
SGoto in Coq

(Experience Report)

Reynald A�eldt

Research Center for Information Security (RCIS)
National Institute of Advanced Industrial Science and Technology (AIST)

http://www.rcis.aist.go.jp

First time online: Decembre 11, 2008; Last update: June 25, 2010

1 Motivation and Contribution

Motivation The main motivation for the formalization of SGoto [SU07] is the production of
mechanically-checkable proofs of correctness for assembly programs. [SU07] actually provides two
ways for producing such proofs. The �rst one is an original (compositional) Hoare logic that one
can use directly to prove correctness. The second one is a compiler from structured programs (with
while-loops) to programs with gotos that preserves the validity of Hoare triples (Theorem 17 in
[SU07]). The latter is useful in situations where the traditional Hoare-logic proof already exists.
This is often the case, since textbooks usually provide correctness arguments in terms of invariants
for structured programs. [AM06] is a concrete example of such a situation. [AM06] proves in
the Coq proof assistant the correctness of an implementation in the SmartMIPS instruction set
of the Montgomery multiplication. The formal veri�cation was done using Separation logic for a
While-like language. The last step of the veri�cation was to generate a ready-to-run assembly
program by �compiling� while-loops into gotos. For this purpose, [AM06] provides such a �compiler�
(this is rather a macro-expander) and proves in Coq its correctness, i.e., that it preserves the
operational semantics. Yet, strictly speaking, that does not give a mechanically-checkable proof
that the Separation-logic triple holds for the assembly program to be run.

Contribution [SU07] is a pencil-and-paper formalization for an archetypal assembly language.
In this document, we not only formalize most of the pencil-and-paper proofs in [SU07] but we also
instantiate them with a concrete instruction set (a subset of the SmartMIPS instruction set) and
extend them with error-states (to model instructions that may trap). This enables the construction
of mechanically-veri�able correctness proofs for realistic programs. The main di�erences between
the assembly language we formalize and the archetypal assembly language of [SU07] are as follow:

• The store of variables consists of a �nite number of �nite-size registers. As a concrete con-
sequence, we can only prove that the factorial program of [SU07] is correct modulo 232 (see
Section 6): this is an intended and desirable property.

1

• Besides a store, the state also comprises a mutable memory. Actually, the underlying logic
is not just predicate logic but Separation logic [Rey02]. This enables the veri�cation, for
example, of programs for multi-precision arithmetic, as illustrated in Section 8.

• The operational semantics deals with error-states so as to model arithmetic over�ows and
unaligned memory accesses.

All these extensions are orthogonal to the formalization of [SU07], so that we are able to isolate
cleanly the proofs of [SU07] from the details due to the concrete instruction set in use using Coq
modules. This makes our formalization reusable.

Comparison with [SU07] Table 1 (page 3) makes it clear what is formalized w.r.t. [SU07]. In
brief, what we do not do: we do not formalize Section 5 of [SU07] about decompilation (anyway,
the topic is mentioned only brie�y in [SU07]) and we formalize only the so-called �non-constructive
proofs� of Theorems 17 and 18 (indeed, for these two theorems, the proofs come in two �avors).

As explained above, we instantiate the proofs of [SU07] with a concrete instruction set and with
error-states. Error-states are responsible for longer proofs because they duplicate case-analyses.
Besides length, proofs are essentially the same as [SU07]. The added value is the eradication of the
inevitable typos and imprecisions of pencil-and-paper proofs, and also the fact that proofs in Coq
can be replayed interactively.

Implementation Overview Table 2 (page 4) is a short overview of the implementation. For each
�le, we give the number of lines of Coq scripts (comments and blank lines removed). Compared with
the 43 pages of [SU07] (accepted authors manuscript) and given the bene�ts of mechanization, these
�gures are reasonable. For reference, we also indicate the scripts for instantiation to SmartMIPS
(taken from [AM06]).

The corresponding HTML documentation is available at http://staff.aist.go.jp/reynald.
affeldt/coqdev/cryptoasm.{filename_without_extension}.html.

We use SSReflect [GM07] and, despite our awkward command of this Coq extension, we feel
it improves readability and manageability.

The Rest of this Document The next sections are organized so as to match the organization
of [SU07], with the part about the While language coming �rst (it was in appendix in [SU07]).
The Coq code has been extracted directly from the Coq scripts using the coqdoc utility. Section 8
details an application to the proof of [AM06].

2 While: A Low-level Language

This section corresponds to Appendix A in [SU07].
Our formalization of [SU07] can be instantiated with any While-like language. In this section,

we isolate more precisely what we expect from such a language.

2.1 Generic de�nition of then While Language and Hoare logic

Section Lang.

Reference in [SU07] Status in �SGoto in Coq� (this document)
Section 2 Goto, a low-level language

Figure 1 Done
Lemma 1 Done
Lemma 2 Particular cases only
Lemma 3 Done

Section 3 SGoto, a structured version
Section 3.1 Syntax and natural semantics of SGoto

Figure 2 Done
Lemmas 4�5 Done

Theorems 6�8 Done
Corollary 9 Done

Section 3.2 Hoare Logic of SGoto
Figure 3 Done

Theorem 10 Done
Lemma 11 Done

Theorem 12 Done
Section 4 Compilation from While to SGoto
Section 4.1 Compilation and preservation/re�ection of evaluations

Figure 5 Done
Lemmas 13�14 Done

Theorems 15�16 Done
Section 4.2 Preservation/re�ection of derivable Hoare triples

Theorems 17�18 Done (non-constructive proofs only)
Section 4.3 Example

Done
Section 5 Compilation from SGototo While

Not done
Appendix A The high-level language While

Done
Appendix B Full proofs of Theorems 6, 7, 15, 16, 17, 18

Done (except the constructive proofs of 17-18)

Table 1: Status of the Formalization

A state is a pair of a store and a mutable memory.

Variable store : Set.
Variable heap : Type.
Let state : Type := (store × heap)%type.

We are given one-step, non-branching instructions: Variable cmd0 : Set.

One-step, non-branching instructions are given an appropriate operational semantics. We use
an option type to model error-states.

Variable exec0 : option state → cmd0 → option state → Prop.
Notation "s '�' c '�->' t" := (exec0 s c t) (at level 74 , no associativity) : lang cmd scope.

Structured commands (if-then-else's and while-loops) are parameterized by a type for boolean
expressions.

File Lines
SGoto in Coq (this document)

while.v 458
goto.v 383
sgoto.v 689
sgoto_hoare.v 344
sgoto_hoare_example.v 374
compile.v 1177
compile_example.v 67

[AM06]
mips_bipl.v 1222
mips_cmd.v 1001
mips_seplog.v 608

Table 2: Implementation Overview

Variable expr b : Set.
Variable eval b : expr b → store → bool.

Using above types, we de�ne the commands of While languages.

Inductive cmd : Set :=
| cmd cmd0 : cmd0 → cmd

| seq : cmd → cmd → cmd

| ifte : expr b → cmd → cmd → cmd

| while : expr b → cmd → cmd.
Coercion cmd cmd0 : cmd0 >-> cmd.
Notation "c ; d" := (seq c d) (at level 81, right associativity) : lang cmd scope.

We now de�ne the operational semantics of While languages. Structured commands are given
the textbook big-step operational semantics.

Reserved Notation "s � c �> t" (at level 74, no associativity).
Inductive exec : option state → cmd → option state → Prop :=
| exec none : ∀ c, None � c �> None

| exec cmd0 : ∀ s c s', s � c �-> s' → s � c �> s'

| exec seq : ∀ s s' s� c d, s � c �> s' → s' � d �> s� → s � c ; d �> s�

| exec ifte true : ∀ s h s' t c d, eval b t s → Some (s,h) � c �> s' →
Some (s,h) � ifte t c d �> s'

| exec ifte false : ∀ s h s' t c d, ¬ eval b t s → Some (s,h) � d �> s' →
Some (s,h) � ifte t c d �> s'

| exec while true : ∀ s h s' s� t c, eval b t s → Some (s,h) � c �> s' →
s' � while t c �> s� → Some (s,h) � while t c �> s�

| exec while false : ∀ s h t c,
¬ eval b t s → Some (s,h) � while t c �> Some (s,h)

where "s � c �> t" := (exec s c t) : lang cmd scope.

We now come to the formalization of textbook Hoare logic. Actually, we allow for an extension
of Hoare logic with a notion of pointer and mutable memory (or heap for short) known as Separation
logic. Assertions are shallow-encoded.

Let assert := store → heap → Prop.

Definition And (P Q : assert) : assert := fun s h ⇒ P s h ∧ Q s h.
Definition Not (P : assert) : assert := fun s h ⇒ ¬ P s h.
Definition entails (P Q : assert) : Prop := ∀ s h, P s h → Q s h.
Notation "P ===> Q" := (entails P Q) (at level 90, no associativity) : lang cmd scope.

The axioms of Hoare logic are encoded as an inductive type, assuming given Hoare triples for
one-step, non-branching instructions.

Variable hoare0 : assert → cmd0 → assert → Prop.

Reserved Notation "{[P]} c {[Q]}" (at level 82, no associativity).
Inductive hoare : assert → cmd → assert → Prop :=
| hoare hoare0 : ∀ P Q c, hoare0 P c Q → {[P]} c {[Q]}
| hoare seq : ∀ P Q R c d, {[P]} c {[Q]} → {[Q]} d {[R]} → {[P]} c ; d {[R]}
| hoare conseq : ∀ P P' Q Q' c, Q' ===> Q → P ===> P' →
{[P']} c {[Q']} → {[P]} c {[Q]}

| hoare while : ∀ P t c, {[fun s h ⇒ P s h ∧ eval b t s]} c {[P]} →
{[P]} while t c {[fun s h ⇒ P s h ∧ ¬ eval b t s]}

| hoare ifte : ∀ P Q t c d, {[fun s h ⇒ P s h ∧ eval b t s]} c {[Q]} →
{[fun s h ⇒ P s h ∧ ¬ eval b t s]} d {[Q]} →
{[P]} ifte t c d {[Q]}

where "{[P]} c {[Q]}" := (hoare P c Q) : lang cmd scope.

Definition hoare semantics (P : assert) (c : cmd) (Q : assert) : Prop :=
∀ s h, P s h → ¬ Some (s,h) � c �> None ∧
(∀ s' h', Some (s, h) � c �> Some (s', h') → Q s' h').

Definition wp semantics (c : cmd) (Q : assert) : assert :=
fun s h ⇒ ¬ (Some (s, h) � c �> None) ∧
∀ s' h', Some (s, h) � c �> Some (s', h') → Q s' h'.

End Lang.

2.2 Generic Properties of the Operational Semantics of While

We pack the generic syntax and the corresponding operational semantics above as a module:

Module Type WHILE SEMOP.

Parameter store : Set.
Parameter heap : Type.
Definition state : Type := (store × heap)%type.

Parameter cmd0 : Set.
Parameter exec0 : option state → cmd0 → option state → Prop.
Notation "s � c �-> t" := (exec0 s c t) (at level 74 , no associativity) : goto cmd scope.
Parameter exec0 deter : ∀ (st : option state) (c : cmd0) (st' : option state),
st � c �-> st' →
∀ st�, st � c �-> st� → st' = st�.

Parameter from none0 : ∀ (c : cmd0) s, None � c �-> s → s = None.

Parameter cmd0 terminate : ∀ (c : cmd0) s, ∃ s', Some s � c �-> s'.

Parameter expr b : Set.
Parameter neg : expr b → expr b.
Parameter eval b : expr b → store → bool.
Parameter eval b neg : ∀ t s, ¬ eval b t s ↔ eval b (neg t) s.
Definition cmd := @cmd cmd0 expr b.
Notation "c ; d" := (@seq cmd0 expr b c d) (at level 81, right associativity) : goto cmd scope.
Coercion cmd cmd0 coercion := @cmd cmd0 cmd0 expr b.
Definition exec := (@exec store heap cmd0 exec0 expr b eval b).
Notation "s � c �> t" := (exec s c t) (at level 74, no associativity) : goto cmd scope.

End WHILE SEMOP.

We can derive some generic properties from the module above:

Module While Semop Prop (x : WHILE SEMOP).

Import x.

Lemma from none : ∀ c s, None � c �> s → s = None.

Lemma exec deter : ∀ ST c ST', ST � c �> ST' →
∀ ST�, ST � c �> ST� → ST' = ST�.

End While Semop Prop.

2.3 Generic Properties of the Hoare Logic of While

We then pack the generic Hoare logic above as a module:

Module Type WHILE HOARE.

Declare Module x : WHILE SEMOP.

Import x.

Definition assert := store → heap → Prop.
Notation "P '//\\' Q" := (@And store heap P Q) (at level 80, no associativity) : goto assert scope.
Notation "P ===>Q" := (@entails store heap P Q) (at level 90, no associativity) : goto assert scope.

Parameter hoare0 : assert → cmd0 → assert → Prop.

Notation hoare semantics := (@hoare semantics store heap exec0 eval b).

Parameter soundness0 : ∀ P Q c, hoare0 P c Q → hoare semantics P c Q.

Definition hoare := @hoare store heap cmd0 eval b hoare0.

Notation "{{ P }} c {{ Q }}" := (hoare P c Q) (at level 82, no associativity) : goto hoare scope.

Notation wp semantics := (@wp semantics store heap exec0 eval b).

Parameter wp semantics sound0 : ∀ (c : cmd0) Q, {{ wp semantics c Q }} c {{ Q }}.

The de�nition of Hoare logic for SGoto (Sect. 5) will require a function to compute the weakest
precondition of one-step, non-branching instructions:

Parameter wp0 : cmd0 → assert → assert.

Parameter wp0 no err : ∀ s h c P, wp0 c P s h → ¬ (Some (s,h) � c �-> None).
Parameter exec0 wp0 : ∀ s h (c : cmd0) s' h', Some (s, h) � c �-> Some (s', h') →
∀ (P :assert), wp0 c P s h ↔ P s' h'.

End WHILE HOARE.

Finally, the Hoare logic must be shown to be sound and (relatively) complete, as capture by this
last module:

Module While Hoare Prop (x : WHILE HOARE).

Import x.
Import x.x.

Module while semop prop m := While Semop Prop x.x.

Import while semop prop m.

Lemma soundness : ∀ P Q c, {{ P }} c {{ Q }} → hoare semantics P c Q.

Lemma wp semantics sound : ∀ c Q, {{ wp semantics c Q }} c {{ Q }}.

Lemma hoare complete : ∀ P Q c, hoare semantics P c Q → {{ P }} c {{ Q }}.

End While Hoare Prop.

3 Goto: A Low-level Language

This section corresponds to Section 2 in [SU07].

Module Goto (x : while.WHILE SEMOP).

Import x.

3.1 Syntax and (Small-step) Semantics of Goto

Definition label := nat.

Definition lstate := option (label × state).

For the operational semantics of one-step, non-branching instructions of Goto, we use the
one-step commands (type cmd0 and operational semantics noted · − · → ·) (see Section 2).

Reserved Notation " c ` s → t " (at level 82, no associativity).
Inductive exec0 label : lstate → cmd0 → lstate → Prop :=
| exec0 label cmd0 :
∀ s c s', Some s � c → Some s' → ∀ l, exec0 label (Some (l, s)) c (Some (S l, s'))

| exec0 label err :
∀ s c, Some s � c → None → ∀ l, exec0 label (Some (l, s)) c None

where " c ` s → t " := (exec0 label s c t) : sgoto scope.

Branches may be conditional or not. For conditional branches, we use a language of boolean
expressions (type expr b) (see Section 2):

Inductive branch : Set := jmp : label → branch | cjmp : expr b → label → branch.

Note that branches never cause errors:

Inductive exec branch : label × state → branch → label × state → Prop :=
| exec jmp : ∀ p s l, jmp l ` (p, s) � (l, s)
| exec cjmp true : ∀ p s h t l, eval b t s → cjmp t l ` (p, (s, h)) � (l, (s, h))
| exec cjmp false : ∀ p s h t l, ¬ eval b t s → cjmp t l ` (p,(s,h)) � (S p, (s, h))
where "c ` s � t" := (exec branch s c t) : sgoto scope.

Unstructured programs are lists of labeled (branching or not) instructions. They are wellformed
when no instruction has two labels:

Inductive insn : Set := C : cmd0 → insn | B : branch → insn.

Definition code := list (label × insn).

Definition wellformed goto (c:code) : Prop := ∀ l i i', In (l,i) c → In (l,i') c → i = i'.

We can now de�ne the semantics of Goto. The type below corresponds to Figure 1 (Small-step
semantics rules of Goto) in [SU07]:

Inductive exec goto : code → lstate → lstate → Prop :=
| exec goto cmd0 : ∀ p i s s' c,
In (p, C i) c → i ` Some (p, s) → Some s' → c ` Some (p, s) � Some s'

| exec goto cmd0 err : ∀ p i s c,
In (p, C i) c → i ` Some (p, s) → None → c ` Some (p, s) � None

| exec goto branch : ∀ p j s s' c,
In (p, B j) c → j ` (p, s) � s' → c ` Some (p, s) � Some s'

where "c ` s � t" := (exec goto c s t) : sgoto scope.

3.2 Properties

Lemma 1 (Determinacy) in [SU07]:

Lemma exec goto deter : ∀ c, wellformed goto c →
∀ s s', c ` s � s' → ∀ s�, c ` s � s� → s' = s�.

See the end of Section 3.3 for a comment about Lemma 2 (Stuck states).
Lemma 3 (Extension of the domain) in [SU07]:

Lemma exec goto extension right : ∀ c' s s' c, c ` s � s' → c ++ c' ` s � s'.

Lemma exec goto contraction right : ∀ c1 c2, wellformed goto (c1 ++ c2) →
∀ l s l' s', c1 ++ c2 ` Some (l,s) � Some (l',s') →
In l (dom c1) → c1 ` Some (l,s) � Some (l',s').

Lemma exec goto extension left : ∀ c s s' i, c ` s � s' → i :: c ` s � s'.

Lemma exec goto contraction left : ∀ c1 c2, wellformed goto (c1 ++ c2) →
∀ l s l' s', c1 ++ c2 ` Some (l,s) � Some (l', s') →
In l (dom c2) → c2 ` Some (l, s) � Some (l', s').

3.3 Re�exive, Transitive Closure Predicates

Re�exive, transitive closure, to be used in Theorem 6 (Preservation of evaluations as stuck
reduction sequences) of [SU07]:

Inductive redseqs : code → lstate → lstate → Prop :=
| redseqs re� : ∀ s c, c ` s �∗ s
| redseqs trans : ∀ s s' s� c, c ` s �∗ s' → c ` s' � s� → c ` s �∗ s�
where " c ` s '�∗' t " := (redseqs c s t) : sgoto scope.

Re�exive, transitive closure with explicit index k, to be used in Theorem 7 (Re�ection of
stuck reduction sequences as evaluations):

Inductive redseq (p : code) : nat → lstate → lstate → Prop :=
| zero red : ∀ s, redseq p O s s

| more red : ∀ n s s' s�, p ` s � s' → redseq p n s' s� → redseq p (S n) s s�.

The following two lemmas express, in the particular case of branches, a property similar to
Lemma 2 (Stuck states) in [SU07]. They are used in the proof of Theorem 7 (Re�ection of
stuck reduction sequences as evaluations) in lieu of Lemma 2.

Lemma redseq out of domain jump : ∀ k p m l st l' st', p 6= l →
redseq ((p, B (jmp m)) :: nil) k (Some (l, st)) (Some (l', st')) → l = l' ∧ st = st'.

Lemma redseq out of domain cjmp : ∀ k p t m l st l' st', p 6= l →
redseq ((p, B (cjmp t m))::nil) k (Some (l, st)) (Some (l', st')) → l = l' ∧ st = st'.

End Goto.

4 SGoto, A Structured Version

This corresponds to Section 3.1 of [SU07].

Module SGoto (x : while.WHILE SEMOP).

Module goto m := Goto x.
Import goto m.
Import x.

4.1 Natural Semantics Rules of SGoto

Inductive scode : Set :=
| sO : scode
| sC : label → cmd0 → scode

| sB : label → branch → scode

| sS : scode → scode → scode.

Notation "c '⊕' d" := (sS c d) (at level 69, right associativity) : sgoto scope.

Fixpoint sdom sc :=
match sc with

| sO ⇒ nil | sC l ⇒ l :: nil | sB l ⇒ l :: nil
| sc1 [+] sc2 ⇒ sdom sc1 ++ sdom sc2

end.

Structured code is wellformed when instructions all have di�erent labels:

Inductive wellformed : scode → Prop :=
| wf sO : wellformed sO

| wf sC : ∀ x y, wellformed (sC x y)
| wf sB : ∀ x y, wellformed (sB x y)
| wf sS : ∀ sc1 sc2, inter (sdom sc1) (sdom sc2) nil →
wellformed sc1 → wellformed sc2 → wellformed (sc1 [+] sc2).

The forgetful function forgets the structure of the code, e�ectively turning a piece of SGoto
code into a piece of Goto code:

Fixpoint U sc :=
match sc with

| sO ⇒ nil | sC l c ⇒ (l, C c) :: nil | sB l b ⇒ (l, B b) :: nil
| sc1 [+] sc2 ⇒ U sc1 ++ U sc2

end.

We can now de�ne the semantics of SGoto. The inductive type below corresponds to Figure
2 (Natural semantics rules of SGoto) in [SU07]. Note that there is an additional constructor for
error propagation.

Inductive exec sgoto : scode → lstate → lstate → Prop :=
| exec sgoto none : ∀ c, None � c → None

| exec sgoto cmd0 : ∀ p c st s', c ` Some (p, st) → s' → Some (p, st) � sC p c → s'

| exec sgoto jmp : ∀ p st p', p 6= p' → Some (p, st) � sB p (jmp p') → Some (p', st)
| exec sgoto cjmp true : ∀ p s h b p',
eval b b s → p 6= p' → Some (p, (s,h)) � sB p (cjmp b p') → Some (p', (s,h))

| exec sgoto cjmp false : ∀ p s h b p',
¬ eval b b s → Some (p, (s,h)) � sB p (cjmp b p') → Some (S p, (s,h))

| exec sgoto seq0 : ∀ sc1 sc2 p st s' s�, In p (sdom sc1) → Some (p, st) � sc1 → s' →
s' � sc1 [+] sc2 → s� → Some (p, st) � sc1 [+] sc2 → s�

| exec sgoto seq1 : ∀ sc1 sc2 p st s' s�, In p (sdom sc2) → Some (p, st) � sc2 → s' →
s' � sc1 [+] sc2 → s� → Some (p, st) � sc1 [+] sc2 → s�

| exec sgoto re� : ∀ sc p st, ¬ In p (sdom sc) → Some (p, st) � sc → Some (p, st)
where "s � p → t" := (exec sgoto p s t) : sgoto scope.

4.2 Properties

Lemma 4 (Determinacy) in [SU07]:

Lemma determinacy : ∀ c (Hwf : wellformed c), ∀ s s', s � c → s' → ∀ s�, s � c → s� → s' = s�.

Lemma 5 (Postlabels) in [SU07]:

Lemma postlabels : ∀ c s l' st', s � c → Some (l',st') → ¬ In l' (sdom c).

Theorem 6 (Preservation of evaluations as stuck reduction sequences) in [SU07].

Lemma preservation : ∀ prg s s', s � prg → s' → U prg ` s �∗ s'.

Theorem 7 (Re�ection of stuck reduction sequences as evaluations) in [SU07]. Nested
induction whose inner induction is noetherian.

Require Import Wf nat.

Lemma re�ection of stuck redseq : ∀ prg k l st l' st' (Hwf : wellformed goto (U prg)),
redseq (U prg) k (Some (l, st)) (Some (l', st')) →
¬ In l' (sdom prg) →
Some (l, st) � prg → Some (l',st').

4.3 Semantic Equivalence

Definition sem equ sc0 sc1 := ∀ s s', Some s � sc0 → Some s' ↔ Some s � sc1 → Some s'.

Notation "c '∼=' d" := (sem equ c d) (at level 70, right associativity) : sgoto scope.

Theorem 8 (Neutrality wrt phrase structure) in [SU07]:

Lemma neutrality : ∀ sc0 sc1, wellformed sc0 → U sc0 = U sc1 →
∀ s s', Some s � sc0 → Some s' →
Some s � sc1 → Some s'.

Corollary 9 (Partial commutative monoidal structure) in [SU07].

Lemma sem equ ass : ∀ sc0 sc1 sc2, wellformed ((sc0 [+] sc1) [+] sc2) →
(sc0 [+] sc1) [+] sc2 ∼= sc0 [+] (sc1 [+] sc2).

Lemma sem equ neu : ∀ sc, wellformed sc → sc [+] sO ∼= sc.

Interestingly, commutativity does not require well-formedness:

Lemma sem equ com : ∀ sc0 sc1, sc0 [+] sc1 ∼= sc1 [+] sc0.

End SGoto.

5 Hoare Logic of SGoto

This corresponds to Section 3.2 of [SU07]. The type assert was de�ned in Section 2.

Module SGoto Hoare (x : while.WHILE HOARE).

Module sgoto m := SGoto x.x.
Import sgoto m.
Import goto m.
Import x.
Import x.x.

Definition assn := label → assert.

Local Open Scope goto assert scope.

Definition restrict (P : assn) d : assn := fun l ⇒ P l ∧ (fun ⇒ In l d).

Definition restrict cplt (P : assn) d : assn := fun l ⇒ while.Not (fun ⇒ In l d) ∧ P l.

Figure 3 (Hoare rules of SGoto) in [SU07]. wp0 is explained in Section 2. =⇒ used in the rule
hoare sgoto conseq is the entailment for assert.

Notation "' assn'" := assn : sgoto hoare scope.

Local Open Scope sgoto scope.
Local Open Scope sgoto hoare scope.

Inductive hoare sgoto : assn → scode → assn → Prop :=
| hoare cmd : ∀ l c P,
[� fun pc ⇒ fun s h ⇒ pc = l ∧ (wp0 c (P (S l))) s h ∨ pc 6= l ∧ P pc s h �]

sC l c [� P �]
| hoare jmp : ∀ l j Q,
[� fun pc ⇒ fun s h ⇒ pc = l ∧ (Q j s h ∨ j = l) ∨ pc 6= l ∧ Q pc s h �]

sB l (jmp j) [� Q �]
| hoare branch : ∀ l b j Q,
[� fun pc ⇒ fun s h ⇒

pc = l ∧ (¬ eval b b s ∧ Q (S l) s h ∨ eval b b s ∧ (Q j s h ∨ j = l)) ∨
pc 6= l ∧ Q pc s h �]
sB l (cjmp b j) [� Q �]

| hoare sO : ∀ P, [� P �] sO [� P �]
| hoare sS : ∀ sc0 sc1 P,
[� restrict P (sdom sc0) �] sc0 [� P �] → [� restrict P (sdom sc1) �] sc1 [� P �] →
[� P �] sc0 [+] sc1 [� restrict cplt P (sdom (sc0 [+] sc1)) �]

| hoare sgoto conseq : ∀ sc (P Q P' Q' : assn),
(∀ l, P l =⇒ P' l) → (∀ l, Q' l =⇒ Q l) →
[� P' �] sc [� Q' �] → [� P �] sc [� Q �]

where "'[�' P '�]' c '[�' Q '�]'" := (hoare sgoto P c Q) : sgoto hoare scope.

Theorem 10 (Soundness) in [SU07]:

Module while semop prop m := while.While Semop Prop x.x.

Lemma hoare sgoto sound : ∀ sc P Q, [� P �] sc [� Q �] →
∀ l s h, P l s h →
¬ (Some (l, (s, h)) � sc → None) ∧
∀ l' s' h', Some (l, (s, h)) � sc → Some (l', (s', h')) → Q l' s' h'.

The semantic de�nition of the weakest precondition from [SU07]. The additional conjunct is to
take errors into account.

Definition wlp semantics (sc: scode) (Pi : assn) : assn := fun l ⇒ fun s h ⇒
¬ (Some (l, (s, h)) � sc → None) ∧
∀ l' s' h', Some (l, (s, h)) � sc → Some (l', (s', h')) → Pi l' s' h'.

Lemma 11 in [SU07]:

Lemma wlp completeness : ∀ sc (Hwf : wellformed sc) Q, [� wlp semantics sc Q �] sc [� Q �].

Theorem 12 (Completeness) in [SU07].

Lemma hoare sgoto complete : ∀ (P Q : assn) sc (Hwf : wellformed sc),

(∀ l s h,
P l s h →
¬ (Some (l, (s, h)) � sc → None) ∧
(∀ l' s' h', Some (l,(s,h)) � sc → Some (l',(s',h')) → Q l' s' h')) →

[� P �] sc [� Q �].

End SGoto Hoare.

6 Example: The Sum of the n First Naturals

This example corresponds to Section 4.3 in [SU07]. The main di�erence is that the program is shown
to compute its result modulo 232, which is not the case with the archetypal assembly language of
[SU07].

We �rst de�ne registers to hold an intermediate value x, the output r, and the input n. Since
registers have a �nite size, the number of values that can be represented is limited.

Definition x := reg t0.
Definition r := reg t1.
Definition n := reg t2.

The program consists of the following four labeled instructions:

Definition i1 := sB 1 (cjmp (beq x n) 5).
Definition i2 := sC 2 (addiu x x 116).
Definition i3 := sC 3 (addu r x r).
Definition i4 := sB 4 (jmp 1).
Definition prg : scode := i1 [+] ((i2 [+] i3) [+] i4).

The pre-condition is as follows. The output value r is initialized to 0 and the input value is
expected to be positive (which actually holds naturally when registers' contents are regarded as
unsigned).

Definition I1 : assn := fun pc ⇒ fun s h ⇒ pc = 1 ∧ 032 [.≤] [n] s ∧ [x] s = 032 ∧ [r] s = 032.

The post-condition is as follows. The intermediate value x (repeatedly incremented during
execution) is expected to be equal to the input value n and the output value is exepected to be
equal to the sum of the n �rst naturals modulo 232. The non-modulo equality cannot be achieved
in practice because of potential arithmetic over�ows. u2Z is a function that interprets a �nite-size
integer as unsigned and returns its decimal value.

Local Open Scope zarith ext scope.

Definition I5' : assn := fun pc ⇒ fun s h ⇒ pc = 5 ∧
[x] s = [n] s ∧ u2Z [r] s = Zsum (u2Z [x] s) {{2��32}}.

The correctness proof consists of the application of the rules of the Hoare logic for SGoto.
For the purpose of presentation, this proof can be decomposed in a sequence of basic steps, each
consisting of the application of a single rule of the Hoare logic. For example, the following step
shows that the addition of the intermediate value really corresponds to compute and add the next
natural.

Definition I2' : assn := fun pc ⇒ fun s h ⇒ pc = 2 ∧
[x] s [.<] [n] s ∧ u2Z [r] s = Zsum (u2Z [x] s) {{ 2��32 }}.

Definition I2� : assn := fun pc ⇒ fun s h ⇒ pc = 2 ∧
[x] s [.+] 132 [.≤] [n] s ∧
u2Z [r] s + u2Z ([x] s [.+] 132) = Zsum (u2Z ([x] s [.+] 132)) {{2��32}}.

Definition I3 : assn := fun pc ⇒ fun s h ⇒ pc = 3 ∧ [x] s [.≤] [n] s ∧
u2Z ([x] s [.+] [r] s) = Zsum (u2Z [x] s) {{2��32}}.

Lemma step 18 : [[I2�]] i2 [[I3]] → [[I2']] i2 [[I3]].

Once all such steps are proved individually, the correctness proof consists in the sequential
application of the corresponding lemmas:

Lemma prf : [[I1]] prg [[I5']].
apply step 1.
apply step 2.
apply step 3.
apply step 4.
apply step 5.
apply step 6.
apply step 7 ; last �rst.
apply step 8.
apply step 9.
apply step 10.
apply step 11.
apply step 12.
apply step 13 ; last �rst.
apply step 14.
apply step 15.
apply step 16.
apply step 17.
apply step 18.
apply step 19.
apply step 20.
Qed.

Module Compile (x : while.WHILE HOARE).

Module sgoto hoare m := SGoto Hoare x.
Import sgoto hoare m.
Import sgoto m.
Import goto m.
Import x.
Import x.x.

Module while prop m := while.While Semop Prop x.x.

7 Compilation from While to SGoto

This corresponds to Section 4 of [SU07].

7.1 Compilation and Preservation/Re�ection of Evaluations

Figure 5 (Rules of compilation from While to SGoto) in [SU07]. A slight di�erence is that we do
not remove nop instructions (they are sometimes important in MIPS assembly because of non-taken
branch prediction).

Import while.

Inductive compile : label → @cmd cmd0 expr b → scode → label → Prop :=
| comp cmd : ∀ l (c : cmd0) , compile l c (sC l c) (S l)
| comp seq : ∀ l l' l� c d c' d',
compile l c c' l� → compile l� d d' l' → compile l (c ; d) (c' [+] d') l'

| comp ifte : ∀ l l' l� t c d c' d',
compile (S l�) c c' l' → compile (S l) d d' l� →
compile l (ifte t c d) (sB l (cjmp t (S l�)) [+] ((d' [+] sB l� (jmp l')) [+] c')) l'

| comp while : ∀ l l' t c prg,
compile (S l) c prg l' →
compile l (while t c) (sB l (cjmp (neg t) (S l')) [+] (prg [+] sB l' (jmp l))) (S l').

Lemma 13 (Totality and determinacy of compilation) in [SU07]:

Lemma totality : ∀ l c, ∃ sc, ∃ l', compile l c sc l'.

Lemma determinacy : ∀ c l l'0 sc0, compile l c sc0 l'0 →
∀ l'1 sc1, compile l c sc1 l'1 →
sc0 = sc1 ∧ l'0 = l'1.

Lemma 14 (Domain of compiled code) in [SU07]:

Lemma compile sdom : ∀ c l sc l', compile l c sc l' → ∀ p, l ≤ p < l' → In p (sdom sc).

Lemma compile sdom' : ∀ c l sc l', compile l c sc l' → ∀ p, In p (sdom sc) → l ≤ p < l'.

Compilation always produces wellformed code:

Lemma compile wellformed : ∀ c l sc l', compile l c sc l' → wellformed sc.

Theorem 15 (Preservation of evaluations) in [SU07]:

Lemma preservation of evaluations : ∀ c s l sc s' l',
compile l c sc l' →
Some s � c → Some s' →
Some (l, s) � sc → Some (l + length (sdom sc), s').

Theorem 16 (Re�ection of evaluations) in [SU07].

This proof is done by a nested induction to handle the while-case. We isolate this subcase by
intermediate lemmas (one lemma for the error-free case and another lemma for the error case). Here
follows the intermediate lemma for the error-free case; what will be the outer induction hypothesis
in the main proof is given as an hypothesis to this intermediate lemma.

Lemma re�ection of evaluations' : ∀ c t

(IHouter : ∀ l sc t l' s s' lstar, compile l c t sc t l' →
Some (l, s) � sc t → Some (lstar, s') →
lstar = l' ∧ (Some s � c t → Some s')) sc st st',

st � sc → st' →
∀ l l' t, compile l (while t c t) sc l' →
∀ s h lstar s' L,
L = l ∨ L = S l →
∀ (Hneq : eval b t s),
st = Some (L, (s, h)) →
st' = Some (lstar, s') →
lstar = l' ∧ (Some (s, h) � while t c t → Some s').

Lemma re�ection of evaluations: ∀ c l sc l', compile l c sc l' →
∀ s, (∀ lstar s',
Some (l, s) � sc → Some (lstar, s') → lstar = l' ∧ (Some s � c → Some s')) ∧

(Some (l, s) � sc → None → (Some s � c → None)).

7.2 Preservation/Re�ection of Derivable Hoare Triples

Theorem 17 (Preservation of derivable Hoare triples) in [SU07]. The proof of this theorem
makes use of the soundness of Hoare logic for While; this is the lemma soundness used below.

Module while hoare prop m := While Hoare Prop x.

Lemma preservation hoare :
∀ P Q c, {{ P }} c {{ Q }} →
∀ l sc l', compile l c sc l' →
[� fun pc ⇒ fun s h ⇒ pc = l ∧ P s h �] sc [� fun pc ⇒ fun s h ⇒ pc = l' ∧ Q s h �].
Proof.
move⇒ P Q c Hoare l sc l' Hcompile.
apply hoare sgoto complete; �rst by eapply compile wellformed; eauto.
move⇒ l0 s h [→ HP] {l0}.
move/while hoare prop m.soundness: Hoare.
case/(HP) ⇒ Herror free HQ.
move/re�ection of evaluations: Hcompile.
case/((s, h)) ⇒ Hcompile1 Hcompile2.
split.
- by move⇒ X ; apply Hcompile2 in X.
- move⇒ l' s' h' Hexec.
case/Hcompile1 : Hexec ⇒ Hl' l'.
by move/HQ.

Qed.

Theorem 18 (Re�ection of derivable Hoare triples). The proof of this theorem uses in
particular the completeness of Hoare-logic for While.

Lemma re�ection hoare : ∀ l c sc l', compile l c sc l' →
∀ P Q, [� P �] sc [� Q �] → {{ P l }} c {{ Q l' }}.

End Compile.

8 Application: Generation of Hoare-logic Proofs from While

As explained in Section 1, in [AM06], we veri�ed in Coq an implementation of the Montgomery
multiplication written in the SmartMIPS instruction set. We worked on a version of the program
where branches were replaced by while-loops and while-loops where compiled away by a certi�ed
macro-expander afterwards. Strictly speaking, there was therefore no Hoare-logic proof for the
assembly code to be run.

The rest of this section shows that one can recover a Hoare-logic proof for the assembly code to
be run by using the previously formalized theorem preservation hoare (Section 7.2).

montgomery is the program with while-loops. We instantiate it with a set of registers:

Definition mont mul cmd : while.cmd := montgomery k alpha x y z m one ext int X Y M

Z quot C t s .

Given a certain set of parameters (concrete initial values to put in registers and in the mutable
memory), the proof of correctness mont mul specif gives a proof-term that is the proof that the
Montgomery multiplication with while-loops is correct. In other words, this is a proof of correctness
prior to compilation. This is clear when checked with the Check command.

Definition mont mul cmd hoare :=
mont mul triple Hset nk valpha nx ny nm nz vx vy vm vz X

Y M Halpha Hx Hy Hm Hnz Hvx Hvy Hvm Hvz HX HY.

Check mont mul cmd hoare.

> Check mont_mul_cmd_hoare.

{{fun s h => [x]_s = vx /\ [y]_s = vy /\ [z]_s = vz /\ [m]_s = vm /\

u2Z ([k]_s) = Z_of_nat nk /\ [alpha]_s = valpha /\

(((var_e x |--> X ** var_e y |--> Y) ** var_e z |--> Lists_ext.rep zero32 nk) **

var_e m |--> M) s h /\

store.multi_null s}}

montgomery k alpha x y z m one ext int_ X_ Y_ M_ Z_ quot C t s_

{{fun s h => exists Z0, length Z0 = nk /\

[x]_s = vx /\ [y]_s = vy /\ [z]_s = vz /\ [m]_s = vm /\

u2Z ([k]_s) = Z_of_nat nk /\ [alpha]_s = valpha /\

(((var_e x |--> X ** var_e y |--> Y) ** var_e z |--> Z0) ** var_e m |--> M) s h /\

(Zbeta nk * Sum nk.+1 (Z0 ++ [C]_s :: nil) =m Sum nk X * Sum nk Y {{Sum nk M}}) /\

Sum nk.+1 (Z0 ++ [C]_s :: nil) < 2 * Sum nk M /\

u2Z ([t]_s) = 4 * nz + 4 * Z_of_nat (nk - 1)}}

Now, let us consider mont mul scode, the Montgomery multiplication with gotos, obtained by
automatically macro-expanding if-then-else's and while-loops and locating the code at starting label
0 (using a function corresponding to the compile predicate (see Section 7.1)):

Definition mont mul scode : compile m.sgoto hoare m.sgoto m.scode := compile m.compile f O

mont mul cmd.

By application of preservation hoare and given the proof that the Montgomery multiplication
with while-loops is correct, we obtain a proof-term that is the proof that the Montgomery multipli-
cation with gotos is correct. Again, this can be checked with the Check command: the same triple as
above is shown to hold, with the additional information that the starting label is 0, and the ending
label is 38.

Definition mont mul sgoto hoare :=
compile m.preservation hoare mont mul cmd hoare Hcompile.

> Check mont_mul_sgoto_hoare.

compile_m.sgoto_hoare_m.hoare_sgoto

(fun pc s h0 => pc = /\ (fun s0 h =>

[x]_s0 = vx /\ [y]_s0 = vy /\ [z]_s0 = vz /\ [m]_s0 = vm /\

u2Z ([k]_s0) = Z_of_nat nk /\ [alpha]_s0 = valpha /\

(((var_e x |--> X ** var_e y |--> Y) ** var_e z |--> Lists_ext.rep zero32 nk) **

var_e m |--> M) s0 h /\

store.multi_null s0) s h0)

mont_mul_scode

(fun pc s h0 => pc = 38 /\ (fun s0 h => exists Z0, length Z0 = nk /\

[x]_s0 = vx /\ [y]_s0 = vy /\ [z]_s0 = vz /\ [m]_s0 = vm /\

u2Z ([k]_s0) = Z_of_nat nk /\ [alpha]_s0 = valpha /\

(((var_e x |--> X ** var_e y |--> Y) ** var_e z |--> Z0) ** var_e m |--> M) s0 h /\

(Zbeta nk * Sum nk.+1 (Z0 ++ [C]_s0 :: nil) =m Sum nk X * Sum nk Y {{Sum nk M}}) /\

Sum nk.+1 (Z0 ++ [C]_s0 :: nil) < 2 * Sum nk M /\

u2Z ([t]_s0) = 4 * nz + 4 * Z_of_nat (nk - 1)) s h0)

References

[AM06] Reynald A�eldt and Nicolas Marti. An approach to formal veri�cation of arithmetic func-
tions in assembly. In 11th Annual Asian Computing Science Conference (ASIAN 2006),

Focusing on Secure Software and Related Issues, volume 4435 of LNCS, pages 346�360.
Springer, 2006.

[GM07] Georges Gonthier and Assia Mahboubi. A small scale re�ection extension for the Coq
system. Technical Report 6455, INRIA, Dec. 2007.

[Rey02] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In 17th

IEEE Symposium on Logic in Computer Science (LICS 2002), pages 55�74, 2002. Invited
lecture.

[SU07] Ando Saabas and Tarmo Uustalu. A compositional natural semantics and Hoare logic for
low-level languages. Theor. Comput. Sci., 373(3):273�302, 2007. Elsevier.

