
Towards Formal Verification of
Memory Management Properties

using Separation Logic
Reynald Affeldt

AIST-RCIS
Nicolas Marti
University of Tokyo

Akinori Yonezawa
University of Tokyo

AIST-RCIS

Research Project

• Verification of low-level software:
– Specialized operating systems
– Device drivers

• Difficulties:
– Memory management
– Hardware-dependent specifications

• Our approach:
– Verification in the Coq proof assistant [INRIA, 1984-2005]

– Using Separation Logic [Reynolds et al., 1999-2005]

This Presentation

• Use-case:
– The Topsy operating system:

• Specialized o.s. for network cards [Ruf, ANTA 2003]

• Also used for educational purpose (in Swiss)

– Verification of memory isolation:
• Intuitively, “user-level threads cannot access kernel-level

memory” [Bevier, IEEE Trans. 1988]

• Obvious relation with security:
– E.g., a user application replacing the process descriptor of an

authentication server

• Coq implementation overview

Outline

• Memory Isolation for Topsy
– Specification Approach
– Informal Specification

• Excerpt of Formal Verification
– The Allocation Function
– Formal Specification and Verification

• Coq Implementation
• Related and Future Work

Memory Isolation for Topsy

• Reminder:
– “user-level threads cannot access kernel-level

memory”
• In practice (for x86 processors):

– Each thread and segment is given a privilege level
– The hardware guarantees that user-level threads can

only access user-level segments…
…under the hypothesis that the operating system
correctly manages privilege levels!

Where do We Need to Look?

• Topsy control-flow:

What do We Need to Verify?

• Topsy source code:

Memory Isolation for Topsy
• Informal specification:

– Boot loader and kernel initialization:
• The boot loader builds the intended memory model and the

processor runs in segmented mode

– Heap manager:
• Newly allocated blocks do not override previously allocated

blocks and only free blocks are marked as such

– Thread manager:
• Thread descriptors for user-level threads are initialized with

user privilege and context switching preserves this privilege

Next slides

See paper and website for details

See paper and website for details

Outline

• Memory Isolation for Topsy
– Specification Approach
– Informal Specification

• Excerpt of Formal Verification
– The Allocation Function
– Formal Specification and Verification

• Coq Implementation
• Related and Future Work

The Allocation Function

• Signature:

• The underlying data structure:
– Blocks organized as a list

• E.g., a heap-list with two free blocks and one
allocated block:

– The “heap-list” covers a fixed region of
memory reserved by the kernel

hmAlloc (y, sizey);

hmAlloc: Implementation

if (y == 0)
return ERROR;

/* split the found block to the
appropriate size */
split (y, sizey);

/* if not found, compact and
search again */
if (y == 0) {

compact();
y = findFree (sizey);

}

• Overall effect:

hmAlloc (y, sizey);

/* look for a large-enough block */
y = findFree (sizey);

y sizey y

Potential Problems Relevant to
Memory Isolation

• Unexpected situations:

⇒Separation logic [Reynolds et al., 1999-2005] provides
convenient formulas for such specifications

hmAlloc (y, sizey);

y sizey

hmAlloc (y, sizey);

y sizey

Separation Logic Formulas

• Provides a symbolic representation of
memory storage:
– Atoms:

• E.g.,
– Separating conjunction:

• P ∗ Q holds when the storage can be split into two
parts that respectively satisfy P and Q

• E.g., does not hold if lo=l1

– Neutral: emp
)()(1100 elel aa ∗

)(00 el a

The Heap-list Predicate

• The Array predicate:
– An array is a set of

contiguous locations
• The Heap-list predicate:

– Inductively, a heap-list is
either:

• An empty list, or
• A free block followed by a

heap-list, or
• An allocated block

followed by a heap-list)())2()2((
),().(

)())2()2(
),().(

),.(

nextlnextl
nextallocatedlnilnextnext

nextlnextl
nextfreelnilnextnext

nilstlst
l

 list-Heap Array

 list-Heap (Array

 list-Heap

∗−−+
∗∧≠∃

∨∗−−+
∗∧≠∃

∨∃
=

a

a

a

))))1()1(().((0(
)0(

−+∗∃∧>
∨∧=

=

szlelesz
sz

szl

 Array
emp
 Array

a

Formal predicates:

The Heap-List Predicate (cont’d)

• Heap-lists “with holes”:
– Heap-List A F x holds for a heap-list without

the blocks in A or F
– E.g.:

• Heap-List {} {} x holds for
x

x

x

f

a

 • Heap-List {} {f} x holds for

• Heap-List {a} {} x holds for

Formal Specification of hmAlloc

{ }

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

∗∧=
∨

∗∗

∧≥∃

∗

x

x

y

y

x

sizexbasehmxy

sizeysizexbasehmyx

sizesizesize
sizey

sizexbasehmx

 Array List-Heap

 Array Array List-Heap

); ,(hmAlloc
 Array List-Heap

_}{}{0

_}{},{

.

_}{}{

Proof Overview (1/2)

{ }

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

∗∧=
∨

∗∗

∧≥∃

=

==

=
∗

x

x

y

y

y

x

sizexbasehmxy

sizeysizexbasehmyx

sizesizesize

sizey

y

sizey
sizexbasehmx

 Array List-Heap

 Array Array List-Heap

}
);(findFree

(); compact
{)(if

);(findFree
 Array List-Heap

_}{}{0

_}}{{

.

0

_}{}{

Proof Overview (2/2)

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

∗∧=
∨

∗∗

∧≥∃

==
⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

∗∧=
∨

∗∗

∧≥∃

x

x

y

y

x

x

y

sizexbasehmxy

sizeysizexbasehmyx

sizesizesize
sizey

y

sizexbasehmxy

sizeysizexbasehmyx

sizesizesize

 Array List-Heap

 Array Array List-Heap

); ,(split
}

ERROR; return
{)(if

 Array List-Heap

 Array Array List-Heap

_}{}{0

_}{},{

.

0

_}{}{0

_}}{{

.

Outline

• Memory Isolation for Topsy
– Specification Approach
– Informal Specification

• Excerpt of Formal Verification
– The Allocation Function
– Formal Specification and Verification

• Coq Implementation
• Related and Future Work

Coq Implementation

• Reusable part (around 6500 lines):
– Core separation logic

[Reynolds, LICS 2002]

– Additional facilities
• Data structures, lemmas, etc.

• Use-case part (around 4500 lines):
– Translation of Topsy functions

• C and assembly code (around 300 lines)

– Specification and verification
• In progress (some elementary steps left out for lack of time)

Next slide

Overview in previous slides

Coq Implementation
(Reusable part)

Core
separation

logic

Additional
facilities

Commands

Assignments
pointer dereferences,
destructive updates,

loops, etc.

States

Variables
and heap

Formulas

∧, →, ∗,
∃, ¬, =, etc.

Satisfaction relation
|=

Operational
semantics

st ⎯ c→ st’

Hoare triples
{P}c{Q}

Data structures (arrays, lists),
lemmas (split, concatenation, insertion, etc.),
weakest preconditions generator (triples for backward reasoning),
frame rule (for compositional reasoning),
tactics for heap partitions

Soundness

Outline

• Memory Isolation for Topsy
– Specification Approach
– Informal Specification

• Excerpt of Formal Verification
– The Allocation Function
– Formal Specification and Verification

• Coq Implementation
• Related and Future Work

Related Work
• Proof assistant-based verification:

– Verification of micro-kernels:
• Delta-core [Zhu et al., O.S.Review 2001]

– Commercial o.s. verified in PowerEpsilon
– Verification of error-recovery of system calls

• VFiasco [Hohmuth and Tews, ECOOP-PLOS 2005]
– C++ translation into PVS

– Verification of C programs:
• Schorr-Waite algorithm in Coq [Hubert and Marche, SEFM 2005]

– Separation logic encoding:
• In Isabelle [Weber, CSL 2004]

• Verification using separation logic:
– Decidable fragment [Berdine et al., FSTTCS 2004]
– Symbolic evaluator [Berdine et al., APLAS 2005]

Future Work

• Implementation in progress:
– Complete libraries of lemmas for data structures
– Polish verification of memory isolation for Topsy

• Automate verification:
– Interface with the symbolic evaluator of [Berdine et al.,

APLAS 2005]:
• Verification of their implementation as a side-effect

– Semi-automatic generation of loop invariants
– Interface with theorem provers for BI logic?

Conclusion

• We have presented:
– A reusable implementation of separation logic

in the Coq proof assistant
– A real-world use-case: memory isolation for

the Topsy operating system
• Overview of memory allocation, see the paper and

the website for the rest of the verification (boot
loader, memory and thread management)

	Towards Formal Verification of Memory Management Properties using Separation Logic
	Research Project
	This Presentation
	Outline
	Memory Isolation for Topsy
	Where do We Need to Look?
	What do We Need to Verify?
	Memory Isolation for Topsy
	Outline
	The Allocation Function
	hmAlloc: Implementation
	Potential Problems Relevant to Memory Isolation
	Separation Logic Formulas
	The Heap-list Predicate
	The Heap-List Predicate (cont’d)
	Formal Specification of hmAlloc
	Proof Overview (1/2)
	Proof Overview (2/2)
	Outline
	Coq Implementation
	Coq Implementation�(Reusable part)
	Outline
	Related Work
	Future Work
	Conclusion

