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Abstract The contrastive divergence(CD) method

proposed by Hinton finds an approximate solu-

tion of the maximum likelihood of complex prob-

ability models. It is known empirically that the

CD method gives a high-quality estimation in a

small computation time. In this paper, we give

an intuitive explanation about the reason why the

CD method can approximate well by using the in-

formation geometry. We further propose an im-

proved method that is consistent with the maxi-

mum likelihood (or MAP) estimation, while the

CD method is biased in general.
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1 Introduction

In recent years, probabilistic models called graph-
ical models have been taken a large role in var-
ious applications from wireless communication to
datamining[6, 10]. Although graphical models are
very flexible, we often encounter computational dif-
ficulties and many efficient approximation methods
have been proposed.

In this paper, we consider a parameter estimation
problem of complex probabilistic models like graph-
ical models from sample data. The biggest bottle-
neck in the computation is to calculate a normaliza-
tion parameter. Recently, Hinton[8] has proposed an
efficient approximation method called “Contrastive
Divergence (CD) method”.

Empirically it is known that the CD method gives
a good solution, and some theoretical results on the
behavior of the CD method have been reported[15,
16, 4].

This paper provides two main contributions. One
is to give an intuitive explanation why the CD
method can approximate well, based on a discussion
from an information geometrical point of view. The
other is to propose an improved method that gives
a solution that is consistent with the maximum like-

lihood (or MAP) estimation, while the CD method
gives a biased solution in general.

We consider the Boltzmann distribution of a ran-
dom vector X ∈ X with a parameter w,

p(X;w) =
1

Z(w)
exp(−l(X;w)) (1)

where l(X;w) is called an energy function, and Z(w)
is a normalization constant

Z(w) =
∑
X∈X

exp(−l(X;w)). (2)

For just a notational convention, we assume that X
is finite.

Here we consider the problem of finding the maxi-
mum likelihood (ML) estimation from finite number
of samples of X (extension from ML to MAP is easy
and straightforward just by adding the term corre-
sponding to the prior distribution). The calculation
of Z(w) is often computationally intensive.

First, let us formulate the ML estimation prob-
lem. The average of log-likelihood over given sam-
ples D = {X(1), . . . , X(n)} is written as

L(w) =
1

n

n∑
i=1

log p(X(i);w)

= ⟨log p(X(i);w)⟩p0

= −⟨l(X;w)⟩p0
− logZ(w), (3)

where ⟨f(X)⟩p denotes the average of f(X) over the
distribution p(X), and p0 is the empirical distribu-
tion

p0(X) =
1

n

n∑
i=1

δ(X −X(i)). (4)

A general approach to maximize L(w) is a gradi-
ent algorithm, in which the parameter is updated by
the gradient,

wt+1 − wt = γt∂wL(w)

= −γt
{
⟨∂wl(X;w)⟩p0

− ⟨∂wl(X;w)⟩pw

}
, (5)



where γt > 0 is a learning coefficient that may de-
pend on t in general, ∂w denotes the derivative by
w, and

pw(X) = p(X;w) (6)

is the model distribution.
We encounter a difficulty in computing the second

term of (5) that depends on p(X;w), because it is
still necessary to calculate Z(w).

2 Contrastive divergence

One approach to avoid the direct calculation of aver-
age with respect to p(X;w) is Markov chain Monte
Carlo (MCMC)[7], in which the random samples of
X is generated by a Markov chain q(X(k+1) | X(k)),
so that the distribution of X(k) converges to p(X;w)
as k → ∞. By taking an appropriate Markov chain
q(X(k+1) | X(k)), the stationary distribution is guar-
anteed to converge to p(X;w).

However, introducing MCMC is still computa-
tionally intensive, because MCMC is an inner loop of
each gradient descent step. One idea to resolve this
problem is to use a distribution rw(X) which ap-
proximates p(X;w). The update rule is thus given
by

wt+1 = wt − γt

{
⟨∂wl(X;w)⟩p0

− ⟨∂wl(X;w)⟩rw
}
.

(7)
Hinton[8] has proposed the contrastive divergence
(CD) method based on such an idea. CD algorithm
applies just a few steps of the MCMC iteration in
each gradient step, where the empirical distribution
p0(X) is taken as an initial state of the MCMC. The
algorithm is summarized as follows:

[CD algorithm]

1. Initialize the parameter w0.

2. Gradient descent loop: repeat the following
MCMC loop for t = 0, 1, 2, 3, . . . until conver-
gence

(a) MCMC loop by population: for each i,
let the initial state X(0)(i) be each sam-
ple X(i) (i = 1, 2, . . . , n), then perform
MCMC forK steps to get the MCMC sam-
ple X(K)(i).

(b) Update wt by (7) in which the rw(X)
be the empirical distribution after K-step
MCMC

rw(X) = p(K)(X) ≡ 1

n

n∑
i=1

δ(X −X(K)(i))

(8)

It is clear that the CD method is equivalent to
the Monte Carlo version of the ML (maximum like-
lihood) gradient descent as the number of MCMC
steps K goes to infinity, because the distribution of
X(K)(i) converges to p(X;w). It is known that the
CD method gives a good solution, even when K is
relatively small. We will give an intuitive interpreta-
tion about the reason why CD method can approx-
imate well by means of information geometry.

3 Gibbs sampler

3.1 Single component MCMC

Although there are many kinds of Markov chain
Monte Carlo algorithms, we focus on a specific class
of MCMC called single component MCMC which
updates only one component at each step.

Suppose X is an m-dimensional vector X =
(X1, X2, . . . , Xm) ∈ Xm, single component MCMC
updates one component Xj at each step,

q(X(k+1)|X(k)) = q(X
(k+1)
j |X(k))δ(X

(k+1)
−j −X

(k)
−j )
(9)

where X−j denotes the m − 1 dimensional vector
excluding the component Xj . The transition prob-
ability q(X(k+1) | X(k)) has to satisfy the condition
that the distribution of X(k) approaches the target
distribution π(X) = p(X;w) as k increases. One
well-known sufficient condition for the convergence
is so-called “detailed balance condition”,

q(X(k)|X(k+1))π(X(k+1)) = q(X(k+1)|X(k))π(X(k)).
(10)

Summing up byX
(k)
j , we obtain the stationarity con-

dition,

π(X(k+1)) =
∑

X(k)∈X

q(X(k+1) | X(k))π(X(k)). (11)

In this paper, we consider only the transition matrix
that satisfies the detailed balance condition. Here,
we introduce a simple notational convention. First,

let p
(k)
t be |X |m dimensional row vector represent-

ing the state probability at the k-th MCMC step of
the t-th gradient descent step. The component cor-

responding to the state of X is denoted by p
(k)
t (X).

Next, let Q
(k)
t be |X |m × |X |m matrix representing

the state transition matrix whose stationary distri-
bution is p(X;wt). The transition probability from
the state X and Y is given by the (X,Y ) component

of Q
(k)
t .



By using this vector-matrix notation, the state

transition from p
(k)
t by Q

(k)
t is given by

p
(k+1)
t = p

(k)
t Q

(k)
t = · · · = p

(0)
t

k∏
j=1

Q
(j)
t = p

(0)
t Q

[k]
t ,

(12)
where

Q
[k]
t =

k∏
j=1

Q
(j)
t . (13)

The condition that single component MCMC satis-
fies is given by

p
(k+1)
t (X−i) = p

(k)
t (X−i) (14)

for anyX and i, where p
(k)
t (X−i) denotes the |X |m−1

vector corresponding to the marginal probability of
X−i. Note that the above equation is a linear con-
straint. Further, the stationary condition (11) can

be written in a simple form, π = πQ
(k)
t .

3.2 Gibbs sampler

An important class of the single component MCMC
is Gibbs sampler, in which the state transition prob-
ability is given by the conditional probability of the
target distribution,

q(X
(k+1)
j | X(k)) = π(X

(k+1)
j | X(k)

−j ). (15)

The Gibbs sampler has several particular properties.
The first one is that the transition probability for Xj

does not depend on the current Xj but only depends
on the other elements. Another property is that this
transition probability satisfies the detailed balance
condition. In MCMC, one often require “rejection
step” in order to satisfy the detailed balance condi-
tion. However, the Gibbs sampler does not require
the rejection step.

4 Information Geometry of
Contrastive Divergence

4.1 Information geometry of single
component MCMC

Information geometry is a natural differential geom-
etry for a space of probability distributions[2].A lot
of information processing algorithms have been ex-
plained by means of information geometry[1, 3, 5, 9,
11], which gives intuitive understanding of the algo-
rithms and also gives a mathematical framework for

analysis. We just outline some necessary concepts
of the information geometry.

Once the probability model is designed, each
probability distribution can be specified by its pa-
rameter. Therefore, the probability distribution can
be regarded as a point in a space spanned by the
parameter. We can introduce a natural Riemannian
structure in that space, where Riemannian metric is
given by Fisher information matrix, and the natu-
ral affine connection is given by α-connection that is
specified by one real valued parameter α.

When we consider the exponential family model,

p(X; θ) = exp(θ · F (X)− C(X)− ψ(θ)) (16)

α-connection is significant in particular for α = ±1,
because “flat” structure appears in the space.

For α = 1, the natural coordinate θ is the
affine coordinate (e-coordinate) in the sense that any
geodesic is represented by a linear line, tθ1+(1−t)θ2,
which is called e-geodesic (‘e’ stands for exponen-
tial) and S is called e-flat with respect to this con-
nection. On the other hand, the case of α = −1
is dually related to the case of α = 1, where the
dual coordinate η (m-coordinate) can be obtained
by Legendre transform from the e-coordinate, which
is given by η = EX [F (X)] for the exponential fam-
ily, and geodesics are given by linear lines of η called
m-geodesics (‘m’ stands for mixture), and hence S is
also called m-flat. As a consequence, the exponential
family is dually flat for α = ±1 connections.

One important concept in the statistical infer-
ence is a subspace (submanifold) and a projection
onto the subspace. Because there are two kinds of
affine coordinate systems, we also define two kinds of
flat (autoparallel) subspaces, each of which is a lin-
ear subspace with respect to the affine coordinate.
The projection can be also defined in two ways: e-
projection is the e-geodesic that is orthogonal with
respect to the Riemannian metric at the projection
point, and m-projection is defined in a similar way.

An important fact about the (flat) subspace and
projection is given by the following theorem illus-
trated in fig.1.

Theorem 1 (projection theorem[2]) Suppose
M be a submanifold of the space of exponential
family S, then e-projection from p(X) ∈ S to M is
given by a stationary point of m-divergence that is
defined by Kullback-Leibler (KL) divergence

K(q(X), p(X)) =
∑
X∈X

q(X) log
q(X)

p(X)
. (17)

In particular, if M is m-flat, the e-projection is
unique and it minimizes the m-divergence. The same
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Figure 1: The projection theorem: for a flat sub-
manifold, dual projection is unique that minimizes
the KL divergence.

statement holds if we exchange m- and e- completely,
where e-divergence is defined by K(p(X), q(X)).

4.2 Optimality of the Gibbs sampler

Let us go back to our problem. A set of all prob-
ability distribution over Xm can be regarded as an

exponential family S. The parameter p
(k)
t forms an

m-coordinate system for S, where only |X |m − 1
elements are independent, because the sum of the

components of p
(k)
t should be 1. Single component

MCMC satisfies (14), which is a linear constraint for

p
(k+1)
t , which yields the following lemma.

Lemma 1 (Flatness[13]) If we fix the distribution

p
(k)
t obtained by k steps of single component MCMC,

the set of possible distributions {p(k+1)
t = p

(k)
t Q

(k)
t }

forms an m-flat submanifold Mk, where Q
(k)
t is

any possible transition matrix of single component
MCMC for the target distribution p(X;wt).

From the projection theorem, the e-projection
onto an m-flat submanifold is unique, and
Takabatake[13] has shown the following theorem
that guarantees the Gibbs sampler to be the e-
projection from the target distribution onto Mk

(fig.2).

Theorem 2 (Optimality of Gibbs sampler[13])

Let p
(k)
t be the current state vector, and Q

(k)
t be the

transition matrix of the Gibbs sampler, then the

e-projection p̃
(k+1)
t of the target distribution π(X)

onto Mk is given by p̃
(k+1)
t = p

(k)
t Q

(k)
t .

This theorem means that the Gibbs sampler can
be regarded as an alternating optimization proce-
dure in which the optimization is performed within
a subspace defined by (14).

Sπ(X)

M0

p0
p(1)

p(2)

M1

Figure 2: Optimality of the Gibbs sampler

proof (outline) The e-projection of π(X) is given
by

arg min
p
(k+1)
t

K(p
(k+1)
t , π) (18)

which is equivalent to

min
q(Xi|X−i)

K
(
p
(k)
t (X−i), π(X−i)

)
+

⟨K (q(Xi | X−i), π(Xi | X−i))⟩p(k)
t (X−i)

(19)

for the single component MCMC, where q(Xi | X−i)
is the transition probability of single component

MCMC from p
(k)
t to p

(k+1)
t . The first term does

not depend on the distribution of Xi, and the sec-
ond term takes the minimum value 0 when q(Xi |
X−i) = π(Xi | X−i) which is equivalent of the up-
date rule of the Gibbs sampler.

4.3 Information geometry of CD
method

Now we are ready to give a geometrical interpreta-
tion of the CD method. For simplicity, we assume
the distribution p(X) generating samples belongs to
the exponential family (16), and the model space M
is e-flat submanifold of S. The latter assumption is
not essential and it can be easily generalized to more
general case.

Here we need one more convenient notion of in-
formation geometry, that is, a “mixed coordinate”
(fig. 3). In the exponential family, the way of taking
natural parameter θ has an ambiguity because any
regular linear transformation θ′ = Aθ can give the
same distribution by taking F ′(X) = A−1F (X) and
changing the normalization term ψ(θ) appropriately.
Therefore, there exists a natural coordinate θ such
that M is represented by (θI, 0)e = (w, 0)e, where
()e denotes the e-coordinate representation, and θ is
divided into two parts like (θI, θII)e. Mixed coordi-
nate is defined by (ηI; θII)mix, when e-coordinate and



M
(e-flat, θII=0)

S(ηI0;θII0)

(ηI0;0)

m-proj (ML)
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Figure 3: Mixed coordinate

w0w1w2

M

Sp0=(ηI0;θII0)mix

ηI0

θII

ηI

θIwML

ηIw0ηIw1ηIw20

γ1 γ0

.......

Figure 4: Geometry of Maximum likelihood

m-coordinate are given by (θI, θII)e and (ηI, ηII)m re-
spectively. Mixed coordinate can specify any points
of S uniquely.

Let us consider the geometrical interpretation of
the ML and CD method. First, the empirical distri-
bution p0(X) can be represented as a mixed coordi-
nate (ηI0; θII0)mix.

It is known that the ML estimation is equiva-
lent to the m-projection from the empirical distri-
bution to the model submanifold, which is given
in a closed form of the mixed coordinate (ηI0; 0)mix

(fig. 4). Note that this does not mean the ML so-
lution is given in a closed form, because it is not
easy to obtain e-coordinate representation from the
mixed coordinate in general.

The average equation of the general gradient de-
scent optimization (7) is given by

⟨wt+1 − wt⟩ = −γt(ηI0 − ηI(rw)), (20)

where ηI(r) is ηI coordinate specified by rw(X). In
the stationary point w = w∗ of this equation, the
solution satisfies the equation ηI0 = ηI(rw∗). There-
fore, for the ML solution, it holds

ηI0 = ηI(pw∗), pw∗ = p(X;w∗), (21)

w0w1w2

M

Sp0=(ηI0;θII0)mix

ηI0

θII

ηI

θIw*

ηΙ(p0Q1)0

γ1 γ0

.......

p0Q1

ηI(p0Q2)

p0Q2
p0Qw*

Figure 5: Geometry of Contrastive Divergence

and on the other hand, the CD method converges to
the point

ηI0 = ηI(p0Q
[K]
w∗ ), (22)

where Q
[K]
w∗ denotes the transition matrix of K steps

of MCMC for the target distribution p(X;w∗).
From the above consideration, we get a simple ex-

pression of the condition of CD and ML being equiv-
alent.

Theorem 3 If the model manifold is e-flat, both the
stationary points of CD and ML are equal to w∗

when it holds

ηI(pw∗) = ηI(p0Q
[K]
w∗ ). (23)

This is equivalent to the condition given by
Yuille[16] but it is much simpler, even though we
assumed the model is e-flat.

Let us consider qualitatively about the relation
between ML and CD. In order that CD may ap-

proximates ML well, it is not necessary that p0Q
[K]
t

is close to the model manifold M , but it is sufficient

if the projection of p0Q
[K]
t toM approximates ηI(pw)

well. In particular, if we use the Gibbs sampler, the

direction of p0Q
[K]
t may not be so different from the

direction of ηI(pw) because of the optimality of the
Gibbs sampler. It is one reason why the solution of
CD well approximates well.

There is another reason related to the Monte
Carlo nature of the algorithm. Although the analysis
of this section has been based on the average equa-
tion, the algorithm includes fluctuations due to the
finiteness of the number of Monte Carlo sampling
in practice. Therefore, even for the ML (MCMC
with infinite steps), the solution is suffered by this
fluctuation. If it is larger than the approximation
precision by the CD method, the CD method will
be a good approximator of the ML.



4.4 Stochastic approximation

In this section, we consider the convergence property
when the algorithm includes random fluctuation. It
can be analyzed by using the stochastic approxima-
tion theory, and firstly we will show the result essen-
tially equivalent to Yuille[16]:

Theorem 4 By the CD method, w converges to w∗

(that is different from ML solution in general) in
probability when the following conditions are satis-
fied.

γt = 1/t, |∇wE(w)| <∞ (24)

(ηI0 − ηI(p0Q
[K]
w∗ ))(w − w∗) ≥ ∃C1|w − w∗|2, (25)

We just review the stochastic approximation the-
ory briefly. The purpose of the theory is to analyze
the stochastic difference equation

wk+1 = wk + γks(wk, yk) (26)

where w is a parameter and y is any random variable.
Let us define the average difference by

s̄(w) = ⟨s(w, y)⟩p(y|w) (27)

and Lyapunov function V (w) by

V (w) ≥ 0, ∇wV (w∗) = 0, (28)

(∇wV (w))T s̄(w) < 0, ∀w ̸= w∗, (29)

then the following theorem holds.

Theorem 5 (Stochastic approximation) wk

converges to w∗ in probability when

−(∇wV (w))T s̄(w) ≥ C1V (w), (30)

∞∑
k=1

γk = ∞,

∞∑
k=1

γ2k <∞ (31)

Ey[∥s(w, y)∥2] < C2(1 + V (w)) (32)

Typical choice of γk that satisfies the above con-
dition is γk = 1/k. Taking account the average dif-
ference of CD method is given by s̄(w) = −(ηI0 −
ηI(p0Q

[K]
w )) and letting V (w) = ∥w − w∗∥2, we ob-

tain Theorem 4.

5 Progressive CD method

5.1 Proposed method

One reason why the CD method does not always
converge to the ML solution is that the initial dis-
tribution of MCMC is reset to the empirical distri-
bution p0(X).

w0w1w2

M

Sp0=(ηI0;θII0)mix

ηI0

θII

ηI

θIw*

ηΙ(p0Q1)0

γ1 γ0

.......

p0Q1

ηI(p0Q2)

p1Q2

Figure 6: Geometry of Progressive Contrastive Di-
vergence

Our basic idea to improve the CD method is to
use the MCMC samples of the current step as the
initial population of the next step of the MCMC.
We call this method as “Progressive contrastive di-
vergence” (PCD), because the initial population for
each MCMC is updated progressively as time goes
by.

[PCD algorithm]

1. Initialize the parameter w0.

2. Initialize the working sample set by the
given samples: {X̂(1), X̂(2), . . . , X̂(n)} ⇐
{X(1), X(2), . . . , X(n)}

3. Gradient descent loop: repeat the following
MCMC loop for t = 0, 1, 2, 3, . . . until conver-
gence

(a) MCMC loop by population: for each i, let

the initial state X
(0)
i be each working sam-

ple X̂(i) (i = 1, 2, . . . , n), then perform
MCMC forK steps to get the MCMC sam-
ple X(K)(i).

(b) Update wt by (7) in which the rw(X)
be the empirical distribution after K-step
MCMC

rw(X) =
1

n

n∑
i=1

δ(X −X(K)(i)) (33)

(c) Update the working sample set by

X̂(i) ⇐ X(k)(i) (34)

The distribution of working sample set is given by

p0

T∏
t=1

Q
[K]
t (35)



at the T -th step of the gradient descent.

5.2 Convergence property

We can prove the weak consistency (unbiasedness)
of the PCD method as a direct extension of the case
of CD method.

Theorem 6 If the PCD method converges in proba-
bility, the convergent point is consistent with the sta-
tionary point of the original gradient descent equa-
tion (5) of the ML solution, which is a local optimum
in general.

However, the convergence of the PCD method is
not always guaranteed. We will give the condition
for convergence based on the stochastic approxima-
tion.

Theorem 7 By PCD method, w converges to w∗

in probability when the following conditions are sat-
isfied.

γt = 1/t, |∇wE(w)| <∞ (36)

(ηI0 − ηI(pQ
[K]
w∗ ))(w − w∗) ≥ ∃C1|w − w∗|2, (37)

for any state vector p.

This theorem gives a very loose sufficient condi-
tion for convergence, because it requires the condi-
tion for any state vector p instead of the given sample
distribution p0. PCD may have worse convergence
property (it might have larger variance) than CD,
but it is unbiased.

Therefore, in practice, we need some kinds of
technique to avoid unstability of the algorithm, for
example, if we increase the population size, the algo-
rithm approaches the average behavior that is much
milder and more stable. In the early stage of the al-
gorithm, CD method will show a good performance.
PCD can be used to converge to the unbiased solu-
tion in the later stage.

6 Conclusion

We have given an information geometrical interpre-
tation of the contrastive divergence (CD) method,
and have clarified why CD method can approxi-
mate the maximum likelihood solution well. Fur-
ther, we proposed the progressive contrastive diver-
gence method (PCD) as an unbiased version of the
CD method, while PCD might have larger variance
(we need further theoretical analysis). The condition
of convergence is still very loose and obtain tighter
condition is left as a future work.
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