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Abstract— We analyze scaling properties of prob-
ability density functions of interspike intervals time
series from unanesthetized rats brains. The tech-
nique is used to characterize the dependence of non-
Gaussianity of the distribution on the temporal scale.
We show that the data for sleep and awake states have
significantly different scaling properties suggesting dif-
ferent sources of complexity in the two states.
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Non-Gaussianity of probability densities of time-
series fluctuations in many phenomena have been stud-
ied in recent years. Also, analysis of spatial and
temporal properties on different scales is a common
method to study of complex systems. However, a
combined multiscale analysis of probability density has
been proposed only recently.

We consider a time series b(i) which we integrate
B(i) =

∑i
j=1 b(j). The resulting ”walk” is divided

into segments of size 2s. In each segment [s(k − 1) +
1, s(k + 1)], where k is the index of the box, we fit
the walk with a qth order polynomial. After this we
obtain differences ΔsB(i) = B∗(i + s) − B∗(i), where
B∗(i) is the deviation from polynomial fit.

To characterize how different the PDF is from a
Gaussian distribution, we obtain standardized PDFs
(the variance is set to one) of ΔsB(i), and then use
parameter estimation based on Castaing’s equation in-
troduced in the study of hydrodynamic turbulence [1].

It has been demonstrated that a non-Gaussian PDF

with fat tails can be modelled by log-normal multi-
plicative processes [1] such as

ΔsB(i) = ξs(i)eωs(t),

where ξs and ωs are independent Gaussian random
variables with zero mean and variance σ2

s and λ2
s re-

spectively. The PDF of ΔsB(i) has fat tails and is
expressed by

Ps(ΔsB) =
∫

Fs

(
ΔsB

σ

)
1
σ

Gs(ln σ)d(ln σ), (1)

where Fs(ξs) and Gs(σs) are Gaussian with zero mean
and variance σ2

s and λ2
s, respectively. In this case (1)

is referred to as Castaing’s equation and converges to
a Gaussian

Gs(ln σ) =
1√
2πλ

exp
(
− ln2 σ

2λ2

)

when λ → 0. The original Kolmogorov-Obukhov the-
ory [2] predicts that the non-Gaussian parameter λ2 is
proportional to − ln s, where s is the temporal scale.

Equation (1) provides a good approximation to
PDFs observed not only in turbulence, but also in
foreign exchange rate [3], stock index [4], and human
heartbeat [5, 6] fluctuations.

In this study we apply the multiscale PDF analysis
to recordings of interspike intervals from live unanes-
thetized rats. We analyze recordings (around 8hrs
long) from six rats. The rats are in alternating sleep
and awake states.

Spike trains from each head-fixed rat are recorded
using five tetrodes (four in the neocortex and one in
the hippocampus). Using a spike-sorting technique we
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図 1: Deformation of PDFs across scales for all neurons
for sleep (above) and awake (below) states. Plots are
shifted arbitrarily in vertical direction for presentation
purposes. Gaussian PDF is shown at the bottom.

separated spike trains from tetrodes into spike trains
of individual neurons. The resulting spike trains are
separated to sleep and awake parts according to video-
taped iamges of rats. The total number of neurons
with sufficiently long asleep and awake periods is 50.

We apply the multiscale PDF analysis to sleep and
awake state time-series from each neuron. Deforma-
tion of PDFs on different scales is shown in Fig 1.

We estimate the λ2 fitting parameter using the tech-
nique described in [7] and average λ2(s) values for all
neurons at different scales and plot the averaged values
in log-normal coordinates. The results are shown in
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図 2: Scale dependence of the non-Gaussian parameter
λ2. Averaged over 50 neurons.
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図 3: Scale dependence of the non-Gaussian parameter
λ2. Averaged over 21 neurons.

Fig 2. The plot for the awake state shows correspon-
dence to the multiplicative cascade paradigm, while
for the sleep state the plot is curved and may suggest
power-law decay characteristic of non-Gaussian noise
[7].

We also analyze the data obtained from the model
described in [8]. The λ2(s) plots are shown in Fig 3.
The degree of non-Gaussianity is much smaller than
in the real data, and neither sleep-like nor awake-like
data seem to fit to multiplicative cascade paradigm.
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