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Abstract— On the basis of a model for the stor-
age of temporal sequences [1], we proposed a neural
model that is suitable for implementation with ana-
log metal-oxide-semiconductor (MOS) circuits, and
demonstrated the circuit operations [2]. Through ex-
tensive numerical and circuit simulations, we here eval-
uate the storage capacity by introducing complexity of
input patterns and pattern overlaps between the input
and output sequences.
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1 Target Model and Demonstrations
Fukai proposed a model for the storage of tempo-

ral sequences in [1]. The main function of this model
is learning and recalling the temporal input stimuli.
Based on this model, we proposed a modified model for
learning and recalling temporal sequences that is suit-
able for implementation with analog MOS circuits [2].
The modified model is shown in Fig. 1. As in the orig-
inal model, the primary function is to learn (record)
temporal input sequence I(t) of length T and to recall
it as recorded sequence u(t). The model consists of N

neural oscillators whose outputs Qi(t) (i = 1, ..., N)
are time-varying periodic square waves with different
fundamental frequencies. Each of the oscillators is con-
nected to an output cell through synaptic connections
whose weights are denoted by wi (i = 1, ..., N). The
output cell calculates the weighted sum of the oscilla-
tor’s outputs as

u(t) =
N∑

i=1

wiQi(t). (1)

Through cyclic learning processes, wis in Eq. (1) are
updated at every cycle to achieve u(t) → I(t). Notice
that this expression, i.e., a weighted sum of square-
wave functions with various fundamental frequencies,
corresponds to a form of the Walsh series expansion
[3] which is a mathematical method to approximate a
certain class of functions, like the Fourier series expan-
sion.

Now, given a periodic input signal (I(t)) with period
T and the output (u(t)), we define the mean square
error (E) between them as:

E =
1

2T

∫ (j+1)T

jT

[I(t)−u(t)]2 dt (j = 0, 1, 2, · · ·), (2)

∑
N

i=1

u(t) =      w
i
Q

i
(t)

Walsh series

expansion

1
Q

2
Q

3
Q

N
Q

I(t)

T

output

cell

temporal input

w
1

w
2

w
3

w
N

Fig. 1: Proposed temporal coding model.

where j represents the learning cycle. To learn the
input signal (I(t)) correctly, we need to minimize this
error. This is achieved by modifying the weights (wi)
between the oscillators and the output cell according
to the gradient descent rule:

δwi = −η
∂E

∂wi
, (3)

where η represents a small positive constant indicat-
ing the learning rate. Substituting E in Eq. (2) into
Eq. (3), we obtain

δwi =
η

T

∫ (j+1)T

jT

[I(t) − u(t)]Qi(t) dt. (4)

The weights are updated at the end of each learning
cycle (t = (j + 1)T ) as

wnew
i = wold

i + δwi. (5)

The procedures above, i.e., numerical calculations of
Eqs. (1), (4) and (5), are repeated (j = 0, 1, · · ·) until
the error between the input and the output becomes
small enough.

Numerical simulations were conducted to confirm
the operation of the model. In the simulation, out-
put of the oscillatory units Qi(t) was defined by:

Qi(t) = H[sin(2πfit)] (6)

where fi represents the random frequency distributed
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Fig. 2: Input (I(t)) and output sequences (u(t)) of
proposed network with 200 oscillatory units after first
(a), 10th (b) and 100th learning (c).
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Fig. 3: Input sequence (I(t) generated by Poisson
spikes with λ = 4.

between 1 and 10, and H(x) is the step function de-
fined as:

H(x) =

 1 (x > 0)

0 (x < 0)
. (7)

The results are shown in Fig. 2 (N = 200, T = 1
and η = 0.01). After the first learning (Fig. 2(a)),
the input (I(t)) and the output sequences (u(t)) were
completely different, however, u(t) approached to I(t)
as repeating the learning (Figs. 2(b) for 10th and (c)
for 100th learning).

2 Numerical Estimation of Storage Capacity
We evaluate the storage capacity of the proposed

network by defining pattern overlaps between the in-
put and output sequences, as a function of N and com-
plexity of input sequences. To define the complexity
(≡ λ), we use Poisson spikes whose mean firing rate
is represented by λ. Let us assume binary input se-
quence I(t) with period T and I(0) = “0”. The ex-
pected number of spikes within period T is thus λ/T .
The value of the input sequence is flipped and kept
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Fig. 4: Numerical and SPICE results showing pat-
tern overlaps between input and output sequences for
different Ns and complexity of input sequence λ.

when a spike is generated, i.e., I(t) (t > 0) remains
“0” if no spikes were generated, whereas I(t) (t > t1)
is flipped to “1‘’ when a spike is generated at t = t1.
When the subsequent spike is generated at t = t2, I(t)
(t > t2) is flipped to “0”. Figure 3 shows the examples
with λ/T = 4. This process is repeated while t ≤ T

The pattern overlap between the input (I(t)) and
the output sequences (u(t)) is defined by

m ≡ 4
T

∫ T

0

(
I(t) − 1

2

)
×

[
H

(
u(t) − 1

2

)
− 1

2

]
dt,

(8)
where I(t) is expanded to ±1, and Boolean values of
threshold evaluation (u(t) > 0.5) is also expanded to
±1. We calculated the pattern overlaps of the pre-
viously proposed MOS circuits (see [2] for the circuit
details) for different sets of input sequences (λ). The
calculations were carried out for 1 and 30 neuron net-
works. Figure 4 shows the averaged pattern overlap
between 10 different sets of the input sequences and
their outputs. For the comparison, numerical results
of the network model with the same number of neurons
were superimposed in the figure. This result shows
that the circuit network of N = 30 can retrieve input
sequence of λ/T = 6/(0.7 µs) ≈ 8.6 × 106 (s−1) with
the accuracy of 72% (m ≈ 0.72), which indicates that
the circuit can learn and recall temporal sequence of
4.3 MHz under our device setups.
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