
Formalization of Reed-Solomon codes and
progress report on formalization of LDPC codes

Reynald Affeldt1, Jacques Garrigue2, and Takafumi Saikawa2

1National Institute of Advanced Industrial Science and Technology, Japan
2Graduate School of Mathematics, Nagoya University

Abstract—Error-correcting codes make possible reliable com-
munication over noisy channels. One way to guarantee the
correct implementation of error-correcting codes is to use formal
verification. This requires in particular the formalization of
the mathematical theory of error-correcting codes. This has
been made possible by recent advances in the formalization of
mathematics using proof-assistants. In this paper, we discuss
formalization of linear error-correcting codes: we introduce a
formalization of cyclic codes and Euclidean decoding that we
apply to Reed-Solomon codes, and we discuss the advanced topic
of LDPC codes.

I. TOWARDS A FORMAL CODING THEORY

This paper is about formal verification of error-correcting
codes. Formal verification consists in expressing pencil-and-
paper proofs in terms of formal logic, so that they can be
checked by a computer. The formal logic in question is
the theory of types that the Coq proof-assistant implements
(Section II-A). Formal verification is useful because formal
proofs are very rigorous. Once a proof is formalized, it can be
used together with a formal theory of programming languages
to provide bug-free software. In other words, a formal theory
of error-correcting codes is the first step towards verified
implementation of encoders and decoders.

In this paper, we discuss two topics: formalization of cyclic
codes and LDPC codes. Regarding cyclic codes, we do an
extensive commentary about formalization, highlighting the
main difficulties. In Section III, we define formally cyclic
codes. In Section IV, we provide a library of formal definitions
and lemmas for Euclidean decoding, primarily used for cyclic
codes. In Section V, we apply our results to the formalization
of Reed-Solomon codes, including encoding in systematic
form and decoding based on the Euclidean algorithm. Regard-
ing LDPC codes, we discuss in Section VI our approach to
formalize an important theorem that relates tree and graph
ensembles, a key step in proving that sum-product decoding
applies even in the presence of cycles.

Our formalization is based on our previous work [1] and
on the formalization of polynomials from the Mathematical
Components library [6] (Section II-B). We follow pencil-and-
paper proofs from standard literature. Formalization of cyclic
codes is simplified by the fact that there exist many detailed

This is a preprint of a paper to be presented at ISITA 2016
http://www.isita.ieice.org/2016/index.html.

proofs [7], [8]. We are less fortunate with LDPC codes, since
the standard reference [10] does not provide such details.

This paper makes the following contribution. Our formal-
ization of cyclic codes improves on related work: it contains
the first formalization of Reed-Solomon codes, which required
to extend our previous work [1] to deal with non-binary codes.
We end up with very rigorous proofs (as a matter of fact, we
were able to spot minor technical errors in our main reference
material [7]) whose lemmas can be reused to formalize other
cyclic codes. As for LDPC codes, we propose workable formal
definitions for tree and graph ensembles.

II. BACKGROUND: FORMAL VERIFICATION WITH COQ

A. Proof-assistant Based on Type Theory

We use the Coq proof-assistant [4]. It is an implementation
of type theory. When we write a : A, it means that the object a
has type A. For the purpose of this paper, a type can be
understood as a set of objects. Objects are essentially data
structures and programs from a foundational language known
as the Calculus of Inductive Constructions. It has been shown
that such objects can be used to represent proofs: this is the
so-called Curry-Howard isomorphism. As a consequence, we
also write p : P to say that p is a proof of the property P.

The Coq proof-assistant provides a small set of rules to
construct objects and to check their type. This set of rules is
trusted to be sound. Users of Coq builds mathematical theories
on top on this small trusted base using tactics organized as
scripts. A tactic corresponds to a small reasoning step such
as lemma application or induction. The objects in Coq are
usually written using ASCII characters in a way close to LATEX
commands. The language of Coq and tactics have a precise
semantics that we do not detail here for lack of space.

B. The Mathematical Components Library

The Mathematical Components library is a library of formal
definitions and lemmas built on top of the Coq proof-assistant
and developed to formalize the odd order theorem [5]. It
contains in particular a formalization of linear algebra with
matrices and polynomials, which are at the heart of the theory
of error-correcting codes. In this paper, we use a number of
objects from the Mathematical Components library. It is not
our purpose to explain them in details. For quick reference,
most notations are summarized in Table I.

TABLE I
MATHEMATICAL COMPONENTS [5] NOTATIONS USED IN THIS PAPER

Type of mathematical objects

’I_n the natural numbers strictly smaller than n
{set A} sets with elements of type A
’M[R]_(m, n) m×n matrix with elements of type R
’rV[R]_n row-vector of length n with elements of type R
{poly F} polynomials with coefficients of type F

Construction of mathematical objects

[set a | P a] the set of elements a that satisfy P
a%:P the constant polynomial a
’X, ’Xˆd the monomial X , the monomial Xd

\matrix_(i, j) E i j the matrix [Eij]i,j
\poly_(i <n) E i the polynomial E0 + · · ·+ En−1X

n−1

[ffun x ⇒ E x] the finite-domain function x 7→ Ex

Operations on mathematical objects

n.+1 successor of n
n. -1 predecessor of n (0 if n = 0)
n.*2 n + n
a ˆ+ n the nth power of a
a ˆ - n the inverse of a ˆ+ n

*m matrix multiplication
v ‘‘_ i the ith component of the row-vector v
p .[x] the evaluation of a polynomial p at point x
size p deg(p(X)) + 1
p %/ q quotient of the polynomial division of p by q
p %% q remainder of the polynomial division of p by q
k *: p the polynomial p scaled by a factor k
rVpoly c the polynomial corresponding to the row-vector c
poly_rV p the (possibly truncated) vector corresponding to p

III. FORMALIZATION OF CYCLIC CODES

A. Linear Error-correcting Codes, Formally
A linear code is essentially a vector space of codewords.

Let F be a finite field and n a natural number. ’rV[F]_n is the
type of row-vectors of length n over F (Table I). A linear code
of length n over F is formally defined as follows:
(* Module Lcode0 *)
Record t F n := mk {space :> {vspace ’ rV [F] _n }} .

{vspace _} is the type of vector spaces provided by the
Mathematical Components library. When F is F2, we talk about
binary codes.

In practice, we define a linear code as the kernel of a parity-
check matrix. Let H be a (parity-check) matrix. (HyT)T is
the syndrome of vector y:
Definition syndrome y := (H *m y ˆ T) ˆ T .

The syndrome is a linear application whose kernel is a
vector space. Let lin_syndrome be the corresponding linear
application. The sought vector space is defined as follows:
Definition kernel := lker (linfun lin_syndrome) .

When dealing with linear codes, it is often useful to regard
a codeword (c0, c1, . . . , cn−1) as the polynomial c0 + c1X +
· · ·+cn−1X

n−1 (formally defined by rVpoly, Table I). A poly-
nomial such that the codewords consist of all the polynomials
divisible by it is called a generator:

Definition is_pgen F n (C : {set ’ rV [F] _n }) g
:= ∀ x , x ∈ C ↔ g %| rVpoly x .

Linear codes for which there exists a generator are called
polynomial codes.

We make use of above definitions to define Reed-Solomon
codes in Section V-A.

B. Cyclic Error-correcting Codes

Let rcs be a function that performs a right-cyclic
shift, i.e., that turns a vector (c0, c1, · · · , cn−2, cn−1) into
(cn−1, c0, · · · , cn−3, cn−2). A set of vectors is stable by right-
cyclic shift when it satisfies the predicate rcsP:

Definition rcsP C := ∀ x , x ∈ C → rcs x ∈ C .

A linear cyclic error-correcting code is a linear error-
correcting code whose codebook is stable by right-cyclic shift:

(* Module Ccode *)
Record t F n := mk {

lcode0 :> Lcode0 . t F n ;
P : rcsP [set cw in lcode0] } .

For cyclic codes, a codeword that is a (non-zero) polynomial
of lowest degree is called a generator. Let ’cgen[C] be the set
of generators. This definition of generator for cyclic codes
coincides with the definition of generator of the previous
section (Section III-A):

Lemma mem_cgen_dvdp g :
g \is ’ cgen [C] → is_pgen C (rVpoly g) .

Lemma cgen_dvd_mem g (C0 : 0%VS 6= C) :
is_pgen C (rVpoly g) → g \is ’ cgen [C] .

We will see a concrete example of generator in Section V-C
when dealing with Reed-Solomon codes.

IV. FORMAL LIBRARY FOR EUCLIDEAN DECODING

In this section, we provide generic formal definitions and
lemmas used to perform Euclidean decoding. We use this li-
brary to decode Reed-Solomon codes (Sections V-D and V-E).
In the following, a is an element from a field F such that ak 6= 1
for all k ∈ (0, n).

A. Error-locator Polynomials

The support set of a vector e is defined as follows:

Definition supp e := [set i | e ‘ ‘ _ i 6= 0] .

Given a vector e, the locator polynomial σ_(a, e) is the poly-
nomial errloc a (supp e), where errloc is defined as follows:

Definition errloc a E :=∏
_ (i in E) (1 - a ˆ+ i * : ’X) .

Note that size σ_(a, e) ≤ #|supp e|.+1 (or equivalently
deg(σ_(a, e)) ≤ #|supp e|). The ith punctured locator
polynomial [8, p. 239] σ_(a, e , i) is errloc a (supp e :\ i).

B. Error-evaluator Polynomials

The evaluator polynomial ω_(a, e) is defined using the ith
punctured locator polynomial:

Definition erreval a e :=
∑
_ (i in supp e)

e ‘ ‘ _ i * a ˆ+ i * : σ_ (a , e , i) .

Note that size ω_(a, e) ≤t when #|supp e| ≤t.
Error vectors are characterized by the following lemma:

Lemma err_vecE a e i : i ∈ supp e →
e ‘ ‘ _ i = - ω_ (a , e) . [a ˆ - i] /

σ_ (a , e) ˆ ‘ () . [a ˆ - i] .

where ˆ‘() is a notation for the formal derivative. This lemma
means that to decode we only need to compute ω_(a, e) and
σ_(a, e). In the following, we discuss a method to compute the
locator and evaluator polynomials. They actually come from
the so-called “key equation”.

C. Key Equation

1) Syndrome Polynomials: The syndrome polynomial is
a polynomial equivalent to the syndrome we saw in Sec-
tion III-A. To define it, it is practical to introduce the so-called
“frequency-domain coordinates” [8, p. 237] of a vector y:

Definition fdcoor y i := (rVpoly y) . [a ˆ+ i] .

The syndrome polynomial of y is denoted by \synp_(a, y , t)
and is defined as follows:

Definition syndromep y :=∑
_ (k in ’ I_t . * 2) ((fdcoor y k . + 1) * : ’X ˆ k) .

2) The Key Equation: The key equation is an important
relation between the locator polynomial, the syndrome poly-
nomial, and the evaluator polynomial:

Lemma equation : σ_ (a , y) * \synp_ (a , y , t)
= ω_ (a , y) + eqn_mod

where eqn_mod %% ’Xˆ(t0 + t) = 0 when t0 ≤t.
For the purpose of this paper, let us call the following

polynomial r a key remainder of p:

Definition r a y t t ’ p :=
(p * \synp_ (a , y , t)) %% ’X ˆ t ’ .

Let ω2_(a, y, t , t’) be the key remainder of σ_(a , y). We
can derive from the key equation that ω2_(a, y, t , t’) is the
evaluator polynomial when the cardinality of the support of y

is less than t:

Lemma errevalE : # | supp y | ≤ t →
∀ t0 , t0 ≤ t → ω_ (a , y) =ω2_ (a , y , t , t0 + t) .

We saw in Sect IV-B that we need a pair of a locator
polynomial and an evaluator polynomial to perform decoding.
Lemma errevalE indicates moreover that a locator polynomial
can give rise to an evaluator polynomial. We therefore just
need to focus on finding a locator polynomial.

3) Generalization of the Key Equation: We can generalize
the key equation to deal, instead of the locator polynomial,
with any polynomial p satisfying the weaker key condition:

Definition keycond a y t p := ∀ k ,
t ≤ k < t . * 2 → (p * \synp_ (a , y , t)) ‘ _k = 0 .

The generalized key equation says that p * \synp_(a, y , t)
is equal to the key remainder modulo X2t as long as p meets
the key condition:

Variable p : {poly F } .
Hypothesis keycond_p : keycond a y t p .
Lemma gen_key_equation : p * \synp_ (a , y , t)

= q a y t p * ’X ˆ t . * 2 + r a y t t p .

q is what we call in this paper the key quotient of p; it is
defined similarly to the key remainder r.

One can find a p satisfying the generalized key equation with
the Euclidean algorithm. Before discussing the Euclidean al-
gorithm, we introduce a specification for locator polynomials.

D. Key Equation and Locator Polynomials

It turns out that we can provide a complete specification
of the locator polynomial in terms of the key equation.
Concretely, consider a polynomial p such that
(loc 1) it is “normalized”:

Definition normalized := p . [0] = 1 .

(loc 2) its size is less then t + 1 (i.e., its degree is less than t):

Definition deg_ub := size p ≤ t . + 1 .

(loc 3) it satisfies the key condition and
(loc 4) it is relatively prime with the key remainder:

Definition key_coprime :=
coprimep p (Key . r a y t t p) .

We prove formally that such a polynomial can only be the
locator polynomial of Section IV-A (when the cardinality of
the support of y is less than t):

Lemma errlocP p :
Errloc . spec a e t p ↔ p = σ_ (a , e) .

This is a consequence of the generalized key equation. The
lemma errlocP plays an important role to establish the cor-
rectness of Euclidean decoding (Section V-E).

E. The Euclidean Algorithm for Decoding

1) The Setting: The Euclidean algorithm involves four
sequences of polynomials ri, qi, ui, and vi. ri is defined by
iterated modulo:

Fixpoint r k :=
if k is k1 .+1 then

if k1 is k0 .+1 then r k0 %% r k1
else r1

else r0 .

qi is defined such that ri = qi+2ri+1 + ri+2. ui (resp.
vi) is defined such that ui+2 = −qi+2ui+1 + ui (resp.
vi+2 = −qi+2vi+1 + vi) with (u0, u1) = (1, 0) (resp.
(v0, v1) = (0, 1)). Given these definitions, it follows in
particular that:

Lemma vu k :
v k .+1 * u k - v k * u k .+1 = (- 1) ˆ + k .

Lemma ruv k : r k = u k * r 0 + v k * r 1 .

2) Stopping Condition: We can show that the size
(or equivalently degree) of ri is strictly decreasing (pro-
vided size r1 <size r0). Let us assume some t such that
t <size r0. The Euclidean algorithm stops when deg(ri) is
strictly smaller that t. The formalization of such a stopping
condition is not immediate because the termination is not
structural, i.e., it cannot be decided by a simple syntactic
criterion. (In comparison, the definition of the sequence r just
above obviously terminates because k is strictly decreasing.)
The ex_maxn construct of the Mathematical Components li-
brary provides a solution.

Consider the following predicate, which holds for indices k

such that t <size (‘r i) (i.e., t ≤ deg(ri)) for all i : ’I_k.+1
(i.e., i ≤ k):

Definition euclid_cont := [pred k |
[∀ i : ’ I_k . + 1 , t < size (‘ r i)]] .

We use this predicate to define the largest index such that
euclid_cont holds:

Definition stop ’ :=
ex_maxn ex_euclid_cont euclid_cont_size_r .

Thus, stop := stop’.+1 is the first index at which euclid_cont

does not hold anymore.
3) Relation with the Key Equation: Let us use the

Euclidean algorithm with r0 =’Xˆt.*2 (i.e., X2t) and
r1 =\synp_(a, y , t). Let ` be the stop index. We can show
that ‘v_` satisfies the key condition (using in particular the
lemma ruv from Section IV-E1):

Lemma keycond_vstop : keycond a y t (‘ v_ `) .

We also observe that the degree of ‘v_` is less than t:

Lemma deg_ub_vstop : Errloc . deg_ub t (‘ v_ `) .

In other words, ‘v_` satisfies conditions (loc 2) and (loc 3) of
locator polynomials. In Section V-E, we use ‘v_` to build a
polynomial that satisfies in addition (loc 1) and (loc 4).

V. FORMALIZATION OF REED-SOLOMON CODES

A. Formal Definition of Reed-Solomon Codes[
(ai+1)j

]
i∈[0,d−1),j∈[0,n)

is a Reed-Solomon parity-check
matrix. Formally, this matrix has type ’M[F]_(d . - 1, n) and is
defined as follows:

Definition PCM := \matrix_ (i , j) (a ˆ+ i . + 1) ˆ+ j .

The Reed-Solomon codebook consists of the vectors whose
syndrome is 0. The Reed-Solomon code is the kernel of the
matrix PCM (we use the kernel function of Section III-A):

Definition code := mkLcode0 (kernel PCM) .

B. Reed-Solomon Generator Polynomial

Let us define the polynomial \gen_(a, d) as follows:

Definition rs_gen :=∏
_ (1 ≤ i < d) (’ X - (a ˆ+ i)%:P) .

It is a generator in the sense of Section III-A, i.e., the
codewords are exactly the polynomials that are divisible
by \gen_(a, d):

Lemma rs_gen_is_pgen :
is_pgen (codebook a n d) \gen_ (a , d) .

We can also show that \gen_(a, d) is a generator in the
sense of Section III-B. We first show that Reed-Solomon codes
can be viewed as cyclic. The additional hypothesis that a is
primitive is a sufficient condition:

Lemma RS_cyclic : a ˆ+ n = 1 →
rcsP [set cw in code a n d] .

Then \gen_(a, d) can be shown to belong to the set of
generators (of the cyclic Reed-Solomon code):

Lemma rs_gen_is_cgen (a1 : a ˆ+ n = 1) :
let C := Ccode . mk (RS_cyclic a1) in
poly_rV \gen_ (a , d) \is ’ cgen [C] .

C. Systematic Reed-Solomon Encoding

The generator polynomial provides a first encoding tech-
nique. Given a message m = m0 + · · · + mn−dX

n−d, the
polynomial m · g is a codeword.

Systematic-form encoding is a preferred way of encod-
ing because the message appears in clear in the codeword.
mXd−1−(mXd−1)%g provides systematic encoding of mes-
sage m (the term mXd−1 makes room for check symbols):

Definition encoder := let g := \gen_ (a , d) in
[ffun m ⇒ let mxd := rVpoly m * ’X ˆ d . - 1 in

poly_rV (mxd - mxd %% g)] .

The function encoder indeed provides systematic encoding.
We show more precisely that the bits of higher weight of a
codeword are actually the message it encodes:

Lemma RS_enc_surjective c :
c ∈ codebook a n d → encoder (high c) = c .

where the high part of a codeword c is defined as
poly_rV (rVpoly c %/ ’Xˆd.-1).

D. Decoding using the Euclidean Algorithm

The input of the decoder is a possibly corrupted “codeword”
y = c + e, where c is the transmitted codeword. It outputs
the error vector e, whose hamming weight is smaller than
t ≤ (d− 1)/2. Decoding is performed as follows:
(1) Compute the sequences ‘r and ‘v like in Section IV-E with
r0 =’Xˆt.*2 and r1 =\synp_(a, y, t). Let ` b the stop index.
(2) Define the polynomials nvstop to be σ = v`/v`(0) and
rstop to be ω = r`/v`(0):

Definition nvstop := ‘ v_ ` * ((‘ v_ `) . [0] ˆ - 1)%:P .
Definition rstop := ‘ r_ ` * ((‘ v_ `) . [0] ˆ - 1)%:P .

(3) Define the polynomial
∑n−1
i=0 [σ(a

−i) = 0]−ω(a−i)
σ′(a−i) X

i

([· · ·] are Iverson brackets and σ′ is the formal derivative of σ):

Definition euclid_err :=
let sigma ’ := deriv nvstop in
\poly_ (i < n)

if nvstop . [a ˆ - i] = 0 then
- rstop . [a ˆ - i] / sigma ’ . [a ˆ - i]

else 0 .

E. Correctness of the Decoder of Section V-D

In Section IV-E3, we already proved that the output ‘v_`
of the Euclidean algorithm meets the specification (loc 2) and
(loc 3) of locator polynomials. These results are also true for
nvstop. We now show that nvstop is normalized (loc 1):

Lemma normalized_nvstop :
normalized (nvstop a y t) .

(which requires to show (‘v_`).[0] 6= 0) and that it meets the
specification (loc 4) of locator polynomials:

Lemma key_coprime_nvstop :
key_coprime a e t (nvstop a y t) .

We can therefore use the lemma errlocP (Section IV-D) to
prove that nvstop is the locator polynomial:

Lemma nvstop_errloc : nvstop a y t = σ_ (a , e) .

In Section IV-C2, we saw that the lemma errevalE turns
rstop into the evaluator polynomial ω_(a, e). It follows that
Reed-Solomon decoding (Section V-D) computes the poly-
nomials of the error vector characterization lemma (Sec-
tion IV-B). We can therefore use the latter to prove the
correctness of Reed-Solomon decoding:

Lemma RS_err : euclid_err a y t = rVpoly e .

VI. PROGRESS ON LDPC CODES

In another branch of our work on the formalization of linear
codes, we have been working on LDPC codes and sum-product
decoding [1]. In the already published part of this work, we
have proved properties of the algorithm under the classical
assumption that the graph has no cycle (i.e., this is actually a
tree). As this assumption does not hold in practice, we have
since then started the analysis of decoding for a computation
graph ensemble, as described in [10]. For simplicity, we are
now working on the binary erasure channel case, but we can
already see the daunting difficulties of the task.

Our first target has been to prove Theorem 3.49 of [10], the
so-called Convergence to Tree Channel.

Theorem 1: For a given degree distribution pair (λ, ρ) con-
sider the associated ensembles LDPC(n, λ, ρ) for increasing
block-length n under l rounds of BP (sum-product) decoding.
Then

lim
n→∞

EG∈LDPC(n,λ,ρ)[P
BP
b (G, ε, l)] = PBP

T̊ l(λ,ρ)
(ε).

This theorem is interesting, as it relates an ensemble of
complete graphs, of fixed global degree distribution, and which
may contain cycles, on one side, with an idealized ensemble

TABLE II
COQ FILES DISCUSSED IN THIS PAPER (SEE ALSO [2])

File name Relevant sections l.o.c.
linearcode.v Section III-A (and [1]) 705
cyclic_code.v Section III-B 559
euclid.v Section IV-E 404
cyclic_decoding.v Section IV (excl. Section IV-E) 1010
reed_solomon.v Section V 814
degree_profile.v Section VI 5061

of infinite trees, whose degree distribution is probabilistic and
independent for each node, on the other side.

Our formalization starts by defining the notions of ensem-
ble for both trees and computation graphs. This is already
technical, as the notion of distribution we use only applies to
finite sets. We had to prove that the set of trees of depth l that
we consider is indeed finite, and use this fact in the ensuing
definitions.

At this point we have only been able to prove a small
part of the above theorem, saying that the probability that a
partial graph of radius l, whose degree distribution for each
node follows (λ, ρ), has no cycle, tends to 1 as the size of
the graph grows. Note that our proof covers both regular and
irregular cases, whereas the only proof we could find in the
literature [9, Appendix A] only covers the regular case. This
step is actually only a sub-part of the last equation in the proof
of [10], but it already required several thousands lines of code
(cf. degree_profile.v in Table II).

VII. CONCLUSION AND RELATED WORK

In this paper, we reported on an original formalization of
cyclic codes, Euclidean decoding, and Reed-Solomon codes,
as well as on our progress regarding formalization of LDPC
codes (Coq scripts summarized in Table II).

There is not much related work on the topic of formalization
of error-correcting codes. This can be explained by the fact
that this is only recently that substantial theories of formal
mathematics have been made available. We have already
commented on our previous work [1]. There is also a piece
of work done in the Isabelle proof-assistant, in which 2-
error-correcting BCH codes were formalized as part of a case
study for an interface between computer algebra and theorem
prover [3]. Our formalization is not restricted to the binary
case, this is why we can apply it to Reed-Solomon codes.

As for future work, we plan to apply our formal library
to the formalization of BCH codes and to further investigate
Goppa codes, whose decoding involves techniques similar to
the ones discussed in this paper.

ACKNOWLEDGMENT

This work was partially supported by a JSPS Grant-in-Aid
for Scientific Research (Project Number: 25289118) and has
benefited from the advice of the project members. The authors
are grateful to the reviewers for their comments.

REFERENCES

[1] R. Affeldt and J. Garrigue, “Formalization of Error-correcting Codes:
from Hamming to Modern Coding Theory,” in 6th Int. Conf. Interactive
Theorem Proving, Nanjing, China, 2015, LNCS vol. 9236, pp. 17–33.

[2] R. Affeldt, J. Garrigue, and T. Saikawa. Coq scripts for this paper (2016,
July 31) [Online]. Available: https://staff.aist.go.jp/reynald.affeldt/ecc/.

[3] C. Ballarin and L. C. Paulson, “A Pragmatic Approach to Extending
Provers by Computer Algebra—with Applications to Coding Theory,”
Fundam. Inform., vol. 34, no. 1–2, pp. 1–20, 1999.

[4] The Coq Development Team, “Reference Manual,” INRIA, 1999–2016.
Ver. 8.5pl2. Available at http://coq.inria.fr.

[5] G. Gonthier et al., “A Machine-Checked Proof of the Odd Order The-
orem,” in 4th Int. Conf. Interactive Theorem Proving, Rennes, France,
2013, LNCS vol. 7998, pp. 163–179.

[6] G. Gonthier, A. Mahboubi, and E. Tassi, “A small scale reflection
extension for the Coq system,” INRIA, Rep. RR-6455, 2015. Ver. 16.

[7] M. Hagiwara, Coding Theory: Mathematics for Digital Communication.
Nippon Hyoron Sha, 2012. In Japanese.

[8] R. J. McEliece, The Theory of Information and Coding. Encyclopedia of
Mathematics and its Applications 86. Cambridge University Press, 2002.
Second Edition.

[9] T. Richardson, R. Urbanke, “The capacity of low-density parity-check
codes under message-passing decoding,” IEEE Trans. Inf. Theory, vol. 47,
pp. 599–618, Feb. 2001.

[10] T. Richardson, R. Urbanke, Modern Coding Theory. Cambridge Univer-
sity Press, 2008.

