
日本ソフトウェア科学会第 33 回大会 (2016 年度) 講演論文集

Formal Foundations for Rigid Body

Transformation

Reynald Affeldt Cyril Cohen

We are interested in the formal specification of safety properties of robot manipulators. To this end,

we have been developing a formalization of rigid body transformations in the Coq proof-assistant using the

Mathematical Components library. This paper provides an overview of the current status of our formal-

ization. We start by providing theories for angles and for three-dimensional Euclidean geometry, including

the cross-product. We use these theories to formalize the basic geometry required for robotics. First, we

formalize a comprehensive theory of three-dimensional rotations, including exponentials of skew-symmetric

matrices and quaternions. Then, we provide a formalization of rigid body transformations in terms of isome-

tries and of their homogeneous representation. Finally, we formalize the basics of screw motions, including

Chasles’ theorem. Using these ingredients, it should now be possible to tackle the formalization of open

chains for serial robots.

1 Towards a Formal Theory of Robotics

Our ultimate goal is the formal verification of

safety properties of robots. Robots have already

made their way in manufacturing plants in the form

of robot manipulators on assembly lines. Even

though industrial robots operate in a controlled en-

vironment, their safety is already subject to sev-

eral standards (e.g., ISO 10218). Safety concerns

will increase furthermore now that robots are con-

sidered for life-critical missions such as rescue and

health care. It is therefore questionable whether

testing can achieve a satisfactory level of safety. For

this reason, formal methods are now being consid-

ered to improve the rigor of the safety analysis of

robots. Most experiments carried so far have been

using model-checking, see Sect. 10 for experiments

This is an unrefereed paper. Copyrights belong to the

Author(s).

剛体変換のための形式基礎

Reynald Affeldt, 独立行政法人産業技術総合研究所 情
報技術研究部門, Information Technology Research

Institute, National Institute of Advanced Industrial

Science and Technology.

Cyril Cohen, フランス国立情報学自動制御研究所
MARELLEプロジェクト・チーム, MARELLE project-

team, INRIA Sophia Antipolis.

using proof-assistants.

In this paper, we focus on the formal verification

of the theoretical foundations of robot manipula-

tors. Robot manipulators are an interesting tar-

get because they are already pervasive in the in-

dustry and because advanced robots such as hu-

manoid robots can be understood as made of sev-

eral robot manipulators. The theoretical founda-

tions of robot manipulators essentially amount to

three-dimensional geometry. This suggests the use

of a proof-assistant to perform formal verification.

Indeed, proof-assistants excel at the symbolic ma-

nipulation of formal algebra, in which geometry can

be represented. We use the Coq proof-assistant [3]

and the Mathematical Components library. The

latter is a library for formal algebra that was de-

veloped to formalize the odd order theorem, an im-

portant theorem in group theory [4]. This library

features in particular a formalization of linear alge-

bra that we use as a starting point.

Let us give a concrete idea of the kind of three-

dimensional geometry robotics is dealing with. A

robot manipulator consists of (rigid) links con-

nected by joints. It is modeled by the relative

positioning of frames attached to its links. Fig-

ure 1 is a simple example of rigid body transfor-

mation. It consists of two rigid bodies connected

x

z

yA

x

z

yB

x

z

yC

φ

ℓ1
ℓ2

Fig. 1: A simple rigid body transforma-

tion [6] (Examples 2.1 and 2.6)

by a joint that can only rotate around a vertical

axis (it is a revolute joint). If we denote by φ

the angle of the rotation, then the orientation of

frame B w.r.t. A can be expressed by a rotation

matrix ARB =
[

cosφ sinφ 0
− sinφ cosφ 0

0 0 1

]
. The coordinate of

the origin of the frame B w.r.t. A is APB = [0; ℓ1; 0].

It is customary to represent rigid body transforma-

tions using the so-called homogeneous representa-

tion, which is
[

ARB 0
APB 1

]
(row-vector convention) in

the case of Fig. 1.

The main contribution of this paper is to pro-

vide the various formal definitions and lemmas that

serve as the theoretical foundations of the theory

of robot manipulators. Concretely, we have for-

malized most aspects of rigid body transforma-

tions. Basic geometric elements (points, vectors,

etc.) can be defined right away using the lin-

ear algebra from the Mathematical Components

library. Yet, we lack basic support for reasoning

about rotations (most notably, angles), in partic-

ular in three dimensions (in particular, we need

the cross-product). In fact, there are many the-

ories that are put at work to deal with rotations

in robotics: rotation matrices, exponential coordi-

nates, quaternions, etc. Rigid body transforma-

tions form a dedicated theory with various alter-

native representations such as isometries and screw

motions. Using all the theories above, it becomes

possible to model formally robot manipulators and

more generally open chains for serial robots.

This paper is organized as follows. We start

with background material: angles and trigonomet-

ric functions in Sect. 2 and basic elements of three-

dimensional geometry in Sect. 3. Then, we provide

an exhaustive formalization of rotations: formal

definitions in Sect. 4, exponential coordinates in

Sect. 5, and quaternions in Sect. 6. Last, we formal-

ize rigid body transformations: equivalence with

direct isometries in Sect. 7, homogeneous represen-

tations in Sect. 8, and screw motions in Sect. 9. We

comment on related work in Sect. 10 and conclude

in Sect. 11.

2 Angles and Trigonometric Functions

This section provides an overview of a formal-

ization of angles and trigonometric functions that

we have been developing in particular to formalize

rotations (see Sect. 4 for example).

The basic idea to formalize angles and trigono-

metric functions is to use the complex numbers of

the Mathematical Components library.

2. 1 Angles

Angles are defined using complex numbers of unit

norm. In Mathematical Components, the type of

complex numbers is R[i], where R is a real closed

field (rcfType). An angle is defined as a complex

number with norm 1:

Variable R : rcfType.

Record angle := Angle {
expi : R[i];

_ : `| expi | == 1 }.

In particular, the argument of a complex number

defines an angle:

Definition arg (x : R[i]) : angle :=

insubd angle0 (x / `| x |).

(angle0 is the angle corresponding to the complex

number 0; insubd is a Mathematical Components

construct that projects a type into a subtype with

a default proof.)

We need to equip above definitions to deal with

scaling of angles (e.g., double-angles in Sect. 6. 2)

and half-angles (e.g., to prove etwist_is_onto_SE in

Sect. 9. 2). Specific angles are defined as the argu-

ments of specific complex numbers. For example,

we define π as the argument of −1:

Definition pi := arg (-1).

2. 2 Trigonometric Functions

Table 1 displays the most important trigonomet-

ric functions of our formalization. The functions

cos and sin are defined using the real and imagi-

nary parts of the complex numbers that define an-

gles. Other trigonometric functions are formalized

using their definition in terms of complex numbers.

Table 1: Main trigonometric functions used in this paper

function formalization in Coq pencil-and-paper definition

cos(a) Re (expi a)

sin(a) Im (expi a)

arcsin(x) arg (Num.sqrt (1 -xˆ2) +i* x) arg(
√
1− x2 + xi)

arccos(x) arg (x +i* Num.sqrt (1 -xˆ2)) arg(x+ i
√
1− x2)

arctan(x) if x == 0 then 0 else arg ((xˆ-1 +i* 1) *˜ sgz (x)) arg(sgn(x)(1
x
+ i)) (0 if x = 0)

For example, we use arccos in Sect. 5. 3 to define

the angle-axis representation of a rotation matrix,

arctan in Sect. 6. 2 to define rotations using quater-

nions, and cotangent in Sect. 9. 2 to prove the sur-

jectivity of the exponential of twists.

We equip this formalization of trigonometric

functions with various lemmas, in particular the

cancellation laws between trigonometric functions

and their inverse, and many trigonometric identi-

ties (Pythagorean identity, double-angle and half-

angle formulas, etc.).

3 Basics of Three-dimensional Geome-

try

In this section, we introduce the basic elements

of our formalization of three-dimensional geometry.

3. 1 Vectors

Vectors are provided by the Mathematical Com-

ponents library in the form of a type denoted by

'rV[R]_n whose elements are row-vectors of length n

with components of type R.

We denote by 'e_0, 'e_1, and 'e_2 the vectors of

the canonical basis. Concretely, 'e_k is formalized

by the row-vector [δ0k; δ1k; δ2k], where δ is Kro-

necker’s.

We denote by u ∗d v the dot-product of the vec-

tors u and v. It is formally defined by the only

component of the 1× 1 matrix u ∗m vˆT, where ∗m
is matrix multiplication and ˆT is matrix transpose.

The norm of a vector u is defined using the square

root of the dot-product ⟨u · u⟩:

Definition norm u := Num.sqrt (u ∗d u).

3. 2 The Cross-Product

The cross-product of two vectors u and v can be

defined using determinants:

u× v =
∣∣∣ 1 0 0
u0 u1 u2
v0 v1 v2

∣∣∣ 'e_0+ ∣∣∣ 0 1 0
u0 u1 u2
v0 v1 v2

∣∣∣ 'e_1
+

∣∣∣ 0 0 1
u0 u1 u2
v0 v1 v2

∣∣∣ 'e_2
We use of the determinant \det of the Mathe-

matical Components library to formalize the above

formula:

Definition crossmul u v :=

\row_(k < 3) \det (col_mx3 'e_k u v).

'e_i are the vectors of the canonical basis intro-

duced in the previous section (Sect. 3. 1). col_mx3

is the concatenation of three row-vectors into a 3×3

matrix. Hereafter, we denote crossmul u v by u ∗v v.

We equip this formalization of the cross-product

with the expected standard lemmas. For exam-

ple, the double cross-product is a technical but

useful lemma about the cross-product and the dot-

product (used for example in the proof of rodriguesP

in Sect. 5. 2 and to deal with quaternions in Sect. 6):

Lemma double_crossmul u v w :

u ∗v (v ∗v w) = (u ∗d w) *: v -(u ∗d v) *: w.

3. 3 Frames

As highlighted in the introduction, frames are im-

portant to model robot manipulators.

We define a non-oriented frame by three unit vec-

tors i, j, and k that are pairwise orthogonal:

Record t := mk {
i : 'rV[R]_3 ; j : 'rV[R]_3 ; k : 'rV[R]_3 ;

_ : norm i = 1 ; _ : norm j = 1 ; _ : norm k = 1 ;

_ : i ∗d j = 0 ; _ : j ∗d k = 0 ; _ : i ∗d k = 0 }.

The sign of a non-oriented frame is defined as

i ∗d (j ∗v k) and can only be 1 or −1. When it is 1,

we talk about a positive (or right-handed) frame.

We will need to build positive frames given one

non-zero vector (for example to specify rotations in

Sect. 4. 1). For this purpose, we provide a module

Base that features in particular two functions j and

k such that, given a unit vector i, the vectors i,

j i, and k i form a positive frame. Concretely, the

u

v

⟨u · v⟩

v − ⟨u · v⟩u

Fig. 2: The normal component of v w.r.t. u

function j is defined as follows�1:

Definition j i :=

if colinear i 'e_0 then 'e_1

else normalize (normalcomp 'e_0 i).

If i is colinear with 'e_0 then the desired frame can

be built using the vectors of the canonical basis.

Otherwise, we compute the normal component of

'e_0 w.r.t. i (see Fig. 2) and we normalize to a unit

vector. As for the function k i, it is simply defined

by the cross-product of i and j i: this guarantees

that the frame is positive.

4 Rotations and Rotation Matrices

In this section, we formally define three-

dimensional rotations and show the equivalence

with rotation matrices.

4. 1 Definition of Rotations

A rotation of angle a around a vector u is a

linear function f such that f(u) = u (in other

words, the axis is invariant by rotation), f(j) =

cos(a)j + sin(a)k, and f(k) = − sin(a)j + cos(a)k,

where u
||u|| , j, and k form a positive frame.

To build the positive frame from vector u we

use the functions Base.j and Base.k explained in

Sect. 3. 3. The formal specification of a rotation

takes the following form:

CoInductive is_around_axis u a

(f : {linear 'rV_3 →'rV_3}) : Prop :=

mkIsAroundAxis of

f u = u &

let: j := Base.j u in let: k := Base.k u in

f j = cos a *: j + sin a *: k &

let: j := Base.j u in let: k := Base.k u in

f k = -sin a *: j + cos a *: k.

�1 The functions colinear, normalize, and normalcomp

are utility functions from our formalization. The

naming should be self-explanatory.

4. 2 Rotations Matrices

A matrix M such that MMT = 1 is orthogonal.

It is a rotation matrix when moreover det(M) = 1.

Let us denote by 'O[R]_n the set of orthogonal ma-

trices and by 'SO[R]_n the set of rotation matrices.

We show that any rotation in the sense of

Sect. 4. 1 can indeed by represented by a rotation

matrix:

(* assume u != 0 *)

Lemma is_around_axis_SO a f :

is_around_axis u a f →lin1_mx f \is 'SO[R]_3.

(lin1_mx f is the matrix corresponding to the linear

application f.) The idea of the proof is to express

lin1_mx f as a product P−1Rx(a)P where Rx(a) is

a rotation around the canonical vector 'e_0 and P

represents the vectors of the frame normalize u, j u,

k u (see Sect. 3. 3) in the canonical basis.

Conversely, given a rotation matrix, one can find

an axis and an angle such that the corresponding

linear application is a rotation:

Lemma SO_is_around_axis M : M \is 'SO[R]_3 →
exists u a, norm u = 1 /\
is_around_axis u a (mx_lin1 M).

(mx_lin1 turns a matrix into the corresponding lin-

ear function.) The proof uses Euler’s theorem:

Lemma euler (M : 'M[R]_3) : M \is 'SO[R]_3 →
{x : 'rV[R]_3 | (x != 0) && (x ∗m M == x)}.

We use Euler’s theorem to obtain an eigenvector of

the rotation matrix. We use this vector to build

a positive frame (see Sect. 3. 3) and inspect the

result of the action of the matrix M on the frame

vectors. It happens that the coordinates of the re-

sulting vectors have properties that are fulfilled by

the trigonometric functions cos and sin and that

satisfy the definition of a rotation.

5 Exponential Coordinates for Rota-

tions

Rotation matrices can be represented using ex-

ponentials of skew-symmetric matrices. In general,

the exponential of a matrix is a power series. For

skew-symmetric matrices, there is a closed expres-

sion: eφS(w) = 1 + (sinφ)S(w) + (1− cosφ)S(w)2,

where S(w) is the skew-symmetric matrix corre-

sponding to vector w. In the following, we show

that rotation matrices can be represented by this

formula.

First, we define the set of skew-symmetric ma-

trices 'so[R]_n, i.e., the matrices M such that

M = −MT . To a vector [wx;wy;wz] corresponds

the (row-vector convention) skew-symmetric ma-

trix

[
0 wz −wy

−wz 0 wx
wy −wx 0

]
. Hereafter, we denote the

skew-symmetric matrix corresponding to the vec-

tor w by \S(w).

Now, let us define the following function (where

a is an angle and M is a 3× 3 matrix):

Definition emx3 a M :=

1 + sin a *: M + (1 -cos a) *: M ˆ+2.

We are interested in the case where the matrix M

is \S(w) for some w. We denote such a matrix by

`eˆ(a, w) and call a and w the exponential coordi-

nates.

5. 1 Exponential Coordinates of Rotation

Matrices

Any rotation matrix can be represented by its

exponential coordinates.

First, we observe that for a unit vector w, the

matrix `eˆ(a, w) is a rotation of angle a around w:

Lemma is_around_axis_eskew a w : norm w = 1 →
is_around_axis w a (mx_lin1 `eˆ(a, w)).

Conversely, any rotation matrix can be repre-

sented using exponential coordinates:

Lemma eskew_is_onto_SO M : M \is 'SO[R]_3 →
exists a w, norm w = 1 /\ M = `eˆ(a, w).

The proof is as follows. We use the lemma

SO_is_around_axis of Sect. 4. 2 to derive an angle a

and an axis w corresponding to M. We want to show

that M = `eˆ(a, w). The lemma is_around_axis_eskew

above says that `eˆ(a, w) is a rotation of angle a

around w. This rotation and the rotation corre-

sponding to M are the same, so are the matrices.

5. 2 Rodrigues’ Formula

We have shown in the previous section (Sect. 5. 1)

that multiplication by a matrix `eˆ(a, w) provides

rotation. Rodrigues’ formula is a classical result

that provides an alternative expression for such a

rotation.

Rodrigues’ formula transforms a vector v accord-

ing to angle a and vector w by means of the dot-

product and of the cross-product:

Definition rodrigues v a w := cos a *: v

+ (1 -cos a) * (v ∗d w) *: w + sin a *: (w ∗v v).

It provably performs the same transformation as

rotation using `eˆ(a, w):

Lemma rodriguesP u a w : norm w = 1 →
rodrigues u a w = u ∗m `eˆ(a, w).

The proof is by appealing to the properties of skew-

symmetric matrices and of the cross-product (in

particular the double cross-product—see Sect. 3. 2).

5. 3 Angle-Axis Representation

The angle-axis representation of a rotation ma-

trix M is a pair of an angle and a vector computed

directly from M .

The angle of a matrix M is defined by:

arccos ((tr(M)− 1)/2) .

Put formally:

Definition angle_of_rot M := acos ((\tr M -1) / 2%:R).

The (row-vector convention) axial vector of a ma-

trix M is defined by:

w = [M1,2 −M2,1;M2,0 −M0,2;M0,1 −M1,0] .

The rotation axis of a matrix M is defined by
1

2 sin(a)
w, where a is the angle of the matrix M

as defined above and w is the axial vector. Put

formally:

Definition axis_of_rot M := let a := angle_of_rot M in

1 / ((sin a) *+ 2) *: axial_vec M.

We can show that M is a rotation of angle

angle_of_rot M and axis axis_of_rot M (as long as

none of them is zero):

Lemma angle_axis_eskew M : M \is 'SO[R]_3 →
axis_of_rot M != 0 →
sin (angle_of_rot M) != 0 →
let a := aangle (angle_axis_of_rot M) in

let w := aaxis (angle_axis_of_rot M) in

M = `eˆ(a, w).

6 Formalization of Quaternions

Quaternions provide an alternative way to repre-

sent rotations. They are concise (4 elements as op-

posed to the 9 elements of a matrix) and their com-

position is computationally more efficient. Quater-

nions are interesting in their own right as the first

non-commutative algebra to be studied and they

are used pervasively in robotics (including com-

puter vision).

6. 1 Formal Definition of Quaternions

A quaternion has a scalar part and a vector part:

Record quat := mkQuat {quatl : R ; quatr : 'rV[R]_3 }.

Let us denote the scalar (resp. vector) part of a

quaternion a by a`0 (resp. a`1). We denote by aˆ∗q

the conjugate of a; it is defined as follows:

Definition conjq a := mkQuat (a`0) (- a`1).

The norm of a quaternion is defined as follows:

Definition sqrq a := a`0 ˆ+2 + norm (a`1) ˆ+2.

Definition normq a := Num.sqrt (sqrq a).

In particular, unit quaternions (type uquat) are

quaternions with norm 1.

Addition of quaternions is defined component-

wise. Multiplication is defined using the dot-

product and the cross-product (Sections 3. 1

and 3. 2):

Definition mulq a b := mkQuat

(a`0 * b`0 -a`1 ∗d b`1)

(a`0 *: b`1 + b`0 *: a`1 + a`1 ∗v b`1).

Inverse is defined using the norm and the conjugate:

Definition invq a := (1 / sqrq a) *: (a ˆ∗q).

Using above operations, we showed that quater-

nions form a ring (ringType) with scaling (lmodType)

and units (unitRingType).

6. 2 Rotation with Quaternions

Let a be a quaternion. It turns out that the ap-

plication v 7→ ava∗ provides us with rotation of

(three-dimensional) vectors v:

Definition quat_rot (a : quat) (v : vector) : quat :=

(a : quat) * v%:v * aˆ∗q.

We now make precise the nature of this rotation.

First, we observe that quat_rot is a linear func-

tion:

Lemma quat_rot_is_linear q :

linear (fun v => (quat_rot q v)`1).

Similarly to complex numbers, one can define the

polar coordinates of a quaternion (see Sect. 2. 2 for

the definition of atan and Sect. 3 for normalize and

norm):

Definition polar_of_quat a :=

(normalize a`1, atan (norm a`1 / a`0)).

Let us consider a unit quaternion q with a non-

zero scalar part (i.e., it is not “pure”) and polar

coordinates (u, a). We can show that the func-

tion v 7→ (u, a)v(u, a)∗ is a rotation of angle 2a

around u:

Lemma quat_rot_is_Rot q :

q \is uquat →¬pureq q →
let: (u, a) := polar_of_quat q in

u != 0 →
is_around_axis u (a *+ 2)

(Linear (quat_rot_is_linear q)).

7 Rigid Body Transformation

A rigid body transformation (hereafter, rbt) is

a mapping R3 → R3 that preserves lengths and ori-

entation. The preservation of orientation by a rbt

is defined as the preservation of the cross-product.

In this section, we show that a rbt is actually a

direct isometry. We define isometries in Sect. 7. 1

and orientation in Sect. 7. 2.

7. 1 Isometries

An isometry is a mapping Rn → Rn that pre-

serves lengths:

(* Module Iso *)

Record t := mk {
f :> 'rV[R]_n →'rV[R]_n ;

P : {mono f : a b / norm (a -b)} }.

We denote the type of isometries by 'Iso[R]_n.

There is a theorem that says that, from any

isometry f, one can extract an orthogonal matrix

(ortho_of_iso f, the “orthogonal part” of the isom-

etry) and a translation (trans_of_iso f) such that

f x = x ∗m ortho_of_iso f + trans_of_iso f.

The isometry is direct when the determinant of

the orthogonal matrix (its “sign”) is 1. We de-

note the type of three-dimensional direct isometries

by 'DIso_3[R]:

(* Module DIso *)

Record t := mk {
f :> 'Iso[R]_3 ;

P : iso_sgn f == 1 }.

7. 2 Preservation of Orientation

The action of a rbt f on points induces an ac-

tion f∗ on vectors. Let v be the vector b − a

where b and a are points. f∗ is defined by f∗(v) =

f(b) − f(a) [6] (Chapter 2, Sect. 1, p. 21). f∗ is the

derivative map of f [8] (Chapter III, Sect. 2). To for-

malize the derivative map, we define tangent vec-

tors. We denote by u `@ p the vector u with point

of application p, and by p.-vec the type of such vec-

tors. f∗ transforms a tangent vector p.-vec into a

tangent vector (f p).-vec according to the following

definition:

Definition dmap (f : 'Iso[R]_3) p (v : p.-vec) :=

let C := ortho_of_iso f in

(v ∗m C) `@ f p.

Hereafter, we denote the derivative map of f by f`*.

We use the derivative map to state what it means

for an isometry to preserve orientation. An isom-

etry f preserves orientation when f∗(u × v) =

f∗(u)× f∗(v) [6] (Definition 2.1). Let p by the point

of application of u× v. Then, the point of applica-

tion of f∗(u)× f∗(v) is f(p). Put formally:

Definition preserves_orientation f :=

∀p (u v : p.-vec),

f`* ((u ∗v v) `@ p) = ((f`* u) ∗v (f`* v)) `@ f p.

Using above definitions, we prove formally that

a direct isometry preserves orientation:

Lemma diso_preserves_orientation (f : 'DIso_3[R]) :

preserves_orientation f.

Since it also preserves lengths by definition, this

means that a direct isometry is a rbt.

Conversely, an isometry that preserves the cross-

product of two non-colinear vectors is direct:

Lemma preserves_crossmul_is_diso (f : 'Iso[R]_3)

p (u v : p.-vec) : ¬colinear u v →
f`* ((u ∗v v) `@ p) = ((f`* u) ∗v (f`* v)) `@ f p →
iso_sgn f = 1.

This means that a rbt can be represented by a

direct isometry.

8 Rigid Body Transformation using

Homogeneous Representation

In Sect. 7, we showed that a rbt can be rep-

resented by a direct isometry. In this section, we

show that a direct isometry can be represented by

an element of the special Euclidean group, i.e., a

pair of a translation and a rotation:

(* Module SE *)

Record t (R : rcfType) : Type := mk {
trans : 'rV[R]_3;

rot : 'M[R]_3 ;

rotP : rot \in 'SO[R]_3 }.

Before showing in Sect. 8. 2 that an element of the

special Euclidean group indeed defines a rbt, i.e.,

that it preserves lengths and orientation, we define

in Sect. 8. 1 the homogeneous representation of an

element of the special Euclidean group.

8. 1 Homogeneous Representation

The homogeneous representation of an element of

the special Euclidean group is a 4× 4 matrix
[r 0
t 1

]
where r is a rotation and t is a vector (representing

a translation). We define formally such matrices as

follows:

Definition hom (r : 'M[R]_3) (t : 'rV[R]_3) : 'M[R]_4 :=

block_mx r 0 t 1.

We denote by SE3[R] the set of matrices of this

shape such that r is a rotation. We show that SE3[R]

is indeed a group by using in particular the follow-

ing definition of inverse:[r 0
t 1

]−1
=

[
rT 0

−t∗rT 1

]
.

We denote by 'hP[R] (resp. 'hV[R]) the set of

homogeneous points [p0; p1; p2; 1] (resp. vectors

[v0; v1; v2; 0]).

The application of an element of the special Eu-

clidean group (object T of type SE.t) to a homoge-

neous point (resp. vector) is the matrix multiplica-

tion by its homogeneous representation:

Coercion mx (T : SE.t) := hom (rot T) (trans T).

Definition hom_ap (T : SE.t) x : 'rV[R]_4 := x ∗m T.

When x is an homogeneous point, the application

of hom_ap performs a rotation and a translation, but

only a rotation when x is an homogeneous vector.

8. 2 Elements of the Special Euclidean

Group are Rigid Body Transforma-

tions

We can now define application of an ele-

ment of the special Euclidean group to a (three-

dimensional) point or vector. The homoge-

neous point (resp. vector) corresponding to the

three-dimensional row-vector x is to_hpoint x (resp.

to_hvector x). from_h is the projection that cancels

to_hpoint and to_hvector. We use these functions to

embed points and vectors into their homogeneous

representation and recover points and vectors after

having applied hom_ap:

Definition ap_point (T : SE.t) p :=

from_h (hom_ap T (to_hpoint p)).

Definition ap_vector (T : SE.t) v :=

from_h (hom_ap T (to_hvector v)).

We can show that the application of an element

of the special Euclidean group to a point using

ap_point preserves length between points:

Lemma SE_preserves_length (T : SE.t R) :

{mono (ap_point T) : a b / norm (a -b)}.

Since they preserve lengths, the elements of the

special Euclidean group can be used to build isome-

tries. We can show moreover that an isometry built

in this way preserves orientation:

Lemma SE_preserves_orientation (T : SE.t R) :

preserves_orientation (Iso.mk (SE_preserves_length T)).

We have therefore established that the special

Euclidean group coincides with rbt.

9 Screw Motion

In this section, we formalize the basics of screw

theory, in particular the fundamental Chasles’ the-

orem. In Sect. 9. 1, we show that there exists a

screw axis for any rbt. The existence of a screw

axis suggests that any rbt can be represented as

the composition of a rotation around an axis fol-

lowed by a translation along the same axis. In

Sect. 9. 2, we show that such a screw motion can

be represented using exponential coordinates.

9. 1 Existence of a Screw Axis

Let us assume a rbt f whose orthogonal part is

a rotation with angle a around the unit vector w:

Variable f : 'DIso_3[R].

Let Q : 'M[R]_3 := ortho_of_iso f.

Variable w : vector.

Hypothesis w1 : norm w = 1.

Variable a : angle R.

Hypothesis Qaxis : is_around_axis w a (mx_lin1 Q).

One can show that the components along w of the

displacements of any two points are the same:

Lemma displacement_proj q p :

displacement f q ∗d w = displacement f p ∗d w.

x

z

y

w

p0

p

p′

p′′φ

Fig. 3: Illustration of a screw motion

As a consequence, we have Chasles’ theo-

rem [2] (Theorem 3.2.2). Let us denote by d0 the

component along w of the displacement of the ori-

gin. Then, any displacement of norm d0 is parallel

to w:

Lemma MozziChasles p :

norm (displacement f p) = d0 →
colinear (displacement f p) w.

This theorem shows that there is a set of points

that undergo just a translation: this is the screw

axis.

9. 2 Screw Motion

A screw motion is defined by a line (a point and a

vector that play the role of the axis), an angle, and

a pitch (put together in the type Screw.t). Figure 3

shows the effect of a screw motion (that is not a

pure translation) on a point p (the axis is (p0,w),

the angle is φ, the pitch is the ratio of translation

to rotation). The effect of this screw motion can

be formalized as follows:

Definition screw_motion s p :=

let: (l, a, h) := (Screw.l s, Screw.a s, Screw.h s) in

let (p0, w) := (line_point l, line_vector l) in

p0 + (p -p0) ∗m `eˆ(a, w) + (h * radian a) *: w.

It turns out that a screw motion can be rep-

resented by exponential coordinates, similarly to

the exponential coordinates of rotation matrices

in Sect. 5. 1. This requires to generalize skew-

symmetric matrices to twists. A twist \T(v, w) is a

pair of two vectors arranged as a matrix
[
\S(w) 0
v 0

]
(row-vector convention). The exponential of a twist

is defined as the following homogeneous matrix �2:

�2 One can find this definition in the literature

[6] (Equation 2.36), [10] (Equation 1.27). The re-

lation with the exponential function is explained

in Appendix A.

[
I 0

φv 1

]
if w = 0[

eφS(w) 0
(w×v)(1−eφS(w))+(φv)(wTw)

||w||2 1

]
if w ̸= 0.

We denote the exponential of a twist by `e$(a, t)

and formalize it as follows:

Definition hom_twist t a e :=

let (v, w) := (\v(t), \w(t)) in

if w == 0 then hom 1 (a *: v)

else hom e ((norm w)ˆ-2 *:

((w ∗v v) ∗m (1 -e) + (a *: v) ∗m (wˆT ∗m w))).

Definition etwist a t :=

hom_twist t (radian a) (`eˆ(a, \w(t))).

For illustration, the screw_motion function above

(more precisely, its homogeneous representation

hom_screw_motion) corresponds to the following

twist [6] (p. 47):

Lemma hom_screw_motion_etwist s :

let: (l, a, h) := (Screw.l s, Screw.a s, Screw.h s) in

let (p0, w) := (line_point l, line_vector l) in

let v := -w ∗v p0 + h *: w in

hom_screw_motion s = `e$(a, \T(v, w)).

The parameters v, w, and a are called the exponen-

tial coordinates for the corresponding rbt. Indeed,

any rbt can be represented by exponential coordi-

nates:

Lemma etwist_is_onto_SE f : f \is 'SE3[R] →
exists t a, f = `e$(angle_of_radian a, t).

The proof is as follows. Let us assume that f is

of the form
[r 0
p 1

]
. If f is a pure translation, then

it suffices to choose the twist \T(normalize p, 0) and

the angle norm p. Otherwise, let a, w be the expo-

nential coordinates of r (obtained through lemma

eskew_is_onto_SO from Sect. 5. 1). Then it suf-

fices to choose the twist \T(v, w) and the angle a,

where v is such that p = (norm w)ˆ-2 *: (v ∗m G) with

G = \S(w) ∗m (1 -r) + radian a *: (wˆT ∗m w). The in-

verse of the latter matrix is 1
a

− 1
2
S(w) +(

1
a
− 1

2
cot

(
a
2

))
S(w)2 [9].

9. 3 Example of Twist Computation

We can use the (constructive) proof of the last

lemma (etwist_is_onto_SE, Sect. 9. 2) to build the

twist \T(v, w) of the rigid body transformation of

Fig. 1.

The coordinate of the frame C w.r.t. the frame A

is
[

ARC 0
ATC 1

]
where ATC is [−ℓ2 sinφ; ℓ1 + ℓ2 cosφ; 0].

The exponential coordinates of the rotation are

the axis 'e_2 and the angle φ (see lemma

is_around_axis_eskew of Sect. 5. 1). We al-

ready know that w is 'e_2. v is given

by ATCG
−1 (where G comes from the proof

of etwist_is_onto_SE), that is, after calculation,

[(ℓ1 − ℓ2)/2; (ℓ1 + ℓ2)/(2(1− cosφ)); 0].

10 Related Work

In this section, we focus on related work using

proof-assistants to perform formal verification of

robotics (we leave aside the more numerous related

work dealing with model-checking).

Walter et al. perform in Isabelle the verification

of a collision avoidance algorithm for a vehicle mov-

ing in a plane [11]. More precisely, this algorithm

computes safety zones as supersets of braking areas.

It therefore involves mathematics that we have not

been dealing with: velocity and computational ge-

ometry in a plane (as opposed to three-dimensional

geometry for robot manipulators). An important

aspect of their experiment is that it was used as

part of a certification effort and received positive

reviews in this context.

Farooq et al. propose a significant formalization

of two-link planar manipulators in HOL-Light [5].

They apply their theories to the analysis of a (two-

dimensional) biped walking robot (4 links, 3 joints).

Our work can be seen as a tentative extension to

three-dimensional geometry.

Anand et al. use Coq to write, verify, and execute

programs to be used on actual robots [1]. For that

purpose, they provide an event-based programming

framework dealing with time. They tackle the

problem of verified robot software in a pragmatic

way. In comparison, we are dealing with the com-

plementary task of formalizing formal foundations.

Ma et al. propose a formalization of conformal ge-

ometric algebra in HOL-Light [7]. They use their

formalization to reason about rigid body trans-

formations and apply their results to the formal-

ization of a grasping algorithm. In comparison,

we are focusing on standard techniques for robot

specification. Though conformal geometric alge-

bra is not mainstream, its formalization may turn

out to be inspiring since it deals with multivectors

whose product generalizes the three-dimensional

Table 2: Overview of our formalization of rigid body transformations

File name Contents l.o.c.

aux.v Utility definitions and tactics 147

angle.v Angles and trigonometric functions (Sect. 2) 826

euclidean3.v Dot-product, cross-product, etc. (Sect. 3); rotation matrices (Sect. 4. 2) 1269

vec_angle.v Utility definitions such as colinear, normalize, normalcomp (Fig. 2, footnote �1) 479

frame.v Frames (Sect. 3. 3) 894

skew.v Skew-symmetric matrices (used in Sections 5 and 9) 621

rot.v Specification of rotations and exponential coordinates (Sections 4 and 5) 1235

quaternion.v Rotation with quaternions (Sect. 6) 654

rigid.v Rigid body transformations (Sections 7 and 8) 1103

screw.v Screw motions (Sect. 9) 1193

cross-product.

11 Conclusion and Perspectives

In this paper, we gave an overview of an ongo-

ing effort to formalize the foundations of robotics.

Our formalization is about 8,300 l.o.c. (breakdown

in Table 2). This formalization covers a substantial

part of the basic material one can find in standard

textbooks, e.g., [10] (Section 1.2: Position and Ori-

entation Representation), [6] (Chapter 2: Rigid Body

Motion). Currently, we are working on applying our

work to the formalization of open chains for serial

robots.

The formalization of the theoretical foundations

of robotics is only one step towards the formal ver-

ification of robots. At some point, we will need

to extend our work to deal with the dynamics of

robots by introducing velocity. The correctness of

numerical computations used in robot software is

another aspect of formal verification of robots. This

is not yet our concern but since Coq also excels at

verification of numerical computations, it should be

possible to build on top of our work a comprehen-

sive formal verification framework for robot manip-

ulators.

Acknowledgments The authors acknowledge

partial support from a Grant-in-Aid for Scientific

Research (B) (project number 15H02687).

References

[1] Anand, A. and Knepper, R. A.: ROSCoq:

Robots Powered by Constructive Reals. Proc. ITP

2015, LNCS, Vol. 9236, pp. 34–50.

[2] Angeles, J.: Fundamentals of Robotic Mechan-

ical Systems—Theory, Methods, and Algorithms.

Springer, 2014. 4th Edition.

[3] The Coq Development Team: Reference Man-

ual. INRIA, 1999–2016. Ver. 8.5pl2. Available at

http://coq.inria.fr.

[4] Gonthier, G., Asperti, A., Avigad, J., Bertot,

Y., Cohen, C., Garillot, F., Le Roux, S., Mahboubi,

A., O’Connor, R., Ould Biha, S., Pasca, I., Rideau,

L., Solovyev, A., Tassi, E., Théry, L.: A Machine-

Checked Proof of the Odd Order Theorem. Proc.

ITP 2013, LNCS, Vol. 7998, pp. 163–179.

[5] Farooq, B., Hasan, O., and Iqbal, S.: Formal

Kinematic Analysis of the Two-Link Planar Ma-

nipulator. Proc. ICFEM 2013, LNCS, Vol. 8144,

pp. 347–362.

[6] Murray, R. M., Li, Z., Sastry, S. S.: A

Mathematical Introduction to Robotic Manipula-

tion. CRC Press, 1994. First edition.

[7] Ma, S., Shi, Z., Shao, Z., Guan, Y., Li, L., Li,

Y.: Higher-Order Logic Formalization of Conformal

Geometric Algebra and its Application in Verifying

a Robotic Manipulation Algorithm. Advances in

Applied Clifford Algebras. March 2016. In press.

[8] O’Neill, B.: Elementary Differential Geometry.

Academic Press, 1966.

[9] Park, F. C., Lynch, K.: Introduction to

Robotics: Mechanics, Planning, and Control. Seoul

National University, 2012. Course text.

[10] Siciliano, B., Khatib, O. (Eds.): Springer Hand-

book of Robotics. Springer, 2008.

[11] Walter, D., Täubig, H., Lüth, C.: Experiences

in Applying Formal Verification in Robotics. Proc.

SAFECOMP 2010, LNCS, Vol. 6351, pp. 347–360.

A The Exponential of a Twist using

Taylor Expansion

In Sect. 9. 2, we define a screw motion in term of

a twist by the expression etwist. In the literature,

this expression is derived from definitions of expo-

nential coordinates in terms of power series. We

reproduce this reasoning here using Taylor expan-

sions.

We first define the Taylor expansion of the expo-

nential function:

Definition ecoef n (M : 'M[R]_n.+1) i :=

i`!%:Rˆ-1 *: M ˆ+i.

Definition emx n (M : 'M[R]_n.+1) k :=

\sum_(i < k) ecoef M i.

We now define the exponential coordinates of a

rotation as the exponential of a skew-symmetric

matrix emx (a *: \S(w)) k (instead of the definition

using emx3 from Sect. 5).

Similarly, we also define the exponential coor-

dinates of a rbt as the exponential of a twist

emx (a *: t) k.

We now justify the definition of etwist in

Sect. 9. 2. Let us define a new function emx_twist

similar to etwist: it uses the same definition

hom_twist, with the difference that we replace

`eˆ(a, \w(t)) by emx \S(a *: \w(t)) k:

Definition emx_twist a t k :=

hom_twist t a (emx \S(a *: \w(t)) k).

We show that this definition is actually equivalent

to the exponential of a twist [6] (Proposition 2.8):

Lemma emx_twistE (t : Twist.t R) a k :

emx (a *: t) k.+2 = emx_twist a t k.+2.

In other words, instead of computing the expo-

nential as a sum using emx, one may also use the

more direct expression expmx_twist. This justifies

the definition of hom_twist (and therefore etwist) in

Sect. 9. 2.

