.028 (0.04) 0.088 (0.02) 0.052 (0.01)
T4F2 3.05 13.77 1.17 11.72 0.031 (0.04) 0.070 (0.02) 0.055 (0.01)
F2T2 1.81 3.47 0.39 2.66 0.033 (0.06) 0.090 (0.02) 0.054 (0.01)
T2F2 2.28 5.74 0.66 4.46 0.029 (0.05) 0.084 (0.02) 0.055 (0.01)
F1T12 1.92 12.96 0.48 12.04 0.033 (0.03) 0.081 (0.02) 0.051 (0.00)
T12F1 2.11 28.91 1.11 27.80 0.032 (0.03) 0.054 (0.00) 0.052 (0.00)

4 11.54, 0.051 (0.08) F4T12 5.48 31.32 2.93 26.84 0.031 (0.03) 0.068 (0.02) 0.054 (0.00)
T12F4 9.20 66.67 6.02 58.47 0.031 (0.02) 0.057 (0.00) 0.055 (0.00)
F4T6 4.25 33.69 1.70 30.44 0.030 (0.03) 0.065 (0.02) 0.052 (0.00)
T6F4 5.24 64.46 3.12 60.21 0.031 (0.02) 0.054 (0.00) 0.053 (0.00)
F4T4 4.20 30.09 1.65 26.89 0.032 (0.03) 0.066 (0.02) 0.053 (0.00)
T4F4 5.21 57.61 3.09 53.40 0.032 (0.02) 0.055 (0.00) 0.053 (0.00)
F4T2 4.09 22.75 1.54 19.66 0.033 (0.04) 0.068 (0.02) 0.053 (0.00)
T2F4 4.72 38.64 2.66 34.92 0.034 (0.03) 0.057 (0.00) 0.054 (0.00)
F2T12 4.54 41.27 2.31 37.73 0.031 (0.03) 0.061 (0.01) 0.053 (0.00)
T12F2 6.91 59.28 3.73 53.37 0.031 (0.02) 0.056 (0.00) 0.053 (0.00)
F2T6 3.59 42.83 1.36 40.24 0.030 (0.03) 0.059 (0.01) 0.051 (0.00)
T6F2 4.17 59.20 2.05 56.03 0.031 (0.02) 0.053 (0.00) 0.052 (0.00)
F2T4 3.54 37.91 1.31 35.36 0.032 (0.03) 0.060 (0.01) 0.052 (0.00)
T4F2 4.07 51.13 1.96 48.06 0.033 (0.02) 0.054 (0.00) 0.052 (0.00)
F2T2 3.46 28.23 1.23 25.77 0.033 (0.03) 0.062 (0.01) 0.052 (0.00)
T2F2 3.74 35.29 1.68 32.55 0.034 (0.03) 0.056 (0.00) 0.053 (0.00)
F1T12 3.95 54.73 2.02 51.78 0.032 (0.02) 0.057 (0.01) 0.052 (0.00)
T12F1 3.18 58.50 2.18 56.32 0.032 (0.02) 0.053 (0.00) 0.052 (0.00)

5 11.49, 0.052 (0.07) F4T12 4.28 22.22 2.08 18.94 0.028 (0.03) 0.072 (0.02) 0.054 (0.00)
T12F4 4.07 16.87 1.59 13.79 0.030 (0.04) 0.075 (0.02) 0.054 (0.01)
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were almost identical, except that there was one discovery less with
the test assuming dependence than assuming independence.

Discussion

The results support our two main points: (1) the standard
approach to multiple test correction for phase-locking analysis in
EEG is overly conservative and fails to detect significant synchrony
effects. (2) The hierarchical FDR method overcomes this problem
and reveals significant instances of synchrony that are consistent
with true synchrony in the case of simulation, and previous
analysis in the case of experimental data.

Simulation and experimental results showed that, generally,
hierarchical FDR (hFDR) provided greater sensitivity and lower
false discovery rates than direct FDR (FDRBH) (Table 2). Hierar-
chical FDR affords a multiresolution approach to analysis, which is
particularly important when only a few biologically relevant
synchronies are expected given the thousands of tests that need
to be conducted. The procedure was most effective when unlikely
hypotheses were removed early in the hierarchy. For example, in
regard to the first pattern, where synchrony was confined to a
single frequency band but several time bands, the F4Ti trees were
most effective. Moreover, trees were more effective when the
width and location of the family coincided the synchrony window.
Again with respect to the first pattern, the F4Ti trees were more
effective than the F2Tj trees, and within the F4Ti trees, F4T4 (24
detections) was more effective than F4T12 (21), F4T6 (20), or F4T2

(19). Similar effects were observed for the other patterns and
hierarchies (ref. Fig. 1 and Table 2).

Conversely, hFDR is less effective when a large number of
hypotheses are not removed early in the analysis. Contrast, for
example, the number of detected pairs for F4T12 versus T12F4 on the
first pattern, 21 versus 6, and third patterns, 3 versus 29 (respective-
ly). In general, however, the performance of hFDR was never greatly
worse than FDRBH (note that hFDR reduces to FDRBH when there is
only one family in the hierarchy whose width spans both dimen-
sions). Furthermore, the false discovery rate was generally about half
of FDRBH, even though the approximate boundwas sometimes higher
than 0.05.

The fifth pattern was designed to test hFDR in the case of
multiple windows of synchrony distributed throughout the fre-
quency and time dimension (Fig. 1E). When there does not exist a
strong reason for asserting a particular hypothesis hierarchy, a
simple but effective choice is to use trees that cover each data
dimension with a large number of families, which in our study were
the F4T12 and T12F4 trees. These trees provided a good number of
detections, 19 and 14 pairs, respectively, which was greater than
the direct FDR method.

The full-tree hFDR analysis with experimental data resulted in 34
discoveries and 9 families being tested, and hFDR bound of about
0.049 at q=0.04 (Fig. 2). These patterns of synchrony conform to
those reported in Phillips and Takeda (2009). For our specific
application, both full-tree and level-3 restricted hFDR are useful. In
a level-restricted analysis, hFDR bound is computed using the same

Fig. 2. Synchrony map from hFDR application indicating (number of) electrode pairs showing significantly greater phase-locking for the inefficient than efficient search conditions.
The top and bottom rows correspond to lower (22–34 Hz) and higher (36–48 Hz) gamma bands.

Table 2 (continued)

P FDRBH hFDR

NP, FDR (SD) T NF ND NF3 NP FDR (SD) bound (SD) bound3 (SD)

F4T6 3.84 15.09 1.64 12.24 0.026 (0.04) 0.075 (0.02) 0.055 (0.00)
T6F4 2.71 7.66 0.86 5.95 0.027 (0.04) 0.084 (0.02) 0.054 (0.01)
F4T4 3.62 11.96 1.42 9.34 0.027 (0.04) 0.077 (0.02) 0.055 (0.01)
T4F4 3.60 11.65 1.40 9.05 0.027 (0.04) 0.078 (0.02) 0.055 (0.01)
F4T2 3.42 8.01 1.22 5.59 0.025 (0.05) 0.081 (0.02) 0.058 (0.01)
T2F4 3.46 7.78 1.19 5.31 0.021 (0.05) 0.082 (0.02) 0.058 (0.01)
F2T12 4.68 22.86 2.49 19.18 0.032 (0.04) 0.067 (0.02) 0.055 (0.00)
T12F2 3.99 14.03 1.51 11.05 0.030 (0.04) 0.076 (0.02) 0.055 (0.01)
F2T6 3.72 11.49 1.54 8.77 0.026 (0.04) 0.076 (0.02) 0.057 (0.01)
T6F2 2.67 6.04 0.82 4.37 0.026 (0.05) 0.085 (0.02) 0.055 (0.01)
F2T4 3.92 23.35 1.73 20.43 0.031 (0.04) 0.065 (0.02) 0.054 (0.00)
T4F2 3.36 15.34 1.16 12.99 0.030 (0.04) 0.074 (0.02) 0.053 (0.01)
F2T2 3.56 13.33 1.37 10.78 0.029 (0.04) 0.071 (0.02) 0.056 (0.01)
T2F2 3.53 11.67 1.25 9.14 0.026 (0.04) 0.075 (0.02) 0.056 (0.01)
F1T12 3.35 10.54 1.43 8.19 0.025 (0.05) 0.078 (0.02) 0.057 (0.01)
T12F1 2.48 10.11 1.48 8.63 0.037 (0.06) 0.075 (0.02) 0.057 (0.01)

Results are indicated for number of families tested and number of discoveries in full-tree analysis (NF and ND), and in level-3 restricted analysis (NF3 and NP), false discovery rate
average (FDR), full-tree and level-3 restricted bound (bound and bound3), and their standard deviations (SD).
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procedure as full-tree analysis (Eq. (3)), except the number of
discoveries, and families tested, include only those at the specified
level. For example, the full-tree analysis shows the numbers of
families tested and discoveries (Nd and Nf) made at the third level as
26 and 7, respectively. Substituting these numbers in Eq. (3) and
setting q=0.04 and δ=1, hFDR bound for level-3 inference is 0.0489,
which is smaller than full-tree hFDR bound of 0.0491. In our data, as
the number of full-tree discoveries include a large proportion of level-
3 discoveries, level-3 hFDR bound is smaller than full-tree hFDR
bound. This is evident both in simulation as well as experimental data.
While the inference in terms of the number of electrode pairs with
significant PLV effects is the same in both hFDR methods, there is an
important difference between the two. Unlike full-tree hFDR, level-3
restricted hFDR does not provide a multi-decompositional inference
in all three dimensions.

The adjustment of q as indicated in Eq. (4) is needed if the
researcher needs to control hFDR at the conventional 5% level Type I
error bound. Alternatively, the standard 5% threshold for q-value or
any other value deemed appropriate for that application can be
chosen. For example, in our experimental analysis, substituting qwith
0.05 results in hFDR=0.06 and two more discoveries in the same
frequency and time regions (results not shown here). As long as
estimated hFDR bound is presented along with the inference, a value
slightly higher than conventional 5% should be acceptable.

The results from the two versions of mixed FDRwere similar, quite
possibly because no significant synchronies were found in the
negative direction. For small sample sizes, and the large variances
associated with PLV data, the distributional assumptions underlying
parametric t-tests may not hold. So, we validated our inference with
an additional hFDR analysis using a bootstrap test (with 1000
surrogate data samples) to generate resampling-based p-values
(similar to the one used in Lachaux et al., 1999) for the hierarchical
framework, which produced similar results with 33 full-tree discov-
eries at q=0.04. Analysis of PLVs at high frequencies for intervals of
50 ms allows only one or two cycles per interval. However, repeating
the analysis using 100 ms time intervals did not change the inference.
At lower resolution, the number of discoveries (Nd) and families
tested (Nf) also reduced in the same proportion, and still showed
significant synchrony in the same regions as detected by the current
analysis. For example, a full-tree hFDR analysis using 100 ms time
resolution, showed 26 full-tree discoveries, including 19 pairs with
significantly greater synchrony in inefficient condition in lower
gamma band predominantly at the 300–500 ms post-stimulus onset
(results not shown here).

Although EEG data is amenable to a hierarchical approach, the data
itself is not naturally hierarchically structured. Simulations showed
how the choice of hierarchy may affect hFDR efficiency, although for
our application hFDR was more sensitive than FDR in all cases. In
practice, where the application domain does not enforce a particular
hierarchy, or alternative choices appear equally reasonable, cross-
validation or similar method can be used to assess the robustness of
the particular hierarchy (model) chosen. That is, the data can be
partitioned into selection and evaluation subsets, where multiple
hierarchies (models) are employed on the selection set, and the
performance of the ”best one” is reported for the evaluation set.

Our simulations and experimental data pertained to just 19
electrodes. Yet, even with this number of channels, the problem of
multiple comparisons was severe and only addressed by the
hierarchical approach. Increasingly, high-density (e.g., 64- to 256-
channel) EEG is being employed, where clearly the multiple
comparisons problem is exacerbated. We have shown that hFDR
offers a practical solution to this problem. Moreover, it is readily
applicable to other measures of detecting synchrony, such as mutual
information, generalized synchronization (Quian Quiroga et al., 2002),
single-trial phase locking (Lachaux et al., 2000), structural synchrony
(Fingelkurts et al., 2003), phase resetting (Makinen et al., 2005),

specifically in electrode spacewhenMR images are not available. For a
review and comparison of some of these methods, see David et al.
(2004); Alba et al. (2007). In the case of PLV, phase and amplitude
synchrony effects can be tested separately or together within the
same procedure simply by using the level-restricted form of hFDR.

Thehierarchical framework also allows one to addressmore complex
questions involving multiple families of hypotheses. This situation
occurs with microarray data involving thousands of genes tested for
multiple strain effects that result inmillions of simultaneous tests,which
was the motivating application for this technique (Yekutieli, 2008). The
ability to address more complex questions is afforded by the modular
nature of the framework where the within-family control procedure is
not restricted to a particular version of FDR. In our case, for example, we
improvised upon the core approach using themixed FDRprocedure that
controls for Type I and Type III error simultaneously.

Finally, an important assumption for hFDR is that the statistical tests
between levels are independent.However, hFDRcanbeemployedwhen
there is dependency within levels. In the context of EEG synchrony, a
topic of further work is to evaluate the effect of within-level
dependency, which occurs for example when there are dependencies
between frequency bands, or between time bands, or electrode pairs.
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Appendix A. Approximation of hierarchical FDR bounds

Yekutieli (2008) used the following equation to approximate the
bounds for hierarchical FDR control under the assumption that the
test statistics are independently distributed across levels for full-tree
and level-restricted hFDR.

bound = qδ
Nd + Nf

Nd + 1
m0

m
; ð5Þ

where q is the threshold for controlling FDR in each single family, Nd

is the number of observed discoveries, Nf is the number of families
tested, and δ is a multiplicative constant, typically about 1, when the
number of tests is not high. For several hundreds of tests, δ with an
upper bound of 1.4 is needed. Nd (and Nf) may either represent all the
discoveries (and families tested) in a full-tree analysis, or only the
discoveries (and families tested) at the specified level k, in a level-k
restricted analysis. m0

m is the proportion of true null hypotheses to the
total number of hypotheses, which is less than 1 if there are any
rejections, and the above equation can be rewritten as

bound = q
Nd + Nf

Nd + 1
: ð6Þ

In a full-tree analysis, the bound varies in an interval, q≤bound
≤2q. The value 2q can be approached onlywhen the proportion of leaf
discoveries is too small and m0

m = 1. On the other hand, if number of
discoveries greatly exceeds the number of families tested (Nd≫Nf),
so that the multiplier Nd + Nf

Nd + 1 ≈1, FDR bound converges to the value q.
The bound for a level-restricted analysis has no upper limit, but if
Nd≫Nf, FDR bound in a level-restricted analysis is also approximately
equal to q.
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