細胞外電場負荷に対するシリンダーケーブルの膜電位変化の数理解析 Mathematical analysis on dynamical behavior of a cylindrical cable induced by extracellular electrical field

毛内 拡 (PY)^{†,††} , 青西 亨 ^{†,††††} , 大森 敏明 ^{†††,††††} , 岡田 真人 ^{†††,††††} , 井上 雅司 ^{††} , 宮川 博義 ^{††}

Monai Hiromu(PY)^{†,††}, Aonishi Toru^{†,†††}, Omori Toshiaki^{†††,††††}, Okada Masato^{†††,††††}, Inoue Masashi^{††}, Miyakawa Hiroyoshi^{††} † 東京工業大学, †† 東京薬科大学, ††† 東京大学, †††† 理化学研究所

monai@acs.dis.titech.ac.jp

Abstract— In hippocampal CA1 pyramidal cell, it has been shown experimentally that exteracellular electrical field applied parallel to the somato-dendritic axis induces unique changes in membrane potential. For example, extracellular DC field causes a monotonic change with slow time course near the cell body and biphasic changes in distal dendrite. A compartmental cable model with low membrane resistivity on one end shows similar profile of membrane potential change in response to DC field. To better understand the behavior of the model, here we tried to obtain solutions for the cable equation in which an extracellular electrical field is applied to a cable with a leaky end. We applied Green's function method to solving the equation with boundary conditions to describe the leakiness on one end of the cable. The solution analytically shows the numerically calculated features of the cable in the DC field.

Keywords— cable equation, extracellular electrical field, Green's function method, hippocampal CA1 pyramidal neuron

1 はじめに

生体の脳内では,神経細胞集団が同期して活動するこ とによって細胞外電場が形成される[2][3].我々は細胞 外電場による神経応答の修飾が神経系における情報処 理に関与している可能性を検討するため,細胞外電場の 負荷によって神経細胞に生じる膜電位変化を膜電位イ メージング法によって測定した.その結果,これまでに 予想されていない特異な電位変化が生じることがわかっ た[1].例えば,基底樹状突起から尖端樹状突起方向に 細胞外直流(DC)電場を負荷すると,基底樹状突起では ゆっくりとした過分極性膜電位応答が生じ,尖端樹状突 起遠位部では急速な脱分極応答の後に過分極応答に転 じる二相性の膜電位応答が生じる(図1).このような実 験を受け,樹状突起の先端の抵抗値が他の部分よりも小 さく(リーキーに)なっている可能性が示唆されている.

本研究では,先端の抵抗値の低さを境界条件のみで表現した電位非依存性の受動的なケーブル方程式でこの現象の記述を試みる.細胞外電場負荷に対するケーブル

図 1: 細胞外 DC 電場負荷時の膜電位変化 [1]

方程式をグリーン関数法で解くことによって,細胞外電 場負荷に対する単純ケーブルの膜電位変化を解析的に 導出した.このような最小表現におけるケーブル方程式 の線形応答の解が十分に実験結果を再現できることを 示す.

2 グリーン関数の導出とケーブル方程式の解

ケーブルの外部空間に電場 *E(t)* が負荷される場合を 考える.この時,ケーブルの電位応答はデルタ関数を用 いて(1)式のように表される[5].

$$\tau_m \frac{\partial V(x,t)}{\partial t} = \lambda^2 \frac{\partial^2 V(x,t)}{\partial x^2} - V(x,t) - \lambda^2 \delta(x-0)E(t) + \lambda^2 \delta(x-l_m)E(t)$$
(1)

ここではケーブルの片方の先端部分がリーキーな場合 を解析する. l_s [cm] は数値シミュレーションを行った際 に用いたモデルにおけるリーキーな部分の長さ, l_m [cm] はケーブルの他の部分の長さである.それぞれの単位長 さあたりの膜の抵抗を r_s , r_m [Ω -cm] とする.ケーブル の空間定数は $\lambda^2 = \frac{r_m}{r_i}$ [cm²], 膜の時定数は $\tau_m = r_m c_m$ [s] であり, c_m [F/cm] は単位長さあたりの膜容量, r_i [Ω /cm] は単位長さあたりの細胞内抵抗である.

ここでは解析を容易にするため,先端のリーキーな部 分を以下のような第3種境界条件で近似する.両端の 境界条件を以下のようにする.

$$\frac{\partial V(0,t)}{\partial x} = 0 \qquad \frac{\partial V(l_m,t)}{\partial x} = hV(l_m,t) \tag{2}$$

ここで h は先端部分のコンダクタンスで h =

 $\frac{r_m}{r_s \lambda^2} [cm^{-1}] となる.したがって、ここで取り扱うケーブル方程式は第2種境界条件と第3種境界条件をもつ非対称なシステムである.$

この条件でケーブル方程式を解くのは困難なので,以 下の境界条件を持つ鏡像システムを考える.

$$\frac{\partial V(-l_m,t)}{\partial x} = -hV(-l_m,t) \qquad \frac{\partial V(l_m,t)}{\partial x} = hV(l_m,t)$$

この場合,原点 x = 0では $\frac{\partial V(0,t)}{\partial x} = 0$ を満たす.

この下でグリーン関数を導出すると以下のように記述できる.

$$G(x,\xi,t-\tau) = \frac{1}{\tau_m l_m} \sum_{n=0}^{\infty} \exp\left(-\frac{\lambda^2 \lambda_n^2 + 1}{\tau_m}(t-\tau)\right) \beta_n(\xi) \cos(\lambda_n x)$$
(3)

ただし, x は出力を観測する位置, ξ は入力の位置, $t - \tau$ は時間, λ_n は固有値を表している.固有値は $\lambda_n \tan(\lambda_n L) = h$ を満たす [6].ここで注意すべきことは, 基底 $\cos(\lambda_n x)$ は異なる n の値に対して直交しないとい うことである.ゆえに各波数成分の係数 β_n は以下の有 限波数の連立方程式で近似的に求めなければならない (m = 0, 1, ..., N).

$$\cos(\frac{m\pi}{L}\xi) = \sum_{n=0}^{N} \beta_n(\xi) \left(\frac{\sin(\lambda_n l_m + m\pi)}{\lambda_n l_m + m\pi} + \frac{\sin(\lambda_n L - m\pi)}{\lambda_n L - m\pi} \right)$$

電位応答はグリーン関数と入力関数を畳み込み積分 することで求められる.入力が電場強度 E の DC 電場 の場合,式(1)に示すようにケーブルの両端に符号が逆 向きのステップ関数を入力することで記述できる.また 鏡像システムを用いたので全体の出力は2倍する必要 があり,出力 V(x,t)は以下のようになる.

$$V(x,t) = \frac{2E\lambda^2}{\tau_m l_m^2} \sum_{n=0}^{\infty} (\beta_n(l_m) - \beta_n(0)) \cos(\lambda_n x) \frac{1 - \exp\left(-t\frac{\lambda^2 \lambda_n^2 + 1}{\tau_m}\right)}{\frac{\lambda^2 \lambda_n^2 + 1}{\tau_m}}$$
(4)

3 結果

以上を用いて数値計算を行った.図2の実線はグリーン関数により求めた曲線,点線は数値シミュレーション によって得られた曲線である.

図 2: 先端の膜抵抗を他の部分の 1/10 に低くした際の膜電位の比較

4 二相性応答の原因の分析

DC 電場負荷に対する膜電位応答の式は以下のように 変形できる.

$$V(x,t) = y_0 + \sum_{n=0}^{\infty} A_n \exp\left(-\frac{t}{\tau_n}\right)$$

応答は係数 A_n と時定数 τ_n が決まれば一意に決定で きる.ここでは,両端が第2種の境界条件の場合(均一 ケーブル)と片方が第3種境界条件の場合(リーキーケー ブル)で,係数 A_nの比較を行う.

図3左は細胞外 DC 電場を負荷した際のリーキーでは ない側 (x = 0) で観察された応答の係数をn = 10まで順 にプロットしたものである.この図からわかるとおり, 係数の符号が全て同符号であるからこちら側の末端で 観察される応答は単相性になると考えられる.

一方,二相性の応答が観察されるリーキー端側($x = l_m$ では均一ケーブルの係数が全て同符号になるのに対し, リーキーなケーブルでは一番長い時定数(τ_0)に伴う係 数だけが逆符号になる(図3右). τ_0 以外の係数はリー クがない場合のケーブルと同じ値になる.このことが二 相性の応答を生み出す原因であると考えられる.

図 3: $\pm x = 0$ における A_n , 右: x = Lにおける $A_n(いずれも最大値 で規格化)$

5 むすび

本研究では,受動的かつ最も単純化されたケーブルモ デルを用いた.さらに得られた解はきわめて単純な線形 応答であるにも関わらず,十分に実験結果を再現するこ とができた.このことはケーブルの先端の膜抵抗値の低 さを表現した境界条件によって誘発され,樹状突起の先 端の膜抵抗値が低くなっている可能性を支持する結果と なった.

参考文献

- [1] Bikson M et al., J.Physiol., vol.557, pp 175-195, 2004
- [2] Gardner-Medwin AR, Exp Brain Res. Suppl 1., pp 218-222, 1976
- [3] Lomo T, Exp Brain Res., vol.12, pp 18-45, 1971
- [4] Owa T et al., 信学技報, TECHNICAL REPORT IEICE., NC2004-171(2005-03)
- [5] Rattey F., IEEE Trans on Biomed.Eng., vol.45 766-772, 1998
- [6] Svirskis et al., J.Neurophisiol., vol.77, pp 579-586, 1997