
Experimenting with an Intrinsically-typed
Probabilistic Programming Language in Coq⋆

Ayumu Saito1,2[0000−0002−3908−0496] and Reynald Affeldt2[0000−0002−2327−953X]

1 Department of Mathematical and Computing Science, Tokyo Institute of
Technology, Tokyo, Japan

2 National Institute of Advanced Industrial Science and Technology (AIST), Tokyo,
Japan

Abstract. Although the formalization of probabilistic programs already
has several applications in the fields of security proofs and artificial intel-
ligence, formal verification experiments are still underway to support the
many features of probabilistic programming. We report on the formaliza-
tion in the Coq proof assistant of a syntax and a denotational semantics
for a probabilistic programming language with sampling, scoring, and
normalization. We use dependent types in a crucial way since our syntax
is intrinsically-typed and since the semantic values are essentially depen-
dent records. Thanks to the features of Coq, we can use notations that
hide the details of type inference when writing examples. The resulting
formalization is usable to reason about simple probabilistic programs.

1 Introduction

The formalization of probabilistic programs already has several applications in
security (e.g., [8]) or artificial intelligence (e.g., [7]). However, the support to for-
malize all the features of probabilistic programs is still lacking. For example, the
formalization of equational reasoning by Heimerdinger and Shan [14] is axiom-
atized; the study of nested queries and recursion by Zhang and Amin [30] relies
on a partially axiomatized formalization of measure theory. Efforts are underway
to improve the formal foundations of probabilistic programming languages. For
example, Affeldt et al. have been formalizing in the Coq proof assistant s-finite
kernels (which are essentially families of measures that lend themselves well to
composition [23,24]) to represent the semantics of a first-order probabilistic pro-
gramming language [4]. Hirata et al. have been formalizing quasi-Borel spaces
in Isabelle/HOL to handle higher-order features [15,16].

In this paper, we address the problem of the formalization of the syntax and
the denotational semantics of a probabilistic programming language, to reason
about programs with sampling, scoring, and normalization, in a proof assistant
based on dependent type theory. In such programs, semantic values are typically
measurable functions or s-finite kernels. However, a mere formalization of s-finite
kernels (such as [4]) does not provide a practical mean to reason about programs
⋆ This is a preprint with an appendix of a paper to be presented at APLAS 2023.

https://conf.researchr.org/home/aplas-2023

2 A. Saito and R. Affeldt

in the absence of syntax. Indeed, criteria that are easily thought of as syntactic
(e.g., the fact that a variable is not free in an expression) need to be recast into
semantic terms [4, Sect. 7.1.2]. The evaluation of variables needs to be expressed
semantically as measurable functions that access the execution environment by
indices akin to de Bruijn indices (see [4, Sections 7.1.2 and 7.2.2]). This situation
calls for more formalization experiments of syntax and semantics of probabilistic
programming languages.

In the following we provide a formal syntax and denotational semantics for
sfPPL, a probabilistic programming language based on s-finite kernels. For
syntax formalization, we choose intrinsic typing by which the typing rules of
the language are embedded into the syntax. This guarantees that one can only
write well-typed programs but requires a proof assistant based on dependent
type theory such as Coq or Agda. The idea of intrinsic-typing is well-known
but has not been applied to a probabilistic programming language as far as we
know. Besides syntax, we also use dependent types in a crucial way to represent
semantic values of sfPPL, which are either a measurable function (a dependent
pair of a function and a proof that it is measurable) or an s-finite kernel. In
addition to dependent types, we exploit other features of Coq to provide a
concrete syntax by using bidirectional hints [28], canonical structures [13], and
custom entries [27]. This provides a generic approach to represent a programming
language inside Coq with intrinsic-typing and a user-friendly syntax. Using this
approach, we eventually investigate the formalization of reusable lemmas for the
verification of probabilistic programs with sfPPL.

Outline We complete our review of related work in Sect. 2. Section 3 is for prelim-
inaries on measure theory and its formalization in Coq. Section 4 is an overview
of the syntax, the typing rules, and the semantics of sfPPL. We split the formal-
ization of the syntax of sfPPL by first explaining the idea of intrinsically-typed
concrete syntax using a toy language in Sect. 5. We then explain the formaliza-
tion of the syntax of sfPPL in Sect. 6 and its denotational semantics in Sect. 7.
We experiment with the resulting framework by verifying simple programs in
Sect. 8 and conclude in Sect. 9.

2 Related Work

To the best of our knowledge, our experiment is the first formalization of a
probabilistic programming language using an intrinsically-typed syntax.

The formalization of probabilistic programs in proof assistants is a long-
standing topic. In seminal work in HOL, Hurd verifies the Miller-Rabin proba-
bilistic primality test [17]. In Coq, Audebaud and Paulin-Mohring verify ran-
domized algorithms [6] but the measure theory they rely on has some limitations
(discrete distributions only, etc.). More recent applications have been targeting
artificial intelligence. Bagnall and Stewart encode in Coq a denotational seman-
tics in which a program is interpreted as the expected value of a real number-
valued valuation function w.r.t. the distribution of its results [7]; this work is

Intrinsically-typed Probabilistic Programming Language in Coq 3

limited to discrete distributions. In Lean, Tassarotti et al. represent stochas-
tic procedures using the Giry monad to formalize PAC learnability for decision
stumps [26]. These pieces of work do not feature the combined use of sampling
and scoring. We already mentioned in Sect. 1 formalization work in Coq partly
relying on axiomatization [14,30]. To address this problem, Affeldt et al. formal-
ize s-finite kernels in Coq, allowing for the support of sampling, scoring, and
normalization, without being limited to discrete distributions [4]. They apply
their formalization to the encoding of the semantics of a probabilistic program-
ming language. One practical limitation is that they use ad hoc Coq notations
to represent variables as De Bruijn indices. In Isabelle/HOL, Hirata et al.
formalize quasi-Borel spaces to handle sampling and higher-order features [15],
to which they recently add scoring [16]. These last pieces of work do not provide
an encoding of syntax.

The encoding of intrinsically-typed syntax in proof assistants based on de-
pendent type theory has also attracted much interest. Benton et al. provide an
historical account [10, Sect. 1] along with applications in Coq to a simply-typed
language and to the polymorphic lambda calculus. Indeed, this technique is often
applied to foundational calculi, e.g., system F in Agda [12]. In Coq, Affeldt and
Sakaguchi apply it to a subset of the C programming language [5]. Intrinsically-
typed syntax allows for a succinct handling of the many integral types of C.
While the encoding of well-formed type contexts in C is a source of difficulty,
the absence of let-in expressions simplifies the encoding of an intrinsically-typed
syntax for C. Poulsen et al. propose to use intrinsically-typed syntax to write
in Agda definitional interpreters for imperative languages. They explain how to
deal with mutable state and apply this approach to a subset of Java [20]. Besides
encoding of semantics, intrinsically-typed syntax also has other applications such
as compiler calculation [18]. We are however not aware of related work applying
intrinsically-typed syntax to a probabilistic programming language.

3 Preliminaries: Measure Theory in MathComp-Analysis

3.1 Reminder about Measure Theory

A σ-algebra on a set X is a collection of subsets of X that contains ∅ and that is
closed under complement and countable union. We note ΣX for such a σ-algebra
and call measurable sets the sets in ΣX . For example, the standard σ-algebra on
R is the smallest σ-algebra containing the intervals: the Borel sets. A measurable
space is a set together with the σ-algebra defining the measurable sets. Given
two σ-algebras ΣX and ΣY , the product σ-algebra is the smallest σ-algebra
generated by {A × B | A ∈ ΣX , B ∈ ΣY }.

A (non-negative) measure is a function µ : ΣX → [0, ∞] such that µ(∅) = 0
and µ(

⋃
i Ai) =

∑
i µ(Ai) for pairwise-disjoint measurable sets Ai, where the

sum is countable. This property is called σ-additivity. The Dirac measure δx is
defined by δx(U) = [x ∈ U] (using the Iverson bracket notation). A probability
measure on ΣX is a measure µ such that µ(X) = 1.

4 A. Saito and R. Affeldt

If ΣX and ΣY are two σ-algebras, a measurable function f : X → Y is
such that, for all measurable subsets B ∈ ΣY , the inverse image is a measurable
subset f−1(B) ∈ ΣX . If ΣD is a σ-algebra, we can integrate a measurable
function f : D → [0, ∞] w.r.t. a measure µ over D to get an extended real
number denoted by

∫
x∈D

f x(d µ).
A kernel X ⇝ Y is a function k : X → ΣY → [0, ∞] such that for all x, k x

is a measure and for all measurable sets U , x 7→ k x U is a measurable function.
A kernel k : X ⇝ Y is a finite kernel when there is a finite bound r such that for
all x, k x Y < r; this is a uniform upper bound, i.e., the same r for all x. When
for all x, k x Y = 1, we talk about a probability kernel.

A kernel k : X ⇝ Y is an s-finite kernel when there is a sequence s of finite
kernels such that k =

∑∞
i=0 si. Let us denote by X s-fin Y the type of s-finite

kernels. Given a kernel l : X ⇝ Y and a kernel k : X × Y ⇝ Z, the composition
of the kernel l and of the kernel k is x, U 7→

∫
y

k (x, y) U(d l x) .

3.2 Basics of MathComp-Analysis and its Measure Theory

This paper relies on MathComp-Analysis [1], a library for classical analysis3

in Coq that provides among others a formalization of measure theory including
s-finite kernels.

The type set T is for sets of objects of type T. The set of all the objects
of type T is denoted by setT : set T. The type \bar R is the type R extended
with two infinity elements. It is typically used when R is a numeric type. In
particular, the numeric type realType corresponds to real numbers, so that when
the type of R is realType, R corresponds to R and \bar R corresponds to R =
R∪ {+∞, −∞}. The expression %:R injects a natural number into R, %:E injects
a real number into R. Non-negative numeric types are noted {nonneg R} where
R is a numeric type. Given e : {nonneg R}, e%:num is the projection of type R. A
function returning unconditionally c is represented by cst c.

σ-algebra’s are represented by objects of type measurableType d where d is a
“display parameter” [2, Sect. 3.2.1]. Given T of type measurableType d and U of
type set T, measurable U asserts that U belongs to the σ-algebra corresponding
to T. The parameter d controls the display of the measurable predicate, so that
measurable U is printed as d.-measurable U. The display mechanism is useful to
disambiguate goals with several σ-algebras [2, Sect. 3.4]. For example, the display
of the product of two measurable types with displays d1 and d2 is a measurable
type with display (d1, d2).-prod.

Given T of type measurableType d, a non-negative measure on T is denoted by
{measure set T -> \bar R}, where R has type realType. The Dirac measure is de-
noted by dirac a with notation \d_a. The type of a R-valued probability measure
over the measurable type T is probability T R. We write measurable_fun D f for
a measurable function f with domain D. A kernel f : X ⇝ Y (resp. an s-finite

3 MathComp-Analysis adds to the constructive logic of Coq functional and proposi-
tional extensionality and the axiom of constructive indefinite description [3, Sect. 5].

Intrinsically-typed Probabilistic Programming Language in Coq 5

kernel f : X s-fin Y) is noted R.-ker X ~> Y (resp. R.-sfker X ~> Y) (R indicates
the support type of extended real numbers).

4 Probabilistic Programming Language using s-Finite
Kernels

Before entering the details of formalization, we explain the syntax and the seman-
tics of sfPPL, a probabilistic programming language based on s-finite kernels.
The syntax corresponds to [25, Sect. 3] [23, Sect. 3.1] [24, Sect. 4.1, 4.3]. The
semantics comes from [23,24]. It is a simplification because we do not formalize
a generic notion of sum types.

The main specificity of sfPPL types is a type for probability distributions:

A ::= U | B | R | P (A) | A1 × A2

The syntax U is for a type with one element, B for boolean numbers, R for real
numbers, P (A) for distributions over A, A1 × A2 for the cartesian product.

The expressions of sfPPL extend the expressions of a first-order functional
language with three instructions specific to probabilistic programming languages:

e ::= tt | b | r | f(e1, . . . , en) | (e1, e2) | π1(e) | π2(e)
if e then e1 else e2 | x | return e | let x := e1 in e2 |
sample(e) | score(e) | normalize(e)

The syntax tt is for the element of type U, b for boolean numbers, r for real num-
bers. All measurable functions (and arithmetic operations) can be introduced as
constants with the syntax f(e1, . . . , en). Pairs are (e1, e2), π1 and π2 access their
projections. If-then-else branching is self-explanatory. Variables are ranged over
by x (y, z, etc.). Last we have return, let-in expressions, and the three instruc-
tions specific to probabilistic programming languages: sampling (from a proba-
bility measure), scoring (to record that a datum was observed as being drawn
from a probability distribution, the parameter is the density of the probability
distribution), and normalization (of a measure into a probability measure).

Typing judgments distinguish deterministic and probabilistic expressions.
Typing environments (hereafter, contexts) are tuples (x1 : A1; . . . ; xn : An)
ranged over by Γ . The typing judgment is Γ ⊢D e : A for deterministic expres-
sions and Γ ⊢P e : A for probabilistic ones. We reproduce here the typing rules
for the basic datatypes, constants, products, projections, and variables.

Γ ⊢D tt : U
b ∈ B

Γ ⊢D b : B
r ∈ R

Γ ⊢D r : R
Γ ⊢D ei : Ai

Γ ⊢D f(e1, . . . , en) : A f is measurable

Γ ⊢D e1 : A1 Γ ⊢D e2 : A2
Γ ⊢D (e1, e2) : A1 × A2

Γ ⊢D e : A1 × A2
Γ ⊢D πi(e) : Ai

x /∈ dom(Γ ′)
Γ, x : A, Γ ′ ⊢D x : A

Γ, Γ ′ ⊢z e : A0 x /∈ dom(Γ), x /∈ dom(Γ ′)
Γ, x : A1, Γ ′ ⊢z e : A0

z ∈ {D, P}

6 A. Saito and R. Affeldt

These typing rules are mostly about deterministic expressions except the weak-
ening rule that also applies to probabilistic expressions.

The typing rules for the other instructions illustrate the interplay between
deterministic and probabilistic expressions. For example, return turns a deter-
ministic expression into a probabilistic one. Note that we assume that normalize
returns a default distribution when the normalization constant is 0 or ∞.

Γ ⊢D e : B Γ ⊢z e1 : A Γ ⊢z e2 : A
Γ ⊢z if e then e1 else e2 : A z ∈ {D, P}

Γ ⊢D e : A
Γ ⊢P return e : A

Γ ⊢P e1 : A1 Γ, x : A1 ⊢P e2 : A2
Γ ⊢P let x := e1 in e2 : A2

Γ ⊢D e : P (A)
Γ ⊢P sample(e) : A

Γ ⊢D e : R
Γ ⊢P score(e) : U

Γ ⊢P e : A
Γ ⊢D normalize(e) : P (A)

Let us denote the denotational semantics of sfPPL by a function J·K that
interprets the syntax of types, of contexts, and of typing judgments resp. to mea-
surable spaces, products of measurable spaces, and measurable functions or s-
finite kernels. For example, the measurable space corresponding to R is JRK, the
set R of real numbers with its Borel sets. A context Γ = (x1 : A1; . . . ; xn : An)
is interpreted by the product space JΓ K def=

∏n
i=1 JAiK. Deterministic expressions

Γ ⊢D e : A are interpreted by measurable functions JΓ K → JAK and probabilis-
tic expressions Γ ⊢P e : A are interpreted by s-finite kernels JΓ K s-fin JAK. In
particular, the semantics of Jlet x := e1 in e2K is the composition (see Sect. 3.1)
of a kernel JΓ K s-fin JA1K corresponding to e1 and a kernel JΓ K × JA1K

s-fin JA2K
corresponding to e2; the result is a kernel of type JΓ K s-fin JA2K [23].

5 Intrinsically-typed Concrete Syntax for a Toy Language

We recall the notion of intrinsically-typed syntax and introduce the notion of
intrinsically-typed concrete syntax. For this purpose, we use a subset of sfPPL
(Sect. 4) where types are ranged over by A ::= U | R and expressions are
ranged over by e ::= tt | r | x | e1 + e2 | let x := e1 in e2. The symbol +
represents the addition of real numbers. Typing contexts and typing rules are
defined as in Sect. 4 except that both ⊢D and ⊢P become ⊢ because there are
no probabilistic expressions; the only difference is a typing rule for addition:
Γ ⊢ e1 : R ∧ Γ ⊢ e2 : R → Γ ⊢ e1 + e2 : R.

We explain an encoding of this toy language using intrinsically-typed syntax
in Sect. 5.1. This syntax enforces the property that only well-typed expressions
can be encoded but type-checking can only be automated for ground expressions.
In Sect. 5.2, we show that we can solve this problem using Coq’s canonical
structures. In Sect. 5.3, we explain how to to give our toy language a readable
concrete syntax.

Intrinsically-typed Probabilistic Programming Language in Coq 7

5.1 Intrinsically-typed Syntax for a Toy Language

We formalize the basic types U and R as an inductive type and define a context
as a list of pairs of a string and of a type:

Inductive typ := Unit | Real. Definition ctx := seq (string * typ).

With intrinsically-typed syntax, the expressions are defined by an inductive type
indexed by a context and a type:

1 Inductive exp : ctx -> typ -> Type :=
2 | exp_unit g : exp g Unit
3 | exp_real g : R -> exp g Real
4 | exp_var g t str : t = lookup Unit g str -> exp g t
5 | exp_add g : exp g Real -> exp g Real -> exp g Real
6 | exp_letin g t1 t2 x : exp g t1 -> exp ((x, t1) :: g) t2 -> exp g t2.

The constructors exp_unit and exp_real build basic data structures. The con-
structor exp_var builds an expression exp g t where t is the type associated with
the string str in the context, as proved by the equality at line 4. In particular,
given a concrete type and a concrete context, this equality can be checked by the
Coq’s conversion rule using erefl. In the constructor exp_letin, a new bound
variable is introduced and the context is extended; this is the reason why con-
texts appear as an index of exp. We observe here that intrinsically-typed syntax
also means that expressions are well-scoped by construction.

We complete the encoding of the intrinsically-typed syntax by setting the
context and type parameters of constructors as implicit (using curly brackets):

1 Arguments exp_unit {g}.
2 Arguments exp_real {g}.
3 Arguments exp_var {g t}.
4 Arguments exp_add {g} &.
5 Arguments exp_letin {g} & {t1 t2}.

The & mark at lines 4 and 5 is a bidirectionality hint: it indicates that Coq should
first type-check g and propagate the information to type-check the remaining
arguments [28].

For example, here is the abstract syntax for let x := 1 in let y := 2 in x+y:

1 Example letin_add : exp [::] _ :=
2 exp_letin "x" (exp_real 1) (exp_letin "y" (exp_real 2)
3 (exp_add (exp_var "x" erefl) (exp_var "y" erefl))).

As intended, we only need to pass the outermost context (here the empty context
[::]) for this expression to type-check. Without bidirectionality hints, the above
expression would fail to type-check with the following error message:

The term "exp_var "x" (erefl (lookup Unit ?g1 "x"))" has type "exp ?g1
(lookup Unit ?g1 "x")" while it is expected to have type "exp ?g1 Real".

8 A. Saito and R. Affeldt

In other words, type-checking gets stuck on a hole ?g1 corresponding to the con-
text. This can be fixed by inserting an intermediate context, e.g., by replacing
the syntax for the variable x at line 3 by (@exp_var g _ "x" erefl)4 where g is
the context [:: ("y", Real); ("x", Real)] but that somehow defeats the pur-
pose of intrinsically-typed syntax. As a side node, we observe that in Agda,
letin_add type-checks using a similar encoding without explicit bidirectionality
hints (see Appendix A).

The intrinsically-typed syntax above allows for type-checking ground expres-
sions but fails to type-check expressions where string identifiers are parameters,
making it difficult to write generic statements about intrinsically-typed terms.

5.2 Canonical Structures for Intrinsically-typed Syntax

We use canonical structures in the manner of Gonthier et al. [13, Sections 2.3
and 6.1] so that one can write easily generic statements about intrinsically-typed
expressions. The idea is to provide an alternative way to construct program
variables that triggers a search that builds the context along with type inference.

We define “tagged contexts” (T is a decidable type with an element t0):

Let ctx := seq (string * T). Structure tagged_ctx := Tag {untag : ctx}.

We define a structure find, parameterized by a string, that contains a tagged
context and a proof that the string is associated with some datum:

Structure find str t := Find {
ctx_of : tagged_ctx ;
ctx_prf : t = lookup (untag ctx_of) str}.

Then, we define an alternative way to build variables that is parameterized by
a find structure:

Definition exp_var' str {t : typ} (g : find str t) :=
@exp_var (untag (ctx_of g)) t str (ctx_prf g).

The important point is the use of the projection ctx_of that will trigger a search
for an appropriate g : find str t. We still need to tell Coq how to search for
instances of find. There are two ways to instantiate this structure. The pair
(str, t) can be the head of the context, in which case the following lemma
provides a way to instantiate the second field of find:

Lemma ctx_prf_head str t g : t = lookup ((str, t) :: g) str.

Otherwise, the pair (str, t) might be in the tail of the context:

Lemma ctx_prf_tail str t g str' t' : str' != str ->
t = lookup g str -> t = lookup ((str', t') :: g) str.

To account for these two situations, we introduce two definitions that unfold to
Tag, the constructor for tagged contexts:
4 In Coq, @ disables implicit arguments.

Intrinsically-typed Probabilistic Programming Language in Coq 9

Definition recurse_tag h := Tag h.
Canonical found_tag h := recurse_tag h.

We associate the definition found_tag with the situation where the sought vari-
able is in the head of the context and recurse_tag with the other situation:

Canonical found str t g : find str t :=
@Find str t (found_tag ((str, t) :: g)) (@ctx_prf_head str t g).

Canonical recurse str t str' t' {H : infer (str' != str)}
(g : find str t) : find str t :=

@Find str t (recurse_tag ((str', t') :: untag (ctx_of g)))
(@ctx_prf_tail str t (untag (ctx_of g)) str' t' H (ctx_prf g)).

(The identifier infer comes from MathComp-Analysis [1] and provides a proof
that two strings are different automatically using type classes.) Since found_tag
is canonical it will be searched for first, in case of success we will have inferred
a correct context, otherwise Coq unfolds found_tag to reveal recurse_tag and
tries to look for the variable in the tail of the context, recursively [13,31].

Using exp_var' instead of exp_var, we can rewrite the example of the previous
section with just the assumption that the string identifiers are different:

Example letin_add (x y : string)
(xy : infer (x != y)) (yx : infer (y != x)) : exp [::] _ :=

exp_letin x (exp_real 1) (exp_letin y (exp_real 2)
(exp_add (exp_var' x _) (exp_var' y _))).

We can therefore use exp_var' instead of exp_var; moreover the former can always
be rewritten into the latter:

Lemma exp_var'E str t (g : find str t) H : exp_var' str g = exp_var str H.

5.3 Intrinsically-typed Concrete Syntax with Custom Entries

Custom entries [27] are a feature of Coq to support autonomous grammars of
terms. The definition of a grammar for our toy language starts by declaring an
identifier for the custom entry: Declare Custom Entry expr. Then we introduce
a notation ([...]) to delimit expressions written with the expr grammar and a
notation ({...}) to delimit Coq terms that appear inside expr expressions:

Notation "[e]" := e (e custom expr at level 5).
Notation "{ x }" := x (in custom expr, x constr).

We can then write the grammar e ::= tt | r | x | e1 + e2 | let x := e1 in e2:

1 Notation "x" := x (in custom expr at level 0, x ident).
2 Notation "x ':R'" := (exp_real x) (in custom expr at level 1).
3 Notation "e1 + e2" := (exp_add e1 e2)
4 (in custom expr at level 2, left associativity).
5 Notation "'let' x ':=' e1 'in' e2" := (exp_letin x e1 e2)
6 (in custom expr at level 3, x constr, e1 custom expr at level 2,
7 e2 custom expr at level 3, left associativity).

10 A. Saito and R. Affeldt

Line 1 is to allow for the use of Coq identifiers inside expr expressions. The
other lines are for real numbers, additions, and let-in expressions; they all use
the constructors of the syntax. As for variables, we have a notation for exp_var':

Notation "# x" := (exp_var' x%string _) (in custom expr at level 1).

Using these notations, our running example let x := 1 in let y := 2 in x+y can
be written succinctly and more generally:

Example letin_add (x y : string)
(yx : infer (y != x)) (xy : infer (x != y)) : exp [::] _ := [

let x := {1}:R in let y := {2}:R in #x + #y].

6 Intrinsically-typed Probabilistic Programming
Language

We formalize an intrinsically-typed concrete syntax for sfPPL (Sect. 4) on the
model of the previous section (Sect. 5).

6.1 Intrinsically-typed Expressions

1 Inductive exp : flag -> ctx -> typ -> Type :=
2 | exp_unit g : exp D g Unit
3 | exp_bool g : bool -> exp D g Bool
4 | exp_real g : R -> exp D g Real
5 | exp_pair g t1 t2 : exp D g t1 -> exp D g t2 -> exp D g (Pair t1 t2)
6 | exp_proj1 g t1 t2 : exp D g (Pair t1 t2) -> exp D g t1
7 | exp_proj2 g t1 t2 : exp D g (Pair t1 t2) -> exp D g t2
8 | exp_var g str t : t = lookup Unit g str -> exp D g t
9 | exp_bernoulli g (r : {nonneg R}) (r1 : r%:num <= 1) :

10 exp D g (Prob Bool)
11 | exp_poisson g : nat -> exp D g Real -> exp D g Real
12 | exp_normalize g t : exp P g t -> exp D g (Prob t)
13 | exp_letin g t1 t2 str : exp P g t1 -> exp P ((str, t1) :: g) t2 ->
14 exp P g t2
15 | exp_sample g t : exp D g (Prob t) -> exp P g t
16 | exp_score g : exp D g Real -> exp P g Unit
17 | exp_return g t : exp D g t -> exp P g t
18 | exp_if z g t : exp D g Bool -> exp z g t -> exp z g t -> exp z g t
19 | exp_weak z g h t x : exp z (g ++ h) t ->
20 x.1 \notin dom (g ++ h) -> exp z (g ++ x :: h) t.

Fig. 1. Expressions of sfPPL.

First, the Coq encoding of the syntax of the types of sfPPL is immediate:

Intrinsically-typed Probabilistic Programming Language in Coq 11

Inductive typ := Unit | Bool | Real
| Pair : typ -> typ -> typ | Prob : typ -> typ.

To distinguish between deterministic and probabilistic expressions, we use a flag:
Inductive flag := D | P. It is better to use a flag than a mutually inductive
type because we can have only one constructor for typing rules that do not
depend on whether an expression is deterministic or probabilistic.

The constructors for basic datatypes (exp_unit, exp_bool, exp_real), pairs
(exp_pair) and their projections (exp_proj1, exp_proj2) should read easily (Fig. 1,
lines 2–7). The constructors for variables (exp_var, line 8) and for let-in expres-
sions (exp_letin, line 13) are essentially the same as in Sect. 5.1. The constructors
exp_bernoulli and exp_poisson (lines 9–11) provide two examples of measurable
functions that we explain below. The constructors for return, sampling, scor-
ing, and normalizing are as we explained in Sect. 4. The constructors exp_if
and exp_weak accommodate both the deterministic and the probabilistic cases
thanks to a flag. The rule exp_weak allows to change the type of an expression
by inserting a fresh variable at an arbitrary position in the context.

The constructor exp_bernoulli represents a Bernoulli distribution that takes
as parameters a non-negative real number r and a proof that r ≤ 1. Since it is
a distribution of boolean numbers, the type of the corresponding expression is
exp D g (Prob Bool). Informally, the typing rule could be written:

r ∈ R 0 ≤ r ≤ 1
Γ ⊢D exp_bernoulli(r) : P (B)

Given a natural number n and an expression e, the constructor exp_poisson
represents the likelihood of n for a Poisson distribution with rate e:

n ∈ N Γ ⊢D e : R
Γ ⊢D exp_poisson(n, e) : R

6.2 Intrinsically-typed Concrete Syntax for sfPPL

We use custom entries as in Sect. 5.3 to provide a concrete syntax for sfPPL.
Instead of reproducing the complete grammar that can be found online [21], we
consider the following illustrative program from [24]:

normalize(let x := sample(bernoulli(2/7)) in
let r := if x then 3 else 10 in
let _ := score(poisson(4, r)) in return x)

This program is about inferring whether today is the weekend according to the
number of buses passing by. It selects a boolean number from a Bernoulli dis-
tribution to represent whether today is the weekend. The if-then-else expression
models the fact that there are three buses per hour during the weekend and ten
buses per hour otherwise. Scoring records the observation that four buses have
been passing by in one hour, assuming buses arrive as a Poisson process with
rate r. The resulting measure is eventually normalized. As a Coq term:

12 A. Saito and R. Affeldt

Definition staton_bus_syntax0 : exp _ [::] _ :=
[let "x" := Sample {exp_bernoulli (2 / 7%:R)%:nng p27} in
let "r" := if #{"x"} then return {3}:R else return {10}:R in
let "_" := Score {exp_poisson 4 [#{"r"}]} in return #{"x"}].

Definition staton_bus_syntax := [Normalize {staton_bus_syntax0}].

We use the same delimiters to enter and exit the grammar and the same notation
for constants as in Sect. 5.3. Other grammar entries should be intuitive. The Coq
expression p27 is a proof that 2/7 ≤ 1.

7 Denotational Semantics of sfPPL

We formalize a denotational semantics for sfPPL that links the syntax of Sect. 6
to previous work [4]. Intuitively, this is the function J·K of Sect. 4. Since the
denotations are non-trivial objects (measurable functions and s-finite kernels),
we formalize an evaluation function and show that it is a function.

7.1 Interpretation of Types and Contexts

We first provide Coq functions to interpret types, their sequences, and contexts
to measurable spaces.

We interpret an object t : typ with the function measurable_of_typ that re-
turns a measurable type (Sect. 3.2) together with its display in the form of a de-
pendent pair {d & measurableType d}. The implementation is by recursion on the
structure of t and uses the product spaces of MathComp-Analysis. The func-
tion mtyp t takes the second projection (using projT2) of measurable_of_typ t.
We interpret a list s : seq typ with the function measurable_of_seq that es-
sentially iterates the function measurable_of_typ over s. More precisely, given
a list [A1; A2; · · · ; An], it returns a measurable space made of nested products
JA1K × (JA2K × · · · (JAnK × JUK)); we use U to avoid empty spaces. The result
of measurable_seq is a dependent pair of type {d & measurableType d}. When
applied to a context g : ctx, the function mctx returns the second projection of
measurable_seq (map snd g).

7.2 Evaluation Relation for sfPPL Expressions

The evaluation of sfPPL expressions takes the form of a mutually inductive re-
lation. The relation evalD relates an expression exp D g t to a measurable func-
tion f such that the domain of f is the interpretation of g and the codomain of f
is the interpretation of t, i.e., its type is dval R g t := @mctx R g -> @mtyp R t.
The type of evalD is therefore:

forall g t, exp D g t ->
forall f : dval R g t, measurable_fun setT f -> Prop.

Intrinsically-typed Probabilistic Programming Language in Coq 13

The expression forall f : dval R g t, measurable_fun setT f is a dependent
pair of a function with a measurability proof; hereafter, evalD e f mf stands for
e -D> f ; mf. Similarly, evalP relates an expression exp P g t to an s-finite ker-
nel of type pval R g t := R.-sfker @mctx R g ~> @mtyp R t. The type of evalP
is therefore forall g t, exp P g t -> pval R g t -> Prop and we note e -P> k
for evalP e k. Let us now explain the main constructors of evalD and evalP.

The constructors eval_unit, eval_bool, and eval_real (Fig. 2, lines 3–5)
relates basic data structures to constant functions (ktt, kb, and kr are notations
for the proof that constant functions are measurable).

The constructors for pairs and their projections use results from MathComp-
Analysis to build measurability proofs for products (measurable_fun_prod, line 8)
or to compose measurability proofs (measurableT_comp, lines 10, 12).

1 Inductive evalD : forall g t, exp D g t ->
2 forall f : dval R g t, measurable_fun setT f -> Prop :=
3 | eval_unit g : ([TT] : exp D g _) -D> cst tt ; ktt
4 | eval_bool g b : ([b:B] : exp D g _) -D> cst b ; kb b
5 | eval_real g r : ([r:R] : exp D g _) -D> cst r ; kr r
6 | eval_pair g t1 (e1 : exp D g t1) f1 mf1 t2 (e2 : exp D g t2) f2 mf2 :
7 e1 -D> f1 ; mf1 -> e2 -D> f2 ; mf2 ->
8 [(e1, e2)] -D> fun x => (f1 x, f2 x) ; measurable_fun_prod mf1 mf2
9 | eval_proj1 g t1 t2 (e : exp D g (Pair t1 t2)) f mf : e -D> f ; mf ->

10 [\pi_1 e] -D> fst \o f ; measurableT_comp measurable_fst mf
11 | eval_proj2 g t1 t2 (e : exp D g (Pair t1 t2)) f mf : e -D> f ; mf ->
12 [\pi_2 e] -D> snd \o f ; measurableT_comp measurable_snd mf
13 | eval_var g x H : let i := index x (dom g) in
14 exp_var x H -D> acc_typ (map snd g) i ; measurable_acc_typ (map snd g) i
15 | eval_bernoulli g (r : {nonneg R}) (r1 : r%:num <= 1) :
16 (exp_bernoulli r r1 : exp D g _) -D> cst (bernoulli r1) ;
17 measurable_cst _
18 | eval_poisson g n (e : exp D g _) f mf : e -D> f ; mf ->
19 exp_poisson n e -D> poisson n \o f ;
20 measurableT_comp (measurable_poisson n) mf
21 | eval_normalize g t (e : exp P g t) k : e -P> k ->
22 exp_normalize e -D> normalize_pt k ; measurable_normalize_pt k
23 | evalD_if g t e f mf (e1 : exp D g t) f1 mf1 e2 f2 mf2 :
24 e -D> f ; mf -> e1 -D> f1 ; mf1 -> e2 -D> f2 ; mf2 ->
25 [if e then e1 else e2] -D> fun x => if f x then f1 x else f2 x ;
26 measurable_fun_ifT mf mf1 mf2
27 | evalD_weak g h t e x (H : x.1 \notin dom (g ++ h)) f mf : e -D> f ; mf ->
28 (exp_weak _ g h x e H : exp _ _ t) -D> weak g h x f ;
29 measurable_weak g h x f mf

Fig. 2. Evaluation relation for the deterministic expressions of sfPPL. See Fig. 3 for
probabilistic expressions.

14 A. Saito and R. Affeldt

The constructor eval_var (line 13) defines the evaluation of a variable x by
first finding its index i in the context g and produces a measurable function.
The function acc_typ accesses the interpretation of g and returns the element
corresponding to the ith measurable space of g:

Fixpoint acc_typ (s : seq typ) n : projT2 (@measurable_of_seq R s) ->
projT2 (measurable_of_typ (nth Unit s n)) := (* See [21] *) .

Since the interpretation of the context is a nested product, such a function is
built out of projections and is therefore measurable (proof measurable_acc_type).
This generic way to compute measurable functions that access the environment
is an improvement over previous work [4] where accesses were performed using
ad hoc Coq notations for just a handful of functions.

The constructor eval_bernoulli (line 15) yields a constant function that
returns a Bernoulli distribution. This particular method of sampling does not
depend on the execution but there is no fundamental limitation to extend evalD
with nested queries, as long as one provides a proof of measurability.

The constructor eval_poisson (line 18) produces a function poisson n \o f
where n is the observation recorded for scoring and f is a measurable function
that evaluates to the rate of the Poisson process. The expression poisson n is
the measurable function λr. rne−r/n!.

For an expression e : exp P g t corresponding to an s-finite kernel k, the
constructor eval_normalize (line 21) yields a function normalize_pt k going from
mctx g to a probability measure over mtyp t. This function works by lifting a
function that normalizes measures using a default probability measure when
normalization is not possible [21].

The constructor evalD_weak (Fig. 2, line 27) produces a function weak g h x t
of type dval R (g ++ h) t -> dval R (g ++ x :: h) t. The probabilistic version
evalP_weak (Fig. 3, line 15) is similar but of course evaluates to an s-finite kernel.

The constructor eval_letin evaluates a let-in expression by combining the
s-finite kernels of the two sub-expressions (Fig. 3, line 4). The function letin'

has type X s-fin Y → Y × X s-fin Z → X s-fin Z so that it keeps the nesting of
measurable spaces in the same order as the contexts where new variables are
added by list consing. It is defined by composing the composition of kernels
(Sections 3.1 and 4, [4, Sect. 5.1]) with a kernel of type X × Y s-fin Z → Y ×
X s-fin Z that swaps the projections of a product space.

We briefly explain the last constructors of Fig. 3. The constructor eval_sample
(line 5) produces a probability kernel given a measurable function of a type
compatible with the functions yielded by the constructors eval_bernoulli and
eval_normalize. The constructor eval_score (line 8) yields an s-finite kernel of
type (mctx g) s-fin U where g is the context of the expression passed to the Score
expression. The constructor eval_return (line 10) produces an s-finite kernel
ret mf where ret is the functional x 7→ δf(x) formalized as kdirac in [4, Sect. 4.6].

Intrinsically-typed Probabilistic Programming Language in Coq 15

1 with evalP : forall g t, exp P g t -> pval R g t -> Prop :=
2 | eval_letin g t1 t2 str (e1 : exp _ g t1) (e2 : exp _ _ t2) k1 k2 :
3 e1 -P> k1 -> e2 -P> k2 ->
4 [let str := e1 in e2] -P> letin' k1 k2
5 | eval_sample g t (e : exp _ _ (Prob t))
6 (f : mctx g -> pprobability (mtyp t) R) mf :
7 e -D> f ; mf -> [Sample e] -P> sample f mf
8 | eval_score g (e : exp _ g _) f mf :
9 e -D> f ; mf -> [Score e] -P> kscore mf

10 | eval_return g t (e : exp D g t) f mf :
11 e -D> f ; mf -> [return e] -P> ret mf
12 | evalP_if g t e f mf (e1 : exp P g t) k1 e2 k2 :
13 e -D> f ; mf -> e1 -P> k1 -> e2 -P> k2 ->
14 [if e then e1 else e2] -P> ite mf k1 k2
15 | evalP_weak g h t (e : exp P (g ++ h) t) x
16 (H : x.1 \notin dom (g ++ h)) f :
17 e -P> f -> exp_weak _ g h x e H -P> kweak g h x f

Fig. 3. Evaluation relation for the probabilistic expressions of sfPPL. See Fig. 2 for
deterministic expressions.

7.3 From the Evaluation Relation to a Function

The evaluation relation of the previous section is actually a function because it
is right-unique and left-total. Right-uniqueness can be proved by induction on
the evaluation relation:

Lemma evalD_uniq g t (e : exp D g t) (u v : dval R g t) mu mv :
e -D> u ; mu -> e -D> v ; mv -> u = v.

Lemma evalP_uniq g t (e : exp P g t) (u v : pval R g t) :
e -P> u -> e -P> v -> u = v.

Left-totality can be proved by induction on the syntax:

Lemma eval_total z g t (e : exp z g t) : (match z with
| D => fun e => exists f mf, e -D> f ; mf
| P => fun e => exists k, e -P> k end) e.

Thanks to these properties, we can produce a pair of functions execD and execP
written using the constructive indefinite description axiom cid of Coq:

Definition execD g t (e : exp D g t)
: {f : dval R g t & measurable_fun setT f} :=

let: exist _ H := cid (evalD_total e) in existT _ _ (projT1 (cid H)).
Definition execP g t (e : exp P g t) : pval R g t :=

projT1 (cid (evalP_total e)).

Finally, we prove equations for execD/execP that associate to each expression
of sfPPL its result according to evalD/evalP. In general these equations are
recursive, e.g., the execution of a return expression:

16 A. Saito and R. Affeldt

Lemma execP_return g t (e : exp D g t) :
execP [return e] = ret (projT2 (execD e)).

The proofs of these equations are manual but follow an easy pattern which is a
direct application of the equivalence between execD/execP and evalD/evalP (see
lemmas execD_evalD/execP_evalP in [21]).

8 Using sfPPL to Reason Formally about Programs

Pair of Samplings The following program samples two values from Bernoulli
distributions with parameters 1/2 and 1/3 and returns the pair (p1S n is a proof
that 1/(n + 1) ≤ 1):

Definition sample_pair_syntax0 : exp _ [::] _ :=
[let "x" := Sample {exp_bernoulli (1 / 2)%:nng (p1S 1)} in
let "y" := Sample {exp_bernoulli (1 / 3)%:nng (p1S 2)} in
return (#{"x"}, #{"y"})].

We can verify that the pair (true, true) is returned with probability 1/6:

Lemma exec_sample_pair0_TandT :
@execP R [::] _ sample_pair_syntax0 tt [set (true, true)] = (1 / 6)%:E.

Since we compute a pair of boolean numbers and since the context is empty,
the result of execution has type R.-sfker unit ~> bool * bool. This is why we
pass tt and, as an event, the pair whose projections are true. The proof is
by rewriting using equations such as execP_return (Sect. 7.3) and, once the
semantics is revealed, by using generic lemmas from MathComp-Analysis.

Sampling and Scoring The following program samples a value from a Bernoulli
distributions with parameter 1/3 and scores the output with 1/3 or 2/3:

Definition bernoulli13_score := [Normalize
let "x" := Sample {@exp_bernoulli R [::] (1 / 3)%:nng (p1S 2)} in
let "_" := if #{"x"} then Score {(1 / 3)}:R else Score {(2 / 3)}:R in
return #{"x"}].

We can verify that the resulting probability measure is 1
3 × 1

3 : 2
3 × 2

3 = 1 : 4,
i.e., the Bernoulli distribution with parameter 1/5:

Lemma exec_bernoulli13_score :
execD bernoulli13_score = execD (exp_bernoulli (1 / 5)%:nng (p1S 4)).

The proof is essentially by rewriting [21, file lang_syntax_examples.v].

Probabilistic Inference We solve the probabilistic inference problem of Sect. 6.2
by computing the measure corresponding to the execution of staton_bus_syntax0.
This measure corresponds to the probability measure true : false = 2

7 × 34e−3

4! :
5
7 × 104e−10

4! ≈ 0.78 : 0.22. It can be defined in Coq as a sum of Dirac measures:

Intrinsically-typed Probabilistic Programming Language in Coq 17

Let staton_bus_probability U := (2 / 7)%:E * (poisson4 3)%:E * \d_true U +
(5 / 7)%:E * (poisson4 10)%:E * \d_false U.

We state that execution of staton_bus_syntax0 yields the expected measure:
Lemma exec_staton_bus0 (U : set bool) :

execP staton_bus_syntax0 tt U = staton_bus_probability U.

The proof goes through the intermediate step of computing the semantics of
staton_bus_syntax0 and then shows that this semantics is the expected measure.

Program Transformation We verify the equivalence between the program used
just above (staton_bus_syntax0) and a slightly modified version in which we only
change the associativity of let-in expressions:
[let "x" := Sample {exp_bernoulli (2 / 7%:R)%:nng p27} in
let "_" :=

let "r" := if #{"x"} then return {3}:R else return {10}:R in
Score {exp_poisson 4 [#{"r"}]} in

return #{"x"}].

This seemingly trivial modification is actually explained by a non-trivial lemma [23,
Lemma 3]. The associativity of let-in expressions can be stated as follows [23,
Sect. 4.2]: Jlet x := e1 in let y := e2 in e3K = Jlet y := (let x := e1 in e2) in e3K.
To type-check an equivalent formal statement, we need to be careful about the
type of e3. The typing judgment for e3 on the left-hand side is of the form
y : A2, x : A1, Γ ⊢ e3 : A3 while on the right-hand side it is y : A2, Γ ⊢
e3 : A3. In our formalization, we use exp_weak (Sect. 6.1) to weaken e3 of type
exp P [:: (y, t2) & g] t3 to the type exp P [:: (y, t2); (x, t1) & g] t3:
Lemma letinA g x y t1 t2 t3 (xyg : x \notin dom ((y, t2) :: g))

(e1 : exp P g t1) (e2 : exp P [:: (x, t1) & g] t2)
(e3 : exp P [:: (y, t2) & g] t3) :

forall U, measurable U ->
execP [let x := e1 in let y := e2 in

{@exp_weak _ _ [:: (y, t2)] _ _ (x, t1) e3 xyg}] ^~ U =
execP [let y := let x := e1 in e2 in e3] ^~ U.

The notation f ^~ y is for the function λx.f x y. We can prove letinA using
lemmas for execP (Sect. 7.3) and previous work [4], and use this lemma to prove
the equivalence between the two versions of our probabilistic inference problem.

Commutativity We formalize the commutativity example by Staton [24, Sect. 5.1]:

Jlet x :- e1 in let y :- e2 in return (x, y)K=Jlet y :- e2 in let x :- e1 in return (x, y)K

This kind of commutativity properties was the main motivation for the use of s-
finite kernels; it relies on a version of Fubini’s theorem for s-finite measures [23].
The property above holds under the condition that x is not free in e2 and y is
not free in e1. We can specify these conditions by having e1 and e2 of types
exp P g t1 and exp P g t2 with x and y not appearing in dom g. However, as in
the associativity of let-in expressions, we need to weaken e1 and e2 appropriately:

18 A. Saito and R. Affeldt

Lemma letinC g t1 t2 (e1 : exp P g t1) (e2 : exp P g t2)
(x y : string) (xy : infer (x != y)) (yx : infer (y != x))
(xg : x \notin dom g) (yg : y \notin dom g) :
forall U, measurable U ->
execP [let x := e1 in let y := {exp_weak _ [::] _ (x, t1) e2 xg} in

return (#x, #y)] ^~ U =
execP [let y := e2 in let x := {exp_weak _ [::] _ (y, t2) e1 yg} in

return (#x, #y)] ^~ U.

The proof of letinC relies on previous work [4, Sect. 7.1.2] and its generic state-
ment relies on our use of canonical structures (Sect. 5.2).

9 Conclusions

To the best of our knowledge, we provide the first formalization of a probabilis-
tic programming language with sampling, scoring, and normalization, using an
intrinsically-typed syntax. Our work builds on top of an existing formalization
of s-finite kernels [4] that we improve (we hinted at some technical improvements
in Sect. 7.2) and, more importantly, that we extend with a syntax and a denota-
tional semantics. We proposed a generic approach to encode intrinsically-typed
syntax in Coq using bidirectional hints and canonical structures; combined with
Coq’s custom entries, this allows for the formalization of a user-friendly con-
crete syntax (Sect. 5). More specifically to probabilistic programming languages,
we explained in Sect. 7 how to handle in the semantics nested product spaces
(an important construct in probability theory) and measurable functions and
s-finite kernels (which present themselves as dependent records). We formalized
a denotational semantics in the form of a function derived from an evaluation
relation. We showed that our formalization can be used to reason about simple
probabilistic programs by rewriting, covering the examples from [4] and more.

Current and Future Work We have recently added to our framework a formal-
ization of iteration as proposed by Staton [23, Sect. 4.2]. It takes the form of an
s-finite kernel iterate t from x :- u that calls t from x = u, repeats with x = u′ if
t returns u′ : A or stops if t returns in B; see [21, file prob_lang.v] for the code.
This makes it possible to extend sfPPL with loops. As a technical improvement,
we are considering the use of deep-embedded binders [19] to avoid strings from
the Coq standard library in the concrete syntax. It might also be worth testing
whether type classes can be used instead of canonical structures to type-check
intrinsically-typed syntax [13, Sect. 7] [19, Sect. 5]. Though not specifically de-
signed for that purpose, MathComp-Analysis turned out to be a good match
to formalize the denotational semantics of a probabilistic programming language,
which raises the question of its application to the formalization of an operational
semantics such as in [11]. We are now investigating application of our approach
to more verification examples as a step towards the formalization of equational
reasoning for probabilistic programs [14,22].

Intrinsically-typed Probabilistic Programming Language in Coq 19

Acknowledgements The authors would like to thank the members of the
Programming Research Group of the Department of Mathematical and Com-
puting Science at the Tokyo Institute of Technology for their input, and to the
anonymous reviewers for many comments that substantially improved this paper.
The authors acknowledge the support of the JSPS KAKENHI Grant Number
22H00520.

References
1. Affeldt, R., Bertot, Y., Cohen, C., Kerjean, M., Mahboubi, A., Rouhling, D., Roux,

P., Sakaguchi, K., Stone, Z., Strub, P.Y., Théry, L.: MathComp-Analysis: Mathe-
matical components compliant analysis library. https://github.com/math-comp/
analysis (2023), since 2017. Version 0.6.4

2. Affeldt, R., Cohen, C.: Measure construction by extension in dependent type the-
ory with application to integration. J. Autom. Reason. 67(3), 28:1–28:27 (2023).
https://doi.org/10.1007/s10817-023-09671-5

3. Affeldt, R., Cohen, C., Rouhling, D.: Formalization techniques for asymptotic
reasoning in classical analysis. J. Formaliz. Reason. 11(1), 43–76 (2018). https:
//doi.org/10.6092/issn.1972-5787/8124

4. Affeldt, R., Cohen, C., Saito, A.: Semantics of probabilistic programs using s-finite
kernels in Coq. In: 12th ACM SIGPLAN International Conference on Certified
Programs and Proofs (CPP 2023) Boston, MA, USA, January 16–17, 2023. pp.
3–16. ACM (2023). https://doi.org/10.1145/3573105.3575691

5. Affeldt, R., Sakaguchi, K.: An intrinsic encoding of a subset of C and its applica-
tion to TLS network packet processing. J. Formaliz. Reason. 7(1), 63–104 (2014).
https://doi.org/10.6092/issn.1972-5787/4317

6. Audebaud, P., Paulin-Mohring, C.: Proofs of randomized algorithms in Coq. Sci.
Comput. Program. 74(8), 568–589 (2009). https://doi.org/10.1016/j.scico.
2007.09.002

7. Bagnall, A., Stewart, G.: Certifying the true error: Machine learning in Coq with
verified generalization guarantees. In: 33rd AAAI Conference on Artificial In-
telligence, 31st Conference on Innovative Applications of Artificial Intelligence,
9th Symposium on Educational Advances in Artificial Intelligence, Honolulu,
Hawaii, USA, January 27–February 1, 2019. pp. 2662–2669. AAAI Press (2019).
https://doi.org/10.1609/aaai.v33i01.33012662

8. Barthe, G., Grégoire, B., Béguelin, S.Z.: Formal certification of code-based cryp-
tographic proofs. In: 36th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2009), Savannah, GA, USA, January 21–23, 2009.
pp. 90–101. ACM (2009). https://doi.org/10.1145/1480881.1480894

9. Barthe, G., Katoen, J.P., Silva, A. (eds.): Foundations of Probabilistic Pro-
gramming. Cambridge University Press (2020). https://doi.org/10.1017/
9781108770750

10. Benton, N., Hur, C., Kennedy, A., McBride, C.: Strongly typed term represen-
tations in Coq. J. Autom. Reason. 49(2), 141–159 (2012). https://doi.org/10.
1007/s10817-011-9219-0

11. Borgström, J., Lago, U.D., Gordon, A.D., Szymczak, M.: A lambda-calculus foun-
dation for universal probabilistic programming. In: 21st ACM SIGPLAN Interna-
tional Conference on Functional Programming (ICFP 2016) Nara, Japan, Septem-
ber 18–22, 2016. pp. 33–46. ACM (2016). https://doi.org/10.1145/2951913.
2951942

https://github.com/math-comp/analysis
https://github.com/math-comp/analysis
https://doi.org/10.1007/s10817-023-09671-5
https://doi.org/10.1007/s10817-023-09671-5
https://doi.org/10.6092/issn.1972-5787/8124
https://doi.org/10.6092/issn.1972-5787/8124
https://doi.org/10.6092/issn.1972-5787/8124
https://doi.org/10.6092/issn.1972-5787/8124
https://doi.org/10.1145/3573105.3575691
https://doi.org/10.1145/3573105.3575691
https://doi.org/10.6092/issn.1972-5787/4317
https://doi.org/10.6092/issn.1972-5787/4317
https://doi.org/10.1016/j.scico.2007.09.002
https://doi.org/10.1016/j.scico.2007.09.002
https://doi.org/10.1016/j.scico.2007.09.002
https://doi.org/10.1016/j.scico.2007.09.002
https://doi.org/10.1609/aaai.v33i01.33012662
https://doi.org/10.1609/aaai.v33i01.33012662
https://doi.org/10.1145/1480881.1480894
https://doi.org/10.1145/1480881.1480894
https://doi.org/10.1017/9781108770750
https://doi.org/10.1017/9781108770750
https://doi.org/10.1017/9781108770750
https://doi.org/10.1017/9781108770750
https://doi.org/10.1007/s10817-011-9219-0
https://doi.org/10.1007/s10817-011-9219-0
https://doi.org/10.1007/s10817-011-9219-0
https://doi.org/10.1007/s10817-011-9219-0
https://doi.org/10.1145/2951913.2951942
https://doi.org/10.1145/2951913.2951942
https://doi.org/10.1145/2951913.2951942
https://doi.org/10.1145/2951913.2951942

20 A. Saito and R. Affeldt

12. Chapman, J., Kireev, R., Nester, C., Wadler, P.: System F in Agda, for fun and
profit. In: 13th International Conference on Mathematics of Program Construc-
tion (MPC 2019), Porto, Portugal, October 7–9, 2019. Lecture Notes in Com-
puter Science, vol. 11825, pp. 255–297. Springer (2019). https://doi.org/10.
1007/978-3-030-33636-3_10

13. Gonthier, G., Ziliani, B., Nanevski, A., Dreyer, D.: How to make ad hoc proof
automation less ad hoc. J. Funct. Program. 23(4), 357–401 (2013). https://doi.
org/10.1017/S0956796813000051

14. Heimerdinger, M., Shan, C.: Verified equational reasoning on a little language of
measures. Workshop on Languages for Inference (LAFI 2019), Cascais, Portugal,
January 15, 2019 (Jan 2019)

15. Hirata, M., Minamide, Y., Sato, T.: Program logic for higher-order probabilistic
programs in Isabelle/HOL. In: 16th International Symposium on Functional and
Logic Programming (FLOPS 2022), Kyoto, Japan, May 10–12, 2022. Lecture Notes
in Computer Science, vol. 13215, pp. 57–74. Springer (2022). https://doi.org/
10.1007/978-3-030-99461-7_4

16. Hirata, M., Minamide, Y., Sato, T.: Semantic foundations of higher-order proba-
bilistic programs in Isabelle/HOL. In: 14th International Conference on Interactive
Theorem Proving (ITP 2023), July 31–August 4, 2023, Białystok, Poland. LIPIcs,
vol. 268, pp. 18:1–18:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023).
https://doi.org/10.4230/LIPIcs.ITP.2023.18

17. Hurd, J.: Formal verification of probabilistic algorithms. Ph.D. thesis, Computer
Laboratory, University of Cambridge (Dec 2001)

18. Pickard, M., Hutton, G.: Calculating dependently-typed compilers (functional
pearl). Proc. ACM Program. Lang. 5(ICFP), 1–27 (2021). https://doi.org/10.
1145/3473587

19. Pit-Claudel, C., Bourgeat, T.: An experience report on writ-
ing usable DSLs in Coq. In: 7th International Workshop on Coq
for Programming Languages (CoqPL 2021) (Jan 2021), available
at https://popl21.sigplan.org/details/CoqPL-2021-papers/7/
An-experience-report-on-writing-usable-DSLs-in-Coq

20. Poulsen, C.B., Rouvoet, A., Tolmach, A., Krebbers, R., Visser, E.: Intrinsically-
typed definitional interpreters for imperative languages. Proc. ACM Program.
Lang. 2(POPL), 16:1–16:34 (2018). https://doi.org/10.1145/3158104

21. Saito, A., Affeldt, R.: Experimenting with an intrinsically-typed probabilistic pro-
gramming language in Coq. Part of MathComp-Analysis Pull Request https:
//github.com/math-comp/analysis/pull/912 “Application of s-finite kernels to
program semantics” (2023), formal development accompanying this paper.

22. Shan, C.: Equational reasoning for probabilistic programming. POPL TutorialFest
(2018)

23. Staton, S.: Commutative semantics for probabilistic programming. In: 26th Euro-
pean Symposium on Programming (ESOP 2017), Uppsala, Sweden, April 22–29,
2017. Lecture Notes in Computer Science, vol. 10201, pp. 855–879. Springer (2017).
https://doi.org/10.1007/978-3-662-54434-1_32

24. Staton, S.: Probabilistic Programs as Measures, pp. 43–74 (2020). https://doi.
org/10.1017/9781108770750.003, chapter in [9]

25. Staton, S., Yang, H., Wood, F.D., Heunen, C., Kammar, O.: Semantics for prob-
abilistic programming: higher-order functions, continuous distributions, and soft
constraints. In: 31st Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence (LICS 2016), New York, NY, USA, July 5–8, 2016. pp. 525–534. ACM (2016).
https://doi.org/10.1145/2933575.2935313

https://doi.org/10.1007/978-3-030-33636-3_10
https://doi.org/10.1007/978-3-030-33636-3_10
https://doi.org/10.1007/978-3-030-33636-3_10
https://doi.org/10.1007/978-3-030-33636-3_10
https://doi.org/10.1017/S0956796813000051
https://doi.org/10.1017/S0956796813000051
https://doi.org/10.1017/S0956796813000051
https://doi.org/10.1017/S0956796813000051
https://doi.org/10.1007/978-3-030-99461-7_4
https://doi.org/10.1007/978-3-030-99461-7_4
https://doi.org/10.1007/978-3-030-99461-7_4
https://doi.org/10.1007/978-3-030-99461-7_4
https://doi.org/10.4230/LIPIcs.ITP.2023.18
https://doi.org/10.4230/LIPIcs.ITP.2023.18
https://doi.org/10.1145/3473587
https://doi.org/10.1145/3473587
https://doi.org/10.1145/3473587
https://doi.org/10.1145/3473587
https://popl21.sigplan.org/details/CoqPL-2021-papers/7/An-experience-report-on-writing-usable-DSLs-in-Coq
https://popl21.sigplan.org/details/CoqPL-2021-papers/7/An-experience-report-on-writing-usable-DSLs-in-Coq
https://doi.org/10.1145/3158104
https://doi.org/10.1145/3158104
https://github.com/math-comp/analysis/pull/912
https://github.com/math-comp/analysis/pull/912
https://doi.org/10.1007/978-3-662-54434-1_32
https://doi.org/10.1007/978-3-662-54434-1_32
https://doi.org/10.1017/9781108770750.003
https://doi.org/10.1017/9781108770750.003
https://doi.org/10.1017/9781108770750.003
https://doi.org/10.1017/9781108770750.003
https://doi.org/10.1145/2933575.2935313
https://doi.org/10.1145/2933575.2935313

Intrinsically-typed Probabilistic Programming Language in Coq 21

26. Tassarotti, J., Vajjha, K., Banerjee, A., Tristan, J.: A formal proof of PAC learn-
ability for decision stumps. In: 10th ACM SIGPLAN International Conference on
Certified Programs and Proofs (CPP 2021), Virtual Event, Denmark, January 17–
19, 2021. pp. 5–17. ACM (2021). https://doi.org/10.1145/3437992.3439917

27. The Coq Development Team: Custom entries. Inria (2019), chapter Syntax exten-
sions and notation scopes of [29], direct link

28. The Coq Development Team: Bidirectionality hints. Inria (2020), chapter Setting
properties of a function’s arguments of [29], direct link

29. The Coq Development Team: The Coq Proof Assistant Reference Manual. In-
ria (2023), available at https://coq.inria.fr/distrib/current/refman/. Ver-
sion 8.17.1

30. Zhang, Y., Amin, N.: Reasoning about “reasoning about reasoning”: semantics and
contextual equivalence for probabilistic programs with nested queries and recur-
sion. Proc. ACM Program. Lang. 6(POPL), 1–28 (2022). https://doi.org/10.
1145/3498677

31. Ziliani, B., Sozeau, M.: A comprehensible guide to a new unifier for CIC includ-
ing universe polymorphism and overloading. J. Funct. Program. 27, e10 (2017).
https://doi.org/10.1017/S0956796817000028

A Intrinsically-typed Syntax for a Toy Language in Agda

In this section, we transpose from Coq to Agda the encoding of the syntax of
the toy language that we formalized in Sect. 5.1. First, we define the syntax of
types using an inductive type:

data typ : Set where
Unit : typ
Rat : typ

Second, we define contexts exactly as we did in Coq:

ctx : Set
ctx = Pair String typ

Third, we define a lookup function that returns the type paired with a string
in a given context. This function is made up of a findIndex function and a nth
functions written on the model of the ones found in the SSReflect library of
Coq:

index' : String → List String → N
index' x [] = 0
index' x (y :: ys) with x ?= y
... | yes _ = 0
... | no _ = index' x ys + 1

nth : typ -> List typ -> N -> typ
nth x0 [] n = x0
nth x0 (x :: xs) n with n ?= 0
... | yes _ = x

https://doi.org/10.1145/3437992.3439917
https://doi.org/10.1145/3437992.3439917
https://coq.inria.fr/refman/user-extensions/syntax-extensions.html?%20entries#custom-entries
https://coq.inria.fr/refman/language/extensions/arguments-command.html?%20hints#bidirectionality-hints
https://coq.inria.fr/distrib/current/refman/
https://doi.org/10.1145/3498677
https://doi.org/10.1145/3498677
https://doi.org/10.1145/3498677
https://doi.org/10.1145/3498677
https://doi.org/10.1017/S0956796817000028
https://doi.org/10.1017/S0956796817000028

22 A. Saito and R. Affeldt

... | no _ = nth x0 xs (pred n)

lookup' : List ctx -> String -> typ
lookup' g str = nth Unit (map snd g) (index' str (map fst g))

Finally, we define the syntax of the toy language as an inductive type where a
context and a type appear as indices:

data exp : List ctx -> typ -> Set where
TT : ∀ {g} -> exp g Unit
Val : ∀ {g} (r : Q) -> exp g Rat
Var : ∀ {g ty} (str : String) -> ty ≡ lookup' g str -> exp g ty
Add : ∀ {g} -> exp g Rat -> exp g Rat -> exp g Rat
Letin : ∀ {g ty1 ty2} str -> exp g ty1 ->

exp ((str , ty1) :: g) ty2 -> exp g ty2

We have declared contexts and types for each constructor are declared as implicit
arguments. Note that equality is noted ≡ in Agda. Observe also that we are
using the type of rational numbers from the Agda standard library instead of
real numbers as we did in Coq.

Eventually, we can type-check in Agda the running example of Sect. 5, i.e.,
let x := 1 in let y := 2 in x + y:

letin_add : exp [] Rat
letin_add = Letin "x" (Val 0Q) (Letin "y" (Val 1Q)

(Add (Var "x" refl) (Var "y" refl)))

This simple example shows that Agda does not require explicit bidirectional-
ity hints to type-check a ground expression contrary to the Coq encoding of
Sect. 5.1.

	Experimenting with an Intrinsically-typed Probabilistic Programming Language in Coq

