
An Intrinsically-typed Probabilistic Programming
Language in Coq (Extended Abstract)

Ayumu Saito
Department of Mathematical and Computing Science,

Tokyo Institute of Technology
Tokyo, Japan

Reynald Affeldt
National Institute of Advanced Industrial Science and

Technology (AIST)
Tokyo, Japan

1 Introduction
The formalization of probabilistic programs already has sev-
eral applications in security (e.g., [5]) or artificial intelli-
gence (e.g., [4]). However, the support to formalize all the
features of probabilistic programs is still lacking. For exam-
ple, the formalization of equational reasoning byHeimerdinger
and Shan [9] is axiomatized; the study of nested queries and
recursion by Zhang and Amin [19] relies on a partially ax-
iomatized formalization of measure theory. Efforts are nev-
ertheless underway to improve the formal foundations of
probabilistic programming languages. For example, Hirata
et al. have been formalizing quasi-Borel spaces in Isabelle/HOL
to handle higher-order features [10]. Affeldt et al. have been
formalizing s-finite kernels in Coq to provide a semantics
for a probabilistic programming language [2].

In this presentation, we address the problem of the for-
malization of the syntax and of the evaluation of a prob-
abilistic programming language. Our target is a language
proposed by Staton [15, 16] whose semantics has already
been formalized in Coq [2]. This formalization needs to be
improved to provide a practical mean to reason about pro-
grams. Indeed, in the absence of syntax, syntactic criteria
need to be recast into semantic terms. Also, the evaluation
of program variables needs to be expressed semantically, i.e.,
as measurable functions that access the environment by in-
dices akin to de Bruijn indices (see [2, Sections 7.1.2 and
7.2.2] for concrete examples).

In fact, the nature of probabilistic programs makes the
formalization of a syntax and its evaluation not obvious. For
example, evaluation does not return standard values but, in
the case of the probabilistic programming language by Sta-
ton, s-finite kernels, which are kernels that can be expressed
as countable sums of finite kernels (where a kernel is es-
sentially a family of measures). In this work, we rely on
MathComp-Analysis [1], a library for analysis in the Coq
proof assistant that already provides a formalization of these
notions.

For syntax formalization, we choose intrinsic typing by
which the typing rules of the language are embedded into
the syntax. This guarantees that one can only write well-
typed programs but requires a proof assistant based on dependent-
type theory such as Coq or Agda. The idea is well-know [7,
Sect. 1] but has not yet been applied to a probabilistic pro-
gramming language as far as we know. Besides dependent

types, we also exploit other features of the Coq proof as-
sistant to provide a concrete syntax by using custom en-
tries [18] and type inference by canonical structures. Using
this syntax, we formalize an evaluation relation (which we
prove to be a function) that also uses dependent types in a
crucial way since the result of an evaluation is essentially
a dependent record: either a measurable function or a ker-
nel, depending on whether the evaluated expression is de-
terministic or probabilistic.
In the following, we give an overview of sfPPL, an ar-

chetypal probabilistic programming language based on s-
finite kernels. Concretely, we provide a syntax and a func-
tional evaluation relation illustrated by a sample program
and by basic equational reasoning rules. The formalization
is axiom-free and can be found online1 (see in particular the
file lang_syntax.v).

2 Intrinsically-typed Probabilistic
Programming Language

The main specificity of sfPPL types is that they feature a
type for probability distributions:

A ::= U | B | R | 𝑃 (A) | A0 × A1

The syntax U is for a type with one element, B is for the
type of boolean numbers, R is for the type of real numbers.
The syntax 𝑃 (A) is for the type of distributions over A. The
cartesian product is denoted by A0 × A1. The encoding of
this syntax is unsurprising:
Inductive typ :=
| Unit | Bool | Real
| Prob : typ -> typ
| Pair : typ -> typ -> typ.

We represent a (typing) context simply by a list:
Definition ctx := seq (string * typ).

The expressions of sfPPL extend the expressions of a stan-
dard, first-order functional language with three instructions
specific to probabilistic programming languages:

𝑒 ::= tt | 𝑏 | 𝑟 | 𝑓 (𝑒1, · · · , 𝑒𝑛) | (𝑒1, 𝑒2) | 𝜋1 (𝑒) | 𝜋2 (𝑒) |
if 𝑒 then 𝑒1 else 𝑒2 | 𝑥 | return 𝑒 | let𝑥 := 𝑒1 in 𝑒2 |
sample(𝑒) | score(𝑒) | normalize(𝑒)

1https://github.com/AyumuSaito/analysis/tree/lang_syntax

Ayumu Saito and Reynald Affeldt

The syntax tt is the element of typeU,𝑏 is for boolean num-
bers, 𝑟 is for real numbers. The syntax 𝑓 (𝑒1, · · · , 𝑒𝑛) repre-
sents measurable functions. (𝑒1, 𝑒2) is a pair whose projec-
tions are accessed with 𝜋1 and 𝜋2. If-then-else is for boolean
branching. Variables are ranged over by 𝑥 , 𝑦, etc. Last we
have return (fromdeterministic to probabilistic expressions),
sequencing (for probabilistic expressions only), and the three
instructions specific to probabilistic programming languages:
sampling (from a probability measure), scoring (for likeli-
hood scores), and normalization (of a measure into a prob-
ability measure).

sfPPL distinguishes deterministic and probabilistic expres-
sions by means of two typing judgments ⊢D and ⊢P. For ex-
ample, sampling is a probabilistic expression whose param-
eter is a deterministic expression:

Γ ⊢D 𝑒 : 𝑃 (A)
Γ ⊢P sample(𝑒) : A

Since we chose an intrinsically-typed syntax, we formal-
ize the expressions of sfPPL where contexts and types ap-
pear as indices (we use a flag instead of a mutually inductive
type):
Inductive flag := D | P.
Inductive exp : flag -> ctx -> typ -> Type := ...

(The context indeed needs to be an index since it is modified
by let-in expressions.) For example, the constructor exp_sample
takes an expression representing a distribution over some
type t and samples from this distribution an element of type t:
| exp_sample g t : exp D g (Prob t) -> exp P g t

To sample from a concrete distribution, we have a construc-
tor for Bernoulli distributions:
| exp_bernoulli g (r : {nonneg R}) (r1 : r%:num <= 1) :

exp D g (Prob Bool)

The non-negative real number 𝑟 ≤ 1 is the parameter of
the Bernoulli distribution (we use the library for real num-
bers of MathComp-Analysis). This last constructor corre-
sponds to ameasurable function 𝑓 with the following typing
rule:

𝑟 ∈ R 0 ≤ 𝑟 ≤ 1
Γ ⊢D bernoulli(𝑟) : 𝑃 (B)

Using exp, only well-typed expressions can be written.
However, even in the case of concrete programs (i.e., with
fully instantiated contexts), the user sometimes need tomake
intermediate contexts explicit to type-check abstract syn-
tax. To make it easier to write concrete examples, we use
Coq custom entries [18] and canonical structures [8] to pro-
vide a concrete syntax that hides the details of inference of
contexts. As an example, let us consider the following pro-
gram in pseudo-code from [15] which models the inference
of whether today is the week-end based on the observation
that four buses passed by in an hour and knowing that there
are three buses per hour on week-ends and ten otherwise:

normalize(let x := sample(bernoulli(2/7)) in
let r := if x then 3 else 10 in
let _ := score(poisson(4, r)) in
return x)

Using exp, custom entries, and canonical structures, the user
can get along by writing in Coq:

Definition staton_bus_syntax0 : @exp R _ [::] _ := [
let "x" := Sample {exp_bernoulli (2 / 7%:R)%:nng p27} in
let "r" := if #{"x"} then return {3}:R else return {10}:R in
let "_" := Score {exp_poisson 4 [#{"r"}]} in return #{"x"}].
Definition staton_bus_syntax :=
[Normalize {staton_bus_syntax0}].

The [] delimiters enter the grammar of custom entries and
{} allow to go back toCoq expressions; variables aremarked
by # and real number constants by :R.

3 Evaluation of Typed Expressions
The evaluation of sfPPL expression links the syntax from
the previous section to the semantics provided by previous
work [2].

On paper, the denotational semantics of sfPPL can be
represented by a overloaded function ⟦·⟧ that evaluates the
syntax of types, of contexts, and of typing judgments resp.
to measurable spaces, products of measurable spaces, and
measurable functions or s-finite kernels. For example, the
measurable space corresponding to R is ⟦R⟧, the measur-
able space R of real numbers with its Borel sets. A context
Γ = (𝑥1 : A1; . . . ;𝑥𝑛 : A𝑛) is interpreted by the product
space ⟦Γ⟧ def

=
∏𝑛

𝑖=1 ⟦A𝑖⟧. Deterministic expressions Γ ⊢D 𝑒 :
A are interpreted by measurable functions ⟦Γ⟧ → ⟦A⟧ and
probabilistic expressions Γ ⊢P 𝑒 : A are interpreted by s-
finite kernels ⟦Γ⟧ s-fin

⟦A⟧. In particular, the semantics of
a let-in expression ⟦let𝑥 := 𝑡 in𝑢⟧ is the composition of
a kernel of type ⟦Γ⟧ s-fin

⟦A0⟧ corresponding to 𝑡 and of
a kernel of type ⟦Γ⟧ × ⟦A0⟧ s-fin

⟦A1⟧ corresponding to 𝑢.
The proof of the fact that this results in a kernel of type
⟦Γ⟧ s-fin

⟦A1⟧ is due to Staton [15] and has been formalized
usingMathComp-Analysis [2].

To interpret types and contexts, we provide two func-
tions. When applied to a typ, the recursive function mtyp re-
turns the correspondingmeasurable space, a measurableType
in MathComp-Analysis. When applied to a context (𝑥1 :
A1; · · · ;𝑥𝑛 : A𝑛), the function mctx returns a measurable
space made by the nested products ⟦A1⟧ × (· · · × (⟦An⟧ ×
⟦U⟧)) (we use unit to avoid empty spaces).

We define the evaluation of expressions as a binary rela-
tion between a deterministic expression and a measurable
function (evalD, notation -D>) or a probabilistic expression
and a s-finite kernel (evalP, notation -P>), the two relations
being mutually defined. The relation evalD relates a deter-
ministic expression of type exp D g t with a measurable

An Intrinsically-typed Probabilistic Programming Language in Coq (Extended Abstract)

function f. The domain of f is the interpretation of the con-
text g and its codomain is the interpretation of the type t,
i.e., its type is dval R g t:
Definition dval (R : realType) (g : ctx) (t : typ) :=
@mctx R g -> @mtyp R t.

Similarly, the relation evalP relates a probabilistic expres-
sion exp P g t with a s-finite kernel of type:
Definition pval (R : realType) (g : ctx) (t : typ) :=
R.-sfker @mctx R g ~> @mtyp R t.

For example, the evaluation of a variable is defined by the
constructor eval_var below:
Inductive evalD : forall g t, exp D g t ->
forall f : dval R g t, measurable_fun setT f -> Prop := ...
| eval_var g str : let i := index str (dom g) in

[%str] -D> acc_typ (map snd g) i ;
macc_typ (map snd g) i ...

It starts by finding the index i of the variable in the context
and produces a function acc_typ that goes from the inter-
pretation of the context to the ith measurable space to ac-
cess the execution environment. Since the interpretation of
the context is a nested product, such a function is made of
projections and is therefore measurable (proof macc_type).
The evaluation of a let-in expression is a matter of com-

bining the s-finite kernels of the two sub-expressions using
the eval_letin constructor:
(* evalD cont'd *) with evalP :
forall g t, exp P g t -> pval R g t -> Prop := ...
| eval_letin g t1 t2 str

(e1 : exp P g t1) (k1 : pval R g t1)
(e2 : exp P ((str, t1) :: g) t2)
(k2 : pval R ((str, t1) :: g) t2) :

e1 -P> k1 -> e2 -P> k2 ->
[let str := e1 in e2] -P> letin' k1 k2 ...

The function letin' performs composition of s-finite ker-
nels. It is actually the composition of letin from [2] and of
an s-finite kernel that swaps projections of a product space
so that measurable spaces are nested in the same order as
the contexts (where variables are added with list consing).
The relation evalD/evalP is proved to be in fact a function

by establishing afterwards that it can be treated as a total
mapping thanks to the two properties of right-uniqueness
and left-totality. For example, here follows right-uniqueness
for the evaluation of probabilistic expressions:
Lemma evalP_uniq g t (e : exp P g t)
(u v : pval R g t) : e -P> u -> e -P> v -> u = v.

Thanks to these properties, we define two functions execD

and execP: for any deterministic expression e, execD e is a
measurable function and for any probabilistic expression e,
execP e is an s-finite kernel. As a result, we can prove equa-
tions that recover the functional behavior of evaluation. e.g.:
Lemma execP_letin g x t1 t2

(e1 : exp P g t1) (e2 : exp P ((x, t1) :: g) t2) :
execP [let x := e1 in e2] =

letin' (execP e1) (execP e2) :> (R.-sfker _ ~> _).

In other words, execP_letin interprets let-in expressions,
similarly, execP_sample interprets sample, etc. As an applica-
tion of these equations, we prove by equational reasoning
that the program staton_bus_syntax0 evaluates to the se-
mantic value staton_bus_probability [2, Sect. 7.2.2]:

Lemma exec_staton_bus0 (U : set bool) :
execP staton_bus_syntax0 tt U =
staton_bus_probability U.

Proof.
(* processing the syntax (11 lines) *)
rewrite 3!execP_letin execP_sample execD_bernoulli...
(* processing the semantics (8 lines) *)
rewrite letin'_sample_bernoulli...
Qed.

The execution of staton_bus_syntax0 is an s-finite kernel
⟦U⟧ s-fin

⟦B⟧, application to tt returns a measure, whose
normalization is the probability distribution true : false =
2
7 ×

34𝑒−3
4! : 5

7 ×
104𝑒−10

4! .

4 Related Work
Several pieces of work have been using intrinsically-typed
syntax to formalize programming languages in proof assis-
tants based on dependent type theory. To the best of our
knowledge, none of them is a probabilistic programming
language, the focus is rather on standard lambda-calculi (e.g.,
[7]). An intrinsically-typed syntax has been used to formal-
ize in Coq a subset of the C programming language [3].
An important difference is that contexts in C cannot be ex-
tended as in let-in expressions so that they need not appear
as an index of the inductive type encoding the abstract syn-
tax, making for a simpler encoding of expressions. Poulsen
et al. propose to use intrinsically-typed syntax to write in
Agda definitional interpreters for imperative languages and
apply this approach to a subset of the Java programming
language [13]. They explain how to deal with mutable state
whereas sfPPL is functional. Intrinsically-typed syntax is
also used to calculate compilers [11]. Our use of canonical
structures to defer computations to type inference comes
fromGonthier et al. [8]; a similar result can be obtainedwith
type classes [12, Sect. 5].

5 Conclusion
To the best of our knowledge, we provide the first formal-
ization of a probabilistic programming language with sam-
pling, scoring, and normalization, using an intrinsically-typed
syntax andwith a denotational semantics. This extended ab-
stract briefly explained howwe formalized the abstract syn-
tax, a concrete syntax, and the semantics, semantic values
coming from previous work [2]. We are now working on
applying equational reasoning to more examples as a step
towards the formalization of equational reasoning for prob-
abilistic programs as advocated for by Shan [9, 14].

Ayumu Saito and Reynald Affeldt

References
[1] Affeldt, R., Bertot, Y., Cohen, C., Kerjean, M., Mahboubi, A., Rouhling,
D., Roux, P., Sakaguchi, K., Stone, Z., Strub, P.-Y., and Théry, L. (2023a).
MathComp-Analysis: Mathematical components compliant analysis li-
brary. https://github.com/math-comp/analysis. Since 2017. Version 0.6.4.
[2] Affeldt, R., Cohen, C., and Saito, A. (2023b). Semantics of probabilistic
programs using s-finite kernels in Coq. In 12th ACM SIGPLAN Interna-
tional Conference on Certified Programs and Proofs (CPP 2023) Boston, MA,
USA, January 16–17, 2023, pages 3–16. ACM.
[3] Affeldt, R. and Sakaguchi, K. (2014). An intrinsic encoding of a subset
of C and its application to TLS network packet processing. J. Formaliz.
Reason., 7(1):63–104.
[4] Bagnall, A. and Stewart, G. (2019). Certifying the true error: Machine
learning in Coq with verified generalization guarantees. In 33rd AAAI
Conference on Artificial Intelligence, 31st Conference on Innovative Appli-
cations of Artificial Intelligence, 9th Symposium on Educational Advances
in Artificial Intelligence, Honolulu, Hawaii, USA, January 27–February 1,
2019, pages 2662–2669. AAAI Press.
[5] Barthe, G., Grégoire, B., and Béguelin, S. Z. (2009). Formal certification
of code-based cryptographic proofs. In 36th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL 2009), Savannah,
GA, USA, January 21–23, 2009, pages 90–101. ACM.
[6] Barthe, G., Katoen, J.-P., and Silva, A., editors (2020). Foundations of
Probabilistic Programming. Cambridge University Press.
[7] Benton, N., Hur, C., Kennedy, A., and McBride, C. (2012). Strongly
typed term representations in Coq. J. Autom. Reason., 49(2):141–159.
[8] Gonthier, G., Ziliani, B., Nanevski, A., and Dreyer, D. (2013). How to
make ad hoc proof automation less ad hoc. J. Funct. Program., 23(4):357–
401.
[9] Heimerdinger, M. and Shan, C. (2019). Verified equational reasoning
on a little language of measures. Workshop on Languages for Inference
(LAFI 2019), Cascais, Portugal, January 15, 2019.
[10] Hirata, M., Minamide, Y., and Sato, T. (2022). Program logic for higher-
order probabilistic programs in Isabelle/HOL. In 16th International Sym-
posium on Functional and Logic Programming (FLOPS 2022), Kyoto, Japan,
May 10–12, 2022, volume 13215 of Lecture Notes in Computer Science, pages
57–74. Springer.
[11] Pickard, M. and Hutton, G. (2021). Calculating dependently-typed
compilers (functional pearl). Proc. ACM Program. Lang., 5(ICFP):1–27.
[12] Pit-Claudel, C. and Bourgeat, T. (2021). An experience report
on writing usable DSLs in Coq. In The 7th International Work-
shop on Coq for Programming Languages (CoqPL 2021). Available at
https://popl21.sigplan.org/details/CoqPL-2021-papers/7/An-experience-report-on-writing-usable-DSLs-in-Coq.
[13] Poulsen, C. B., Rouvoet, A., Tolmach, A., Krebbers, R., and Visser, E.
(2018). Intrinsically-typed definitional interpreters for imperative lan-
guages. Proc. ACM Program. Lang., 2(POPL):16:1–16:34.
[14] Shan, C. (2018). Equational reasoning for probabilistic programming.
POPL TutorialFest.
[15] Staton, S. (2017). Commutative semantics for probabilistic program-
ming. In 26th European Symposium on Programming (ESOP 2017), Uppsala,
Sweden, April 22–29, 2017, volume 10201 of Lecture Notes in Computer Sci-
ence, pages 855–879. Springer.
[16] Staton, S. (2020). Probabilistic Programs as Measures, pages 43–74.
Chapter in [6].
[17] The Coq Development Team (2023a). The Coq Proof Assistant Refer-
ence Manual. Inria. Available at https://coq.inria.fr. Version 8.17.0.
[18] The Coq Development Team (2023b). Custom entries. Inria. Chapter
Syntax extensions and notation scopes of [17], direct link.
[19] Zhang, Y. and Amin, N. (2022). Reasoning about “reasoning about rea-
soning”: semantics and contextual equivalence for probabilistic programs
with nested queries and recursion. Proc. ACM Program. Lang., 6(POPL):1–
28.

