
About the Formal Verification of Shannon’s Theorems

Reynald Affeldt
Research Institute for Secure Systems

National Institute of Advanced Industrial Science and Technology

The proof of the four color theorem by Appel and Haken in 1976 [3] is a good example of the
usefulness of computers in the conception of mathematical proofs. At first, some mathematicians
disregarded this proof because it relied on an enumeration by a computer program that cannot be
checked by hand. Yet, there are more recent examples of proofs, such as the proof of the Kepler
conjecture by Hales [7], that are anyway considered uncheckable with 100% certainty by even the
most qualified experts. Computer-driven interactive proofs recently emerged as the solution to
guarantee the correctness of such large mathematical proofs.

Software for interactive proofs of mathematics take the form of computer languages for the
management and the writing of mathematical facts and their proofs. It is important for such
software to keep their trusted base as small as possible. This is the design principle behind proof-
assistants such as Coq [4]. The kernel of Coq is an implementation of type theory, an alternative to
set theory for the foundations of mathematics [8]. In this setting, mathematical facts are expressed
using types T and their proofs P are written as functional programs, with the dedicated notation
P : T. This analogy with programming languages has been known since 1968 as the Curry-Howard
correspondence. Since there is an algorithm to check that a program matches its type, Coq is able
to provide automatic checking of proofs, relieving humans of this burden.

Compared with work cited above, our purpose here is very modest. We just want to illustrate
formal verification using an example from coding theory. We will provide a detailed explanation of
the formalization of Shannon’s source coding theorem (a.k.a. the noiseless coding theorem) using
SSReflect [5], an extension to Coq that provides a library that was used in particular to verify
the Feit-Thompson theorem [6]. The present document is actually an extended version of the first
half of [1]. For details about the formalization of the direct part of the noisy channel coding theorem
see [1], for the formalization of the converse of the noisy channel coding theorem see [2], for the
matching pencil-and-paper presentation see [9].

We display the formalization as it is processed by Coq. (Between /* and */ are comments; ...
are for elided parts.) Margin comments are tags referring to the proof script. The lecture materialtag in scripttag in script
is available at [2]. Interactive proof will be demonstrated during the lecture. Various Coq tutorials
are available online [4].

1

1 Finite Probabilities

1.1 Distributions

A probability space will be the powerset of some finite type A (type finType in SSReflect). An
event is a subset of the probability space and can therefore be encoded as a boolean predicate, of
type pred A in SSReflect. An elementary event is an event that cannot be decomposed further,
i.e., a predicate pred1 a ≈ fun x ⇒x = a (for some a ∈ A). A distribution associates a positive
real to each elementary event s.t. the sum for all elementary events is 1. The probability of an event
is the sum of the probabilities of its elementary events.

Definition 1 (Distribution). Given a finite type A, a distribution is defined as a positive real-valued
(probability mass) function pmf, equipped with a proof pmf1 that its outputs sum to 1:11

Record dist := mkDist {

pmf :> A → R+ ;

pmf1 : Σ_(a in A) pmf a = 1 }.

A distribution is thus a Record but thanks to the coercion :>, we can write “P a” as a function
application to represent the probability associated with a. The construct Σ_(a in A) F a is provided
by SSReflect’s bigops theory, that is further illustrated by the next two examples.

Example 1 (Product Distribution). Let us assume that we are given two distributions P1: dist A

and P2: dist B. The product distribution over A×B noted P1×P2 is defined as follows:22

Definition prod_dist : dist [finType of A * B].

apply mkDist with (fun ab ⇒ P1 ab.1 * P2 ab.2).

- /* Rle0f proof */ ...

- /* pmf1 proof */ /* goal: Σ_(a|a ∈ [finType of A * B]) P1 a.1 * P2 a.2 = 1 */

rewrite -(pair_big xpredT xpredT (fun a b ⇒ P1 a * P2 b)) /=.

/* Σ_(a|a ∈ A) Σ_(b|b ∈ B) P1 a * P2 b = 1 */

rewrite -(pmf1 P1).

/* Σ_(a|a ∈ A) Σ_(b|b ∈ B) P1 a * P2 b = Σ_(a|a ∈ A) P1 a */

apply eq_bigr ⇒ a _.

/* Σ_(b|b ∈ B) P1 a * P2 b = P1 a */

rewrite -big_distrr /=.

/* P1 a * (Σ_(b|b ∈ B) P2 b) = P1 a */

rewrite pmf1.

/* P1 a * 1 = P1 a */

...

Defined.

Example 2 (Tuple Distribution). Let us assume that we are given a distribution P : dist A. The
tuple distribution over An noted P^n is defined as follows:33

Definition tuple_dist : dist [finType of n.-tuple A].

apply mkDist with (fun x ⇒ Π_(i < n) P x_i).

- /* Rle0f proof */ ...

- /* pmf1 proof */ /* goal: Σ_(t|t ∈ [finType of n.-tuple A]) Π_(i<n) P t_i = 1 */

pose P’ := fun (a : ’I_n) b ⇒ P b.

suff : Σ_(f : {ffun ’I_n → A }) Π_(i < n) P’ i (f i) = 1.

...

/* Σ_(f : {ffun ’I_n → A }) Π_(i < n) P’ i (f i) = 1 */

rewrite -bigA_distr_bigA /= /P’.

/* Π_(i<n) Σ_(a in A) P a = 1 */

rewrite [X in _ = X](_ : 1 = Π_(i < n) 1); last by ...

/* Π_(i<n) Σ_(j in A) P j = Π_(_<n) 1 */

apply eq_bigr ⇒ i _.

/* Σ_(j in A) P j = 1 */

...

Defined.

n.-tuple A is SSReflect notation for An. Given a tuple t ∈ n.-tuple A, t_i is notation for the
ith component of t, with i ∈ ’I_n is a natural strictly smaller than n (an ordinal in SSReflect’s
parlance).

Definition 2 (Probability of an Event). Given a distribution P : dist A and an event E : pred A,
the probability of E (w.r.t. distribution P) is defined as follows:44

Definition Pr (E : pred A) := Σ_(a in A | E a) P a.

Lemma 1. Some properties of the probability of events for the sake of completeness (they will be
used later). ([predC E] is the complement of predicate E.)55

Lemma Pr_incl (E E’ : pred A) : (∀ i, E i → E’ i) → Pr E ≤ Pr E’.

Lemma Pr_cplt E : Pr E + Pr [predC E] = 1.

1.2 Random Variables

The restriction to finite probabilities makes it possible to simplify the definition of random variables.

Definition 3 (Random Variable). A random variable (RV) is a distribution over some finite type A

coupled with a real-valued function defined over A:66

Record rvar A := {rv_dist : dist A ; rv_fun :> A → R }.

The (implicit) probability space is the powerset of A. We note p_X the distribution of the RV X. We
note Pr[X = r] the following definition :77

Definition pr (X : rvar A) r := Pr p_X [pred x | X x = r].

([pred x | .. x ..] is a SSReflect notation for boolean predicates.) We note X − m the RV88
that subtracts m to the output of X, k × X the RV that multiplies by k the output of X, X / n

the RV that divides by n the output of X, Xˆ2 the RV that squares the output of X, − log P the RV
fun x ⇒- log(P x) (with underlying distribution P).

Definition 4 (Expected Value). The expected value of a RV X (over A) is noted E X and is defined
as follows:99

Definition Ex_alt := Σ_(a in A) X a * p_X a.

This is equivalent to the following definition:1010

Definition img (A : finType) (f : A → R) := undup (map f (enum A)).

Definition Ex := Σ_(r ← img X) r * Pr[X = r].

The expected value is to be understood as the average outcome; this will become clearer when we
state the weak law of large number (Lemma 5).

The variance is a measure of the deviation of the outcome of an experiment from its expected
value.

Definition 5. Given a RV X, the variance of X is noted V X and is defined as follows:1111

Definition Var := let µ := E X in E ((X − µ)ˆ2).

Lemma 2. The variance can also be computed as follows:1212

Lemma V_alt : Var = E (X ˆ2) - (E X)^2.

The Chebyshev Inequality bounds the probability of deviations from the expected value.

Lemma 3 (Chebyshev Inequality). Given a RV X over A, the following holds:1313

Lemma chebyshev_inequality ε : 0 < ε →
Pr p_X [pred a | Rabs (X a - E X) ≥ ε] ≤ V X / ε ^ 2.

Proof. Script excerpt:

...

/* ε ^ 2 * Pr p_X [pred a | Rabs (X a - E X) ≥ ε] ≤ V X */

rewrite /V {2}/ Ex_alt.

/* lhs ≤ Σ_(a|a ∈ A) ((X − E X) ˆ2) a * p_((X − E X) ˆ2) a */

rewrite (_ : p_((X − E X)ˆ2) = p_X) //.

/* lhs ≤ Σ_(a|a ∈ A) ((X − E X) ˆ2) a * p_X a */

apply Rle_trans with (Σ_(a in A | Rabs (X a - E X) ≥ ε) (((X − E X)ˆ2) a

* p_X a));

last by ...

/* ε ^ 2 * Pr p_X [pred a | Rabs (X a - E X) ≥ ε] ≤
Σ_(a|(a ∈ A) ∧ (Rabs (X a - E X) ≥ ε)) ((X − E X) ˆ2) a * p_X a */

rewrite /Pr big_distrr [_ ˆ2]lock /= -!lock.

/* Σ_(a|Rabs (X a - E X) ≥ ε) ε ^ 2 * p_X a ≤
Σ_(a|Rabs (X a - E X) ≥ ε) ((X − E X) ˆ2) a * p_X a */

...

1.3 Sum of Random Variables

Definition 6 (Joint Distribution). The fact that P is a joint distribution of P1 (distribution over
A) and P2 (distribution over An) is captured by the following predicate:1414

(∀ x, P1 x = Σ_(t in {:n+1.-tuple A} | thead t = x) P t) ∧
(∀ x, P2 x = Σ_(t in {:n+1.-tuple A} | behead t = x) P t).

(thead takes the head of a tuple, behead its tail.) So, when a distribution P is a joint distribution of
two distributions P1 and P2, P1 and P2 are two marginal distributions of P. Still, a joint distribution
is not necessarily a product distribution.

Definition 7 (Independent Random Variables). The fact that a RV X (over A) and a RV Y (over
An) are independent w.r.t. the joint distribution P (over An+1) is noted X ⊥ P Y and holds when:1515

∀ x y, Pr P [pred xy | (X (thead xy) = x) ∧ (Y [tuple of behead xy] = y)] =

Pr[X = x] * Pr[Y = y].

Definition 8 (Sum of Two Random Variables). The fact that X (RV over An+2) is the sum of X1

(RV over A) and X2 (RV over An+1) is noted X =X1+X2 and is formalized as follows:1616

Definition sum := joint p_X1 p_X2 p_X ∧
X =1 [ffun x ⇒ X1 (thead x) + X2 [tuple of behead x]].

Lemma 4 (Expected Value and Variance of Sum of RVs). The expected value is always linear but
the variance only when the RVs are independent:1717

Lemma E_linear_2 : X = X1 + X2 → E X = E X1 + E X2.

1818

Lemma V_linear_2 : X = X1 + X2 → X1 ⊥p X X2 → V X = V X1 + V X2.

Definition 9 (Sum of Independent Random Variables). We are given a RV X over An and a n-tuple
Xs of random variables (each over A). The fact that X is the sum of the RVs in Xs considered as
independent is noted X =i Σ Xs and is captured by the following predicate:1919

Inductive isum_n : ∀ n, rvar [finType of n.-tuple A] → n.-tuple (rvar A) → Prop :=

| isum_n_1 : ∀ X, cast_rv X =i Σ X

| isum_n_cons : ∀ n (Ys : n+1.-tuple _) Y X Z,

Y =i Σ Ys → Z = X + Y → X ⊥p Z Y → Z =i Σ [tuple of X :: Ys]

The weak law of large numbers is the first fundamental theorem of probability. Intuitively, it
says that the average of the results obtained by repeating an experiment a large number of times is
close to the expected value (thus justifying the interpretation of the latter as an average outcome).

Lemma 5 (Weak Law of Large Numbers). P is a distribution (over A). Xs are n+1 identically
distributed RVs (each over A, they all have distribution P). We note µ their common expected value
and σ2 their common variance. Let X be the sum of the Xs considered independent, i.e., X =i Σ Xs.
We have:2020

Lemma wlln ε : 0 < ε →
Pr p_X [pred t | Rabs ((X / n+1) t - µ) ≥ ε] ≤ σ2 / ((n+1) * ε ^ 2).

The weak law of large numbers says that the average of the outcome of X gets closer to µ with a
large n.

Proof. Script excerpt:

have HV : V (X / n+1) = σ2 / n+1.

...

...

/* Pr p_ X [pred t | Rabs ((1 * / n+1 × X) t - µ) ≥ ε] ≤
V (X / n+1) * / ε ^ 2 */

have HE : E (X / n+1) = µ.
...

rewrite -{}HE.

/* Pr p_ X [pred t | Rabs ((1 * / n+1 × X) t - E (X / n+1)) ≥ ε] ≤
V (X / n+1) * / ε ^ 2 */

have cheby : Pr p_(X / n+1)

[pred t | Rabs (X t / n+1 - E (X / n+1)) ≥ ε] ≤ V (X / n+1) / ε ^2.

...

2 Information Theory

We now come to the definition of typical sequence. Let us assume that we are given a source that
emits symbols. Intuitively, a typical sequence is a n-tuple of symbols that is expected to be observed
when n is “large”. For example, a tuple emitted by a binary source that emits 0 with probability
2/3 is typical when it contains about two thirds of 0s.

The definition of typical sequences relies on the definition of entropy.2121

Definition 10 (Entropy). The entropy of a distribution P (over A) is noted HP and is defined as
- Σ_(a in A) P a * log(P a).

The entropy is a measure of uncertainty. For instance, a source that always emits the same
symbol has entropy 0. A source that emits symbols drawn uniformly from an alphabet of cardinal
n is maximal: log n.

Definition 11 (Typical Sequence). Let P be a distribution over A. A n-tuple x is a P,ε-typical
sequence when it satisfies the following predicate:2222

Definition typ_seq x := exp (- n * (H P + ε)) ≤ P^n x ≤ exp (- n * (H P - ε)).

2323

Definition 12 (Typical Set). Given a natural n, a distribution P, and an ε, we note T S P n ε the
set of typical sequences, i.e., the set [set x | typ_seq x].

([set x | ...] is SSReflect notation for finite sets.)
To establish that typical sequences do have the properties we expect intuitively, we first need

to prove the property of asymptotic equipartition property (AEP). This is a property about the
outcome of several RVs that are independent and identically distributed. Informally, the AEP
states that, in terms of probability, - (1 / n+1) * log(P^n+1 x) is “close” to the entropy HP.

Lemma 6 (Asymptotic Equipartition Property). We are given a source that emits symbols with
a distribution P (over A) and some ε (0 < ε). We first define the following quantities that will be
used as bounds hereafter:

Definition aep_ σ2 := Σ_(a in A) P a * (log (P a))^2 - (H P)^2.

Definition aep_bound ε := aep_ σ2 P / ε^3.

The AEP states the following technical property about the probability of emitting a n+1-tuple:2424

Lemma aep : aep_bound P ε ≤ n+1 →
Pr (P^n+1) [pred t | (0 < P^n+1 t) ∧

(Rabs ((− log (P^n+1) / n+1) t - H P) ≥ ε)] ≤ ε.

Proof. We change the shape of the rhs of the goal to match the weak law of large numbers:

apply Rle_trans with (aep_ σ2 P / (n+1 * ε ^ 2)); last first.

...

/* Pr P^n+1 [pred t | 0 < P^n+1 t &

Rabs ((− log (P^n+1) / n+1) t - H P) ≥ ε] ≤
aep_ σ2 P / (n+1 * ε ^ 2) */

We prepare several identically distributed RVs Xs with distribution P:2525

Definition map_mlog A n (P : dist A) : n.-tuple (rvar A) :=

[tuple of map (fun X ⇒ − log X) (nseq n P)].

and the RV defined as follows:2626

Definition sum_ map_mlog A (P : dist A) n : rvar [finType of n.-tuple A].

apply (Build_rvar (P^n)).

exact: (fun x ⇒ Σ_(i < n) - log (P x_i)).

Defined.

We can show that the latter is the sum of the former (considered as independent), i.e.
sum_map_mlog P n+1 =i Σ map_mlog n+1 P.

move: (mlog_tuple_isum_ map_mlog P n) ⇒ Hisum.

/* Hisum : sum_ map_mlog P n+1 =i Σ map_mlog n+1 P */

The conclusion comes from the application of the weak law of large numbers:

move: (wlln (@E_ map_mlog _ P n) (@V_ map_mlog _ P n) Hisum Hε) ⇒ law_large.

/* law_large : Pr p_ (sum_ map_mlog P n+1)

[pred t | Rabs ((sum_ map_mlog P n+1 / n+1) t - H P) ≥ ε] ≤
aep_ σ2 P / (n+1 * ε ^ 2) */

eapply Rle_trans; last by apply law_large.

/* Pr P^n+1 [pred t | 0 < P^n+1 t &

Rabs ((− log (P^n+1) / n+1) t - H P) ≥ ε] ≤
Pr p_ (sum_ map_mlog P n+1)

[pred t | Rabs ((sum_ map_mlog P n+1 / n+1) t - H P) ≥ ε] */

apply Pr_incl ⇒ i /=.

...

Lemma 7 (Typical Set Non-empty). When n is large enough, T S is not empty:2727

Definition TS_0 (H : aep_bound P ε ≤ n+1) : [finType of n+1.-tuple A]. ...

Lemma TS_0_is_typ_seq (k_k0 : aep_bound P ε ≤ n+1) : TS_0 k_k0 ∈ T S P n+1 ε.

Lemma 8 (Typical Set Upper-bound). The cardinal of a P,n,ε-typical set is upper-bounded as
follows:2828

Lemma TS_sup : | T S P n ε | ≤ exp (n * (H P + ε)).

Lemma 9 (Probability of Typicality). When n gets large, emitted sequences are more likely to be
typical:2929

Lemma Pr_TS_1 : aep_bound P ε ≤ n+1 → Pr (P^n+1) [pred t in T S P n+1 ε] ≥ 1 - ε.

3 Source Coding Theorem

The source coding theorem (a.k.a. the noiseless coding theorem) is a theorem for data compression.
The basic idea is to replace frequent words with alphabet sequences and other words with a special
symbol. Let us illustrate this with an example. The combination of two Roman alphabet letters
consists of 676 (= 262) words. Since 29 < 676 < 210, 10 bits are required to represent all the
words. However, by focusing on often-used English words (“as”, “in”, “of”, etc.), we can encode
them with less than 9 bits. Since this method does not encode rarely-used words (such as “pz”)
decoding errors can happen. Given an information source that emits all symbols with the same
distribution P, the source coding theorem gives a theoretical lower-bound (namely, the entropy HP)
for compression rates for compression with negligible error-rate.

Definition 13 (Source Code). A k,n-source code from alphabet A is a pair of functions:3030

Definition encT := k.-tuple A → n.-tuple bool.

Definition decT := n.-tuple bool → k.-tuple A.

Record scode := mkScode { enc : encT ; dec : decT }.

The main characteristic of a source code is its rate:

Definition SrcRate (sc : scode) := n / k.

The rate is the number of bits needed per symbol.

Definition 14 (Error Rate). Let us assume a source of symbols with probability P (over A). The
error rate of a k,n-source code sc is noted ēsrc(P , sc) and is defined as:3131

Pr (P^k) [pred x | dec sc (enc sc x) 6= x].

Theorem 1 (Source Coding—Direct Part). Given a source of symbols from the alphabet A with
distribution P, there exist source codes of rate r ∈ Q+ larger than the entropy HP such that the
error rate can be made arbitrary small:3232

Theorem source_coding_direct : ∀ λ, 0 < λ < 1 →
∀ r : Q+, H P < r →
∃ k n (sc : scode A k n), r = SrcRate sc ∧ ēsrc(P , sc) ≤ λ.

Proof. The first step is to instantiate k and n. For that purpose, we introduce the following inter-
mediate constants:3333

Let r := num / den+1.

Definition ε := Rmin (r - H P) λ.
Definition δ := Rmax (aep_bound P (ε / 2)) (2 / ε).

We instantiate k such that δ ≤k; n follows by the definition of the rate of the source code: w3434

Lemma SrcDirectBound d D : { k | D ≤ (k+1 * d+1) }. ...

Let k’ := sval (SrcDirectBound den δ).
Definition k := k’+1 * den+1.

Definition n := k’+1 * num.

We now construct a generic k,n-source code encoder. Let S be a subset of Ak+1 such that its
cardinal is strictly less than 2n. The function that associates to the ith element x of S the n-bit
encoding of i+1 in binary and 0...0 (n times) otherwise is defined as follows:3535

Definition f : encT A k+1 n := fun x ⇒
if x ∈ S then

let i := index x (enum S) in Tuple (size_nat2bin_b i+1 n)

else

[tuple of nseq n false].

We now construct a corresponding k,n-source code decoder. Given a n-tuple x, if x is not 0 and
smaller than |S|, it returns the “x−1”th element of S, and some default element otherwise:3636

Variable def : k+1.-tuple A. Hypothesis Hdef : def ∈ S.

Definition φ : decT A k+1 n := fun x ⇒
let i := tuple2N x in

if i is 0 then def else

if i-1 < | S | then nth def (enum S) i-1 else def.

By construction:3737

Lemma φ_f i : φ (f i) = i ↔ i ∈ S.

We now instantiate the generic source code above so that it encodes properly the typical se-
quences (proof script excerpt):3838

set S := T S P k (ε / 2).

set def := TS_0 halfepsilon0 halfepsilon1 k_k0.

set F := f n S.

set PHI := @φ _ n _ S def.

exists {| enc := F; dec := PHI |}.

The rate of the instantiated source code is the good one by construction. The conclusion of the
proof follows from the properties of typical sequences:

/* goal (1): ēsrc(P, {| enc := F; dec := PHI |}) ≤ λ */

The lhs of goal(1) can be rewritten so as to transform the goal into:

/* goal (2): 1 - Pr P^k [pred t in T S P k (ε / 2)] ≤ λ */

The latter is easily provable using the lemma Pr_TS_1 (Lemma 9) because it can be rewritten as
follows:

/* Pr P^k [pred t in T S P k (ε / 2)] ≥ 1 - ε / 2 */

We therefore only need to prove the rewriting from goal(1) to goal(2), i.e.:

/* Σ_(t|PHI (F t) 6= t) Π_(i<k) P t_i = 1 - Σ_(t|t ∈ T S P k (ε / 2)) Π_(i<k) P t_i */

By appealing to Pr_cplt (probability of the complement event, Lemma 1), the rhs can be rewritten
such that:

/* Σ_(t|PHI (F t) 6= t) Π_(i<k) P t_i = Σ_(t|(t ∈ k.-tuple A) ∧ (t 6∈ S)) P^k t */

which amounts to prove:

/* (PHI (F t) 6= t) = (t 6∈ S) */

This is essentially the lemma φ_f but we need to prove two things to use it. The first one is
def ∈ S, that comes directly from TS_0_is_typ_seq (see Lemma 7). The second one is | S | <2 ^ n.
This can be reduced to 1 + |S| ≤exp(k * (HP + ε)) by using the definition of the source rate and
the definition of ε. This can be further reduced to 1 + |S| ≤exp(1 + k * (HP + ε/ 2)) which can
be proven using TS_sup (Lemma 8).

Theorem 2 (Source Coding—Converse Part). The converse of the Shannon’s source coding theo-
rem shows that any source code whose rate is smaller than the entropy of a source with distribution P

over A has non-negligible error-rate:3939

Theorem source_coding_converse : ∀ λ, 0 < λ < 1 →
∀ r : Q+, 0 < r < H P →
∀ n k (sc : scode A k+1 n), r = SrcRate sc →

SrcConverseBound P (num r) (den r) n λ ≤ k+1 →
ēsrc(sc , P) ≥ λ.

where the bound SrcConverseBound gives a precise meaning to the claim that would otherwise be
informally summarized as “for k big enough”:4040

Definition ε := Rmin ((1 - λ) / 2) ((H P - r) / 2).

Definition δ := Rmin ((H P - r) / 2) (ε / 2).

Definition SrcConverseBound := Rmax (Rmax

(aep_bound P δ) (- ((log δ) / (H P - r - δ)))) (n / r).

See [2] for the proof and also for the channel coding theorems.

References

[1] Reynald Affeldt, Manabu Hagiwara. Formalization of Shannon’s Theorems in SSReflect-Coq.
In 3rd Conference on Interactive Theorem Proving (ITP 2012), volume 7406 of Lecture Notes in
Computer Science, pages 233-249. Springer, August 2012

[2] Reynald Affeldt, Manabu Hagiwara, Jonas Sénizergues. Formalization of Shannon’s Theorems.
http://staff.aist.go.jp/reynald.affeldt/shannon. Coq documentation. AIST, 2012

[3] Kenneth Appel, Wolfgang Haken. Every map is four colourable. Bulletin of the American Math-
ematical Society 82:711–712 (1976)

[4] The Coq Proof Assistant. http://coq.inria.fr INRIA, 1985–2012

[5] Georges Gonthier, Assia Mahboubi, Enrico Tassi. A Small Scale Reflection Extension for the
Coq System. Technical Report 6455. Version 11. INRIA, 2012

[6] Georges Gonthier. RE: [Coqfinitgroup-commits] r4105 - trunk. Eletronic mail. Available at:
http://www.msr-inria.inria.fr/events-news/feit-thompson-proved-in-coq.

[7] Thomas Hales. A proof of the Kepler conjecture. Annals of Mathematics 162(3):1065–1185
(2005)

[8] Jean van Heijenoort. From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931.
Harvard University Press, 1967

[9] Manabu Hagiwara. Coding Theory: Mathematics for Digital Communication. In Japanese.
http://www.nippyo.co.jp/book/5977.html. Nippon Hyoron Sha, 2012

