
Formal Proof of Provable Security by
Game-playing in a Proof Assistant?

Reynald Affeldt1, Miki Tanaka2, and Nicolas Marti3

1 Research Center for Information Security,
National Institute of Advanced Industrial Science and Technology

2 Information Security Research Center,
National Institute of Information and Communications Technology

3 Department of Computer Science, University of Tokyo

Abstract. Game-playing is an approach to write security proofs that
are easy to verify. In this approach, security definitions and intractable
problems are written as programs called games and reductionist secu-
rity proofs are sequences of game transformations. This bias towards
programming languages suggests the implementation of a tool based on
compiler techniques (syntactic program transformations) to build secu-
rity proofs, but it also raises the question of the soundness of such a tool.
In this paper, we advocate the formalization of game-playing in a proof
assistant as a tool to build security proofs. In a proof assistant, starting
from just the formal definition of a probabilistic programming language,
all the properties required in game-based security proofs can be proved
internally as lemmas whose soundness is ensured by proof theory. Con-
cretely, we show how to formalize the game-playing framework of Bellare
and Rogaway in the Coq proof assistant, how to prove formally reusable
lemmas such as the fundamental lemma of game-playing, and how to use
them to formally prove the PRP/PRF Switching Lemma.

1 Introduction

Game-playing is an approach to write security proofs that are easy to verify.
In this approach, security definitions and intractable problems are written as
programs called games and reductionist security proofs are sequences of game
transformations [6–8].

The bias of game-playing towards programming languages suggests the im-
plementation of a tool based on compiler techniques to build security proofs [9],
but it also raises the question of the soundness of such a tool. To make our
point clearer, let us consider CryptoVerif [13], a pioneer implementation of game-
playing that has been applied to several standard cryptographic schemes taken
from the literature [4, 5]. To perform game transformations, CryptoVerif im-
plements techniques of compiler optimization (constant propagation, dead-code

? To appear in the proceedings of the 1st International Conference on Provable Secu-
rity (Provsec) 2007, Wollongong, NSW, Australia, 1–2 November, 2007.

elimination, etc.). The latter program transformations sometimes rely on high-
level program equivalences that are only proved on paper and introduced in
CryptoVerif as axioms (see Appendix B of [13]). This can be seen as an impor-
tant limitation of CryptoVerif because it endangers its soundness.

In this paper, we advocate the formalization of game-playing in a proof as-
sistant as a tool to build security proofs. In a proof assistant, starting from just
the formal definition of a probabilistic programming language, all the proper-
ties required in game-based security proofs can be proved internally as lemmas
whose soundness is ensured by proof theory: no game transformation needs to be
proved out of the box. Concretely, we show how to formalize the game-playing
framework of Bellare and Rogaway [7] in the Coq proof assistant [1], how to prove
formally reusable lemmas such as the fundamental lemma of game-playing, and
how to use these lemmas to formally prove the PRP/PRF Switching Lemma.
To our knowledge, this is the first formalization of game-playing with a random
oracle and a working fundamental lemma used in a complete use-case.

About the Coq Proof Assistant The Coq proof assistant [1] is an implementa-
tion of proof theory developed at INRIA in France since 1984. It provides a
higher-order logic (i.e., even predicates can be quantified) to state mathematical
properties and a functional programming language to build proofs. This setting
stems from the Curry-Howard isomorphism [2], through which logical formulas
are considered as types of functional programs that are themselves considered
as proofs. This makes up for a very small and well-understood proof-checking
mechanism that justifies the reliability of proof assistants. Proof assistants are
now reasonably mature tools and, in particular, the Coq proof assistant recently
made it possible for several important achievements such as the formalization of
the four color theorem or the certification of a C compiler.

Notations in this Paper All the definitions and lemmas in this paper are written
in the Coq syntax. This syntax uses only ASCII characters; the mathematical
notations are just to ease reading (for example, we write ∀ instead of the Coq
forall construct, ∧ instead of /\, etc.). We display Coq code as it appears in
our formalization. To improve understanding, we sometimes put comments (be-
tween (* and *)) or hide non-relevant parts (using “...”). In our experience,
using the Coq syntax in this way is the best way to present a formalization
because it avoids ambiguities while being accessible to readers with little fa-
miliarity with formal methods or functional programming languages. There are
some Coq-specific constructs, but we introduce them gently in the first sections.
We concentrate on the main points of the formalization (basic definitions and
statements of lemmas) and do not enter the details of formal proofs; for technical
inquiries, the complete Coq development is available online [16].

The rest of this paper is organized as follows. In Sect. 2, we explain how
we formalize the notions of distribution and probability in Coq. In Sect. 3, we
explain how we formalize random oracles and a probabilistic programming lan-
guage to write games. In Sect. 4, we formalize a version of the fundamental
lemma of game-playing, the most important tool for game-playing. In Sect. 5,
we apply our formalization of the game-playing framework to the proof of the

PRP/PRF Switching Lemma. We review related work in Sect. 6 and conclude
in Sect. 7.

2 Formalization of Probabilities

In this section, we explain how we formalize the notion of distribution of states
and the notion of probability. We consider a probability space made of determin-
istic states and we call probabilistic state a distribution of deterministic states.
As far as the formalization of distributions is concerned, we do not commit
ourselves to any particular kind of states (this makes our formalization more
reusable). In type parlance, we just assume that all deterministic states belong
to some type A and pursue formalization using this type. In Coq, types them-
selves have types, and we declare the type A to belong to the predefined type Set

of data structures. This is achieved by the declaration Variable A : Set.

In later sections, we instantiate the type A with a concrete notion of deter-
ministic state. For example, let us assume that deterministic states are stores,
i.e., sets of pairs of variables and values. We can use the standard Coq natural
numbers (type nat of type Set) to formalize variables and values, and Coq lists
(type list of type Set) to formalize stores. Variables are defined to be naturals
using the definition Definition var := nat. Stores are defined to be lists of pairs
of variables and naturals by Definition store := list (var * nat). Since lists
belong to Set, so do stores, and therefore we can substitute A for store to obtain
a formalization of distributions of stores.

2.1 Formalization of Distributions

A distribution of deterministic states is a map from deterministic states to real
numbers, such that the real numbers associated with a given deterministic state
represent the weight of this state in the map. Given the Coq reals (type R) and our
type A of deterministic states, we define distributions to be lists of appropriate
type: Definition distrib := list (R * A).

There is little point in having distributions with deterministic states associ-
ated with negative or null reals. The Coq way to enforce this is to introduce a
logical predicate to sort out devious distributions. Like there is the predefined
type Set for data structures, there is the predefined type Prop for logical pred-
icates. Logical predicates in Coq are just definitions with type Prop. A logical
predicate that holds only for distributions with strictly positive reals (hereafter,
coefficients) has to go recursively through the underlying list to check the sign of
coefficients. Such recursive definitions are introduced by the keyword Fixpoint:
(* A distribution d has positive coefficients... *)
Fixpoint coeff_pos (d : distrib) : Prop :=

match d with
(* if its head and its tail have positive coefficients... *)
| (p, _) :: tl => 0 < p ∧ coeff_pos tl
(* or if it is empty.*)
| nil => True

end.

In our formalization, we do not insist on having the sum of coefficients of
distributions equal to 1, as it is customary with probabilities. We made this
choice for convenience because of if-then-else constructs in the language of games.
Even if we insisted on normalizing probabilities, as soon as the control-flow
enters a branch, the distribution is partitioned, and the sum of coefficients in
each branch cannot be guaranteed to be equal to the sum of coefficients before
the branch (this observation is made in [12]). We therefore express probabilities
with respect to the sum of coefficients of the very first distribution. Sums of
coefficients are computed with the following recursive function:

Fixpoint sum (d : distrib) : R :=
match d with (p, _) :: tl => p + sum tl | nil => 0 end.

2.2 Probability of Events

We identify events with boolean functions over deterministic states, that is to
say Definition event := A → bool. The probability that an event holds in a
distribution is equal to the sum of the coefficients associated with the determin-
istic states in which this event holds. To sort out relevant deterministic states,
we use a function filter that selects only those states such that the event e

holds (++ is the notation for the Coq function that appends lists):

Fixpoint filter (e : event) (d : distrib) : distrib :=
match d with
| (p, a) :: tl => (if e a then (p, a) :: nil else nil) ++ filter e tl
| nil => nil

end.

The probability Pr that an event e holds in a distribution d immediately follows
from the definition of sum and filter:

Definition Pr (e : event) (d : distrib) : R := sum (filter e d).

Equipped with above definitions of distributions, events and probabilities, we can
define concrete events (using Coq standard boolean functions orb, andb, negb,
etc.) and prove formally well-known facts in probability theory:

(* standard definitions *)
Definition union (e1 e2 : event) (a : A) : event := orb (e1 a) (e2 a).
(* Notation: ∪ *)

Definition inter (e1 e2 : event) (a : A) : event := andb (e1 a) (e2 a).
(* Notation: ∩ *)

Definition cplt (e : event) (a : A) : event := negb (e a).
(* Notation: ¯ *)

...
(* well-known facts *)
Lemma Pr_union_inter : ∀ d e1 e2,
Pr (e1 ∪ e2) d = Pr e1 d + Pr e2 d - Pr (e1 ∩ e2) d.

Lemma Pr_distributivity : ∀ d e1 e2 e3,
Pr (e1 ∩ (e2 ∪ e3)) d = Pr ((e1 ∩ e2) ∪ (e1 ∩ e3)) d.

Lemma Pr_cplt: ∀ d e, Pr e d = sum d - Pr e d.
...

2.3 Transformations of Distributions

Our formalization of distributions also features functions that transform dis-
tributions according to operations such as random sampling. Let us consider
a concrete example of what these transformations are supposed to achieve.
We take stores of variables (as defined at the beginning of this section) for
deterministic states. Let us assume that we are given the probabilistic state
(p0, x = 0), (p1, x = 1) and that we perform a random sampling with probability
0 < p < 1 of the variable y from the set {0, 1}. The effect of this random sam-
pling is to multiply the original distribution by the number of possible outcomes
of the random sampling (here: y = 0 or y = 1), each distribution being scaled by
the adequate probability (here: p and 1 − p), as depicted informally in Fig. 1.

(
p0, x = 0

)
,
(
p1, x = 1

)
(
p·p0, x = 0 ∧ y = 0

)
,
(
p·p1, x = 1 ∧ y = 0

) (
(1−p)·p0, x = 0 ∧ y = 1

)
,
(
(1−p) · p1, x = 1 ∧ y = 1

)
Fig. 1. Effect on a distribution of the random sampling y

p← {0, 1}

The function fork below implements the most general form of transformation
illustrated above. It takes as input a distribution d and a list l of real scaling
factors and functions that transform deterministic states:

Fixpoint fork (l : list (R * (A → A))) (d : distrib) : distrib :=
match l with
| (k, f) :: tl => map f (scale k d) ++ fork tl d
| nil => nil

end.

(The function map applies a function to each deterministic state of a distribution,
the function scale multiplies each coefficient by the same real; Coq code omitted
to save space.) For example, the transformation depicted in Fig. 1 is performed by
the function call fork ((p, update y O)::(1-p, update y 1)::nil) where update
is a function that updates stores.

3 Formalization of A Probabilistic Language for Games

3.1 Random Oracle

A random oracle is a data structure used in security proofs to represent a pseu-
dorandom function or a hash function. Concretely, it is a map from a set of
bitstrings to uniformly and independently sampled bitstrings. From a program-
ming language perspective, a random oracle can be thought of as a hash table
with random values, as depicted in Fig. 2. Indeed, like a hash table, insertion of
new records (key-value pairs) and retrieval of the value associated with a key are

the most important operations. In security proofs, it is also important to be able
to look for already allocated keys or values, to talk about the ith inserted record,

k0

k1

k2

...

v0

v1

v2

...

0

1

2
...

indices keys values

le
n
g
th

Fig. 2. A simple random oracle

to know the number of records, etc. The
most reusable way to formalize such a rich
data structure is via an abstract datatype,
i.e., a type that is known to enjoy some
properties but whose formalization is hid-
den. In Coq, abstract datatypes are formal-
ized with modules. Here follows the type of
a module for an abstract datatype t that
enjoys the properties of a random oracle:

Module Type ORACLE.
Parameter t : Set.
Parameter empty : t.
Definition key := nat.
Definition value := nat.

(* access functions *)
Parameter length : t → nat.
Parameter insert : key → value → t → t.
Parameter nth_key : nat → t → (*default*) key → key.
Parameter nth_value : nat → t → (*default*) value → value.
Parameter find_key : key → t → nat.
Parameter find_value : value → t → nat.
...
(* properties *)
Parameter insert_new_len : ∀ o k v,
find_key k o = O → length (insert k v o) = length o + 1.

...
End ORACLE.

In the following, we use a module oracle of type ORACLE such that oracle.t is
the type of our random oracles. Each time we need to manipulate an oracle, we
can use functions such as oracle.length and we know that they satisfy prop-
erties such as oracle.insert_new_len. Observe that we use naturals instead of
bitstrings but we are careful to keep track of cardinality information; in the fu-
ture, we plan to use instead the module for machine integers from [14] so that we
can handle more faithfully security proofs that make a precise usage of bitstrings
(such as the security proof of PSS [5]). For the time being, we have just specified
the oracle module. A random oracle with one value per key can be implemented
on the model of the finite map from [11]; however, most security proofs require
random oracles with several values per key, so that we defer to future work the
formalization of a module that accommodates such generality.

3.2 Execution State

The random oracle from Sect. 3.1 is only one part of the execution state of games.
The other part is the store of variables as we defined in Sect. 2. A deterministic
state dstate is therefore a pair of a store and an oracle. It is possible to access a

deterministic state to lookup for the value of a variable, or to update the value
of a variable (using functions lookup and update respectively):

Definition dstate := store * oracle.t.
Definition lookup (v:var) (d:dstate) : nat := ...
Definition update (v:var) (n:nat) (d:dstate) : dstate := ...

Finally, a probabilistic state is a distribution (as defined in Sect. 2) of determin-
istic states: Definition pstate := distrib dstate.

3.3 Programming Language

Our probabilistic programming language is an imperative language with random
sampling and function calls built after [7].

The expressions expr of our programming language contain variables, integer
constants, and a C-like negation operator (this can be easily extended but is
sufficient for our purpose in this paper):

Inductive expr : Set :=
var_e : var → expr | int_e : nat → expr | neg_e : expr → expr.

An expression is a datatype so it belongs to Set; since an expression can be made
up of other expressions, the expr type is introduced by the keyword Inductive.
Everytime the Inductive keyword is used, Coq generates an induction principle
for the datatype that allows for proof by induction. An expression e can be
evaluated in a deterministic state ds using the function eval:

Fixpoint eval (e:expr) (ds:dstate) : nat := ...

We now define the commands of our programming language. Random sam-
pling is available through two commands: x <-$- n (notation for sample_n x n)
uniformly samples a natural from the interval [0, n− 1], and x <-b- p (notation
for sample_b x p) samples a boolean (in fact, a natural among 0 and 1) with
probability 0 < p < 1. For the random oracle, there are two commands to access
it: insert k v adds a new record (k,v), find_value x e tests for the occurrence
of the value e and sets the variable x accordingly. It is possible to put together
atomic commands using control-flow commands: c1;c2 (notation for seq c1 c2)
represents a sequence of commands, ifte b c1 c2 represents an if-then-else with
condition b (an expression) and two branches c1 and c2. Other commands’ names
are self-explanatory:

Definition fun_id := nat.
Inductive cmd : Set :=
| skip : cmd
| assign : var → expr → cmd (* Notation: <- *)
| sample_n : var → nat → cmd (* Notation: <-$- *)
| sample_b : var → R → cmd (* Notation: <-b- *)
| find_value : var → expr → cmd
| insert : expr → expr → cmd
| ifte : expr → cmd → cmd → cmd
| seq : cmd → cmd → cmd (* Notation: ; *)
| call : fun_id → cmd.

Like expressions, commands are just another datatype belonging to Set and the
Inductive keyword provides us with an induction principle to reason about the
syntax of games.

So far we have only defined the syntax of games without giving them mean-
ing. Now we define their semantics. We do that by formalizing an operational
semantics [3] with the logical predicate ||- -- --> (notation for (exec))
between (1) an environment (a set of function ids and commands), (2) a starting
probabilistic state, (3) a command, and (4) a resulting probabilistic state:

Definition prog := list (fun_id * cmd).
Inductive exec (prg : prog) : pstate → cmd → pstate → Prop := ...

Because this is a logical predicate it belongs to type Prop. It is also defined
using the Inductive keyword so that Coq provides an induction principle to
reason by induction on the execution of games; this induction principle is used
pervasively in our formal proofs. Let us illustrate the exec predicate with the
operational semantics of random sampling commands (the complete predicate
can be found in Appendix A). The constructor exec_sample_b formalizes the
semantics of (possibly non-uniform) boolean sampling:

| exec_sample_b : ∀ x p st, 0 < p < 1 →
prg ||- st -- x <-b- p -->

fork ((p, update x 1)::(1-p, update x O)::nil) st

Starting from a probabilistic state st, the command x <-b- n yields a probabilis-
tic state fork ((p, update x 1)::(1-p, update x O)::nil) st. This transforma-
tion actually corresponds to the situation depicted in Fig. 1, Sect. 2.3, where the
function fork has been explained. The constructor exec_sample_n formalizes the
semantics of uniform random sampling:

| exec_sample_n: ∀ x n st, n > O →
prg ||- st -- x <-$- n --> fork (sample_n_fork_distrib O n n x) st

Starting from a probabilistic state st, the command x <-$- n yields a prob-
abilistic state fork (sample_n_fork_distrib O n n x) st. The function appli-
cation sample_n_fork_distrib produces an appropriate list of scaling factors
and state transformations: (1/n, update x O)::(1/n, update x 1)::· · · ::(1/n,
update x (n-1)). It is defined by recursion on the size of the sample space:

Fixpoint sample_n_fork_distrib
(min span card:nat) (v:var) : list (R * (dstate -> dstate)) :=
match span with
| O => nil
| S span’ => (1/INR card, fun x => update v (min + span’) x) ::

sample_n_fork_distrib min span’ card v
end.

(The constructor S is the successor function of naturals; the function INR injects
naturals into reals; the construct fun x => ... corresponds to an anonymous
function, i.e., it is equivalent to Definition anonymous_function x := ...)

Loop Constructs In security proofs, the computational power of the adversary
is always bounded. As a consequence, we do not need any general form of while-
loops and we can get along with macros for looping constructs. For example, the
function below represents i copies of some parameterized loop body:

Fixpoint loop (i : nat) (c : nat → cmd) : cmd :=
match n with
| O => skip
| S j => loop j c; c j

end.

3.4 Properties of The Probabilistic Language of Games

Using the probabilistic programming language defined above, we have formally
proved in Coq several reusable lemmas to reason about games. The most impor-
tant of these lemmas is the fundamental lemma of game-playing that is explained
in Sect. 4. There are many other useful lemmas. The most important of them
are those that capture the properties of random sampling, answering questions
such as: “What is the probability that two random variables are equal?” Such a
question arises for example when comparing the value stored in a random oracle
with a newly sampled value.

For illustration, let us consider the case of two uniformly sampled values.
In Coq, lemmas are proved interactively in a special mode entered in via the
keyword Lemma. The lemma corresponding to the question above consists of two
hypotheses. First, we are given an execution step of a game: it goes from state st

to state st’ by performing a uniform random sampling whose outcome is stored
in variable x (this is hypo 1 below). Second, we are given a function f that
retrieves values from the oracle and we know that in state st these values are
uniformaly distributed with probability p (this is hypo 2 below). The conclusion
of the lemma states that the probability that the value of x is equal to the value
retrieved by f is also p:

Lemma exec_sample_n_twice_Pr : ∀ x n st st’ prg,
(* hypo 1 *) prg ||- st -- x <-$- n --> st’ →
∀ (f:oracle.t → nat) p,
(* hypo 2 *) (∀ m, m < n →
Pr (fun s => beq_nat m (f (get_oracle s))) st = p * sum st) →

(* conclusion *)
Pr (fun s => beq_nat (lookup x s) (f (get_oracle s))) st’ = p * sum st’

(get_oracle is a function that extracts the oracle from a deterministic state;
beq_nat tests natural numbers for equality and returns a Coq boolean.)

4 The Fundamental Lemma of Game-playing

In game-playing, each game represents a sequence of interactions with the adver-
sary, and a security proof consists of a sequence of game transformations. During
game-transformation steps, we keep track of the bounds incurred in probabil-
ity changes in order to derive a bound on the probability that the adversary

wins. This is often achieved by application of the “fundamental lemma of game-
playing” [6–8].

4.1 Probabilistic Account

Assume one wants to know the difference Rabs(Pr e d1 - Pr e d2) of probabil-
ities of some event e in two different probability distributions d1 and d2 (Rabs is
the absolute value in Coq). One way to bound this value is to analyze the event e
with respect to some other event f so that the event e can be partitioned into
events e ∩ f and e ∩ f. Then one has Pr e d1 = Pr (e ∩ f) d1 + Pr (e ∩ f) d1,
and similarly for d2.

The lemma below is a version of the fundamental lemma of game-playing with
only distributions (games will be added in the next section). It states that, under
the hypothesis Pr (e ∩ f) d1 = Pr (e ∩ f) d2 (i), we have a simple bound4:

Lemma abstract_fundamental_lemma : ∀ d1 d2 e f r, 0 ≤ r →
sum d1 = sum d2 → coeff_pos d1 → coeff_pos d2 →
Pr f d1 = Pr f d2 = r → Pr (e ∩ f) d1 = Pr (e ∩ f) d2 →
Rabs(Pr e d1 - Pr e d2) ≤ r.

The hypotheses sum d1 = sum d2, coeff_pos d1 and coeff_pos d2 come from how
we formalize distributions, see Sect. 2.1. This lemma is proved in Coq as follows:
first use the equality (i) to eliminate the terms with f, then the difference becomes
Rabs(Pr (e ∩ f) d1 - Pr (e ∩ f) d2), which is easily seen to be bounded by the
probability r that f occurs.

4.2 Identical-until-bad Games

The lemma of the previous section does not say anything about games, but it
can actually be used to transform one game to another if they are “identical-
until-bad”, a syntactic property that can be automatically verified in Coq for
the probabilistic language we introduced earlier.

The property “identical-until-bad” [7] assumes the existence of a special vari-
able conventionally called bad that can be set only once. Two games are “identical-
until-bad” when they have the same syntax tree except for those subtrees fol-
lowing the command bad <- 1. We formalize the property “identical-until-bad”
using the logical predicates no_assign_cmd and no_assign that check for variable
assignments; this is not the most general formalization but it is sufficient for
our purpose in this paper. For example, assume that we have three commands
c1, c2, c2’ such that no_assign_cmd bad holds, and a program prg such that
no_assign bad holds. Then the following two programs are “identical-until-bad”:

prg ||- -- ifte b
c1
(bad <- int_e 1; c2) -->

prg ||- -- ifte b
c1
(bad <- int_e 1; c2’) -->

4 This lemma can actually be generalized to use two pairs of different events e1, e2
and f1, f2 in two different probability distributions d1 and d2 and with a bound
equal to the maximum of Pr f1 d1 and Pr f2 d2.

The following example shows “identical-until-bad” games containing a loop; here,
commands c1, c2, c2’, c3, and all c0 i for 0 ≤ i < q satisfy no_assign_cmd bad,
and the program prg satisfies no_assign bad:

prg ||- -- loop q (fun i =>
c0 i;
ifte b

c1
(bad <- int_e 1; c2);

c3) -->

prg ||- -- loop q (fun i =>
c0 i;
ifte b

c1
(bad <- int_e 1; c2’);

c3) -->

4.3 Fundamental Lemma of Game-playing : Formal Statement

In this section, we show how to formally state and prove the fundamental lemma
of game-playing. For this purpose, we use the lemma of Sect. 4.1 and the property
“identical-until-bad” of Sect. 4.2. The relation between the abstract fundamental
lemma and the property “identical-until-bad” is the event “the variable bad is
set to one”. We identify the event e in Sect. 4.1 with the event that the adversary
wins, and the event f with the event sets bad 1 where sets is defined as follows:

Definition sets (v:var) (n:nat) : event dstate :=
fun s => beq_nat (lookup v s) n.

Keeping this relation in mind, we can now state the fundamental lemma of game-
playing. First, we take two “identical-until-bad” games. As seen in Sect. 4.2, this
boils down to automatically check some no_assign bad and no_assign_cmd bad

logical predicates. For concreteness, let us consider the two games of the Switch-
ing Lemma. Second, we take two initial distributions st and st’ such that:

Permutation (filter (sets bad 1) st) (filter (sets bad 1) st’) (ii)

With these hypotheses, the following fundamental lemma of game-playing can
be proved formally in Coq (no_assign_cmd_list is a variant of the no_assign_cmd

predicate):

Lemma fundamental_lemma :
∀ prg (c0:nat → cmd) b bad c1 c2 c2’ c3 e q st st’ end end’,
no_assign_cmd_list bad c1 c2 c2’ c3 → (∀ i, no_assign_cmd bad (c0 i)) →
no_assign bad prg → coeff_pos st → coeff_pos st’ → sum st = sum st’ →
Permutation (filter (sets bad 1) st) (filter (sets bad 1) st’) →
prg ||- st --
loop q (fun i => c0 i; ifte b c1 (bad <- int_e 1; c2); c3) --> end →

prg ||- st’ --
loop q (fun i => c0 i; ifte b c1 (bad <- int_e 1; c2’); c3) --> end’ →

Rabs (Pr e end - Pr e end’) <= Pr (sets bad 1) end.

A detailed account of the proof of this lemma can be found in Appendix B. The
next section shows how it can be concretely applied.

5 The PRP/PRF Switching Lemma

The PRP/PRF Switching Lemma is used in security proofs of cryptographic
schemes based on block ciphers. Although block ciphers are assumed to behave
as pseudorandom permutations (PRP), it is easier to consider them as pseudo-
random functions (PRF) in security proofs. The Switching Lemma quantifies in
terms of probabilities the difference induced by this approximation. As explained
in [7], it is non-trivial to prove this lemma correctly; here follows a formal proof.

5.1 Formal Statement

The proof of the Switching Lemma in game-playing assumes an adversary A that
does q queries to two games G0 and G1 that represent respectively a pseudoran-
dom function and a pseudorandom permutation:

Definition G0’ bad (A:nat→nat) i :=
x <- int_e (A i) ;
y <-$- n ;
find_value z (var_e y) ;
ifte (var_e z)
(bad <- int_e 1)
skip;

insert (var_e x) (var_e y).

Definition G0 bad q (A:nat→nat) :=
loop q (G0’ bad A).

Definition G1’ bad (A:nat→nat) i :=
x <- int_e (A i) ;
y <-$- n ;
find_value z (var_e y) ;
ifte (var_e z)
(bad <- int_e 1; any)
skip;

insert (var_e x) (var_e y).

Definition G1 bad q (A:nat→nat) :=
loop q (G1’ bad A).

The bad variable is set when the function built is not a permutation. The differ-
ence between the two games is that, when bad is set, G1 performs a command any.
This command can be anything that does not modify bad; in practice, any sam-
ples y again in a way such that it does build a permutation. We do not need to
be specific about what any does because it is irrelevant to the proof.

The Switching Lemma is formally stated as follows. Starting with a valid
distribution st such that bad is not set, the execution of games G0 and G1 leads
to two distributions st’ and st’’ such that the difference of the probabilities
that an event e occurs is bounded by q(q−1)

2n (where n is the cardinal of the
random sampling):

Lemma switching : ∀ q, q 6= O → ∀ A, (∀ x y, x 6= y → A x 6= A y) →
∀ st, coeff_pos st → sum st > 0 → plength O st →
Pr (sets bad 1) st = 0 →
∀ st’, nil ||- st -- G0 bad q A --> st’ →
∀ st’’, nil ||- st -- G1 bad q A --> st’’ →
∀ e, Rabs (Pr e st’’ - Pr e st’) ≤ INR(q*(q-1))/INR(2*n) * sum st’.

5.2 Formal Proof

The proof of the Switching Lemma consists of the successive application of the
two following lemmas switching_part1 and switching_part2:

Lemma switching_part1 : ∀ q, ∀ A, (∀ x y, x 6= y → A x 6= A y) →
∀ st, coeff_pos st →
∀ st’, nil ||- st -- G0 bad q A --> st’ →
∀ st’’, nil ||- st -- G1 bad q A --> st’’ →
∀ e, Rabs (Pr e st’’ - Pr e st’) ≤ Pr (sets bad 1) st’.

The proof of switching_part1 is by application of the fundamental lemma of
game playing seen in Sect. 4.

The goal of the second part of the Switching Lemma is to upper-bound the
probability that the variable bad is set in game G0. This is a proof by induction
on the number of requests of the adversary but it requires a generalization to
be handled gracefully. We introduce probabilistic predicates for the purpose of
generalization. In the same way that events (defined in Sect. 2) are predicates
for deterministic states dstate, probabilistic predicates are predicates for prob-
abilistic states pstate. Technically, a probabilistic predicate is a Coq function of
type pstate → Prop. For example, the property that all the random oracles of
a probabilistic state have the same length is captured by the predicate plength:

Definition plength (len:nat) (ps:pstate) : Prop :=
∀ p ds, (p, ds) ∈ st → oracle.length (get_oracle ds) = len.

Similarly, the property that the ith key of all the random oracles of a probabilistic
state is k is captured by the predicate pnth_key and the property that the ith
value of all the random oracles of a probabilistic state is uniformly distributed
with probability 1

n is captured by the predicate pnth_value_uniform:

Definition pnth_key (i k:nat) (ps:pstate) :=
∀ p ds, (p, ds) ∈ ps → oracle.nth_key’ i (get_oracle ds) = Some k.

Definition pnth_value_uniform (i n:nat) (st:pstate) :=
∀ m, m < n →
Pr (fun s => beq_nat m (oracle.nth_value i (get_oracle s) O)) st =
1/INR n * sum st.

Using probabilistic predicates, the second part of the Switching Lemma is
stated as follows:

Lemma switching_part2 : ∀ q, q 6= O → ∀ A, (∀ x y, x 6= y → A x 6= A y) →
∀ st, coeff_pos st → sum st > 0 → plength O st →
Pr (sets bad 1) st = 0 →
∀ st’, nil ||- st -- G0 bad q A --> st’ →
plength q st’ ∧
(∀ k, k < q → pnth_key k (A k) st’ ∧ pnth_value_uniform k n st’) ∧
Pr (sets bad 1) st’ ≤ INR(q*(q-1))/INR(2*n) * sum st’.

Intuitively, probabilistic predicates plength, pnth_key, and pnth_value_uniform

capture how the random oracle is transformed from one loop iteration to the
other: at any point of execution, the length of the oracle is equal to the number
of queries so far, the keys of the oracle correspond to the queries so far, and
associated values are all uniformly distributed. In the following, we briefly skim
through the formal proof.

The proof is by induction on the number q of adversary queries, like the proof
by induction of the Gauss formula for the sum of consecutive integers. In the
inductive case, we are led to quantify the difference between the probabilities
that bad is set before and after an iteration of the loop:

Pr (sets bad 1) st’ ≤ Pr (sets bad 1) st + INR(q+1)/INR n * sum st’

This is equivalent to upper-bounding the probability that the randomly sam-
pled y already appears in the values of the random oracle:

Pr (fun s => beq_nat (eval (neg_e (var_e z)) s) 0) st
≤ INR(q+1)/INR n * sum st

The probability of the occurence of a value in the values of the random oracle
can be upper-bounded by the sum of the probabilities that it is equal to each
value, using the general-purpose lemma below:

Lemma Pr_iter_orb : ∀ st len e, coeff_pos st → plength len st →
Pr (fun s => (eval e s) ∈ (oracle.values (get_oracle s))) st ≤
Sum O len (fun x => Pr (fun s =>
beq_nat (eval e s) (oracle.nth_value x (get_oracle s) O)) st).

(Sum O len f is a Coq function for
∑len−1

x=0 f(x).) By the lemma from Sect. 3.4, we
know that the probability that the randomly sampled y is equal to a (randomly
sampled) value of the random oracle is 1

n :

∀ i, i < q+1 → Pr (fun s =>
beq_nat (lookup y s) (oracle.nth_value i (get_oracle s) O)) st =
1/INR n * sum st

Because this probability is a constant, the sum inherited from the previous
lemma is equal to INR(q+1)/INR n * sum st. Using the inductive hypothesis, this
completes the proof of the PRP/PRF Switching Lemma.

6 Related Work

CryptoVerif is a tool to automate proofs of cryptographic protocols in the com-
putational model. In particular, it has been applied to security proofs written
as sequences of games [13]. In CryptoVerif, games are written in a process cal-
culus and game transformations are captured by probabilistic bisimulation rela-
tions. The validity of game transformations sometimes require non-trivial manual
proofs (see Appendix B of [13]). Though our formalization of the game-playing
framework is not as rich as CryptoVerif, our Coq-centric approach provides a
way to avoid manual proofs.

Our probabilistic programming language with probabilities and probabilistic
predicates is reminiscent of probabilistic Hoare logic. The latter has been used
to build the IND-CPA security proof of the ElGamal encryption scheme [12].
Though manual, this proof is so detailed that we think it is close to being formal-
ized. Our formalization of the game-playing framework is not strictly speaking
a formalization of probabilistic Hoare logic, but it gives a good idea of the effort

it would require and, more importantly, how to extend it with random oracles
(which is not done in [12]).

There exist other formalizations of security proofs in the Coq proof assistant.
An early work makes use of the Generic Model and of the Random Oracle Model
but without game-playing [10]. In this formalization, an adversary is defined
as an inductive set of possible actions and this allows for reasoning about its
chances to resolve a challenge. Yet, no use-case has been completely formalized
that demonstrates the effectiveness of this approach. A recent work formalizes
the IND-CPA security proof of the ElGamal encryption scheme by game-playing
in the standard model [15]. In this formalization, games are encoded directly as
Coq functions; the absence of syntax seems to simplify formal reasoning but
it is likely to hinder automation of game transformations, which are syntactic
in nature. Besides this issue, we regard this work as complementary to ours: it
provides an IND-CPA security proof using a formalization of cyclic groups that
can be easily integrated in our formalization.

7 Conclusion

In this paper, we explained a formalization of the game-playing framework of
Bellare and Rogaway in the Coq proof assistant. Our formalization features a
probabilistic language to write games and several reusable lemmas to carry out
security proofs, including in particular an instance of the fundamental lemma of
game-playing. We have illustrated the usefulness of our formalization by proving
the PRP/PRF Switching Lemma. The complete Coq development is available
online [16]. To our knowledge this is the first formalization of game-playing with
a random oracle and a working fundamental lemma used in a complete use-case.
Future Work For the time being, the fundamental lemma of game-playing as it
appears in Sect. 4 can only be applied to a restricted set of games. Of course,
we can easily formalize variants on the same model, but ideally it should be
generalized so as to encompass any pair of “identical-until-bad” games [7].

We already have a good idea of how to extend our formalization of the game-
playing framework to carry out the security proof of the Full-domain Hash sig-
nature scheme from [8]. This will require a formalization of random oracles with
several values per key and, more importantly, introduce concurrency issues aris-
ing from the parallel execution of several oracles.
Acknowledgments The first and second authors acknowledge partial support
from, respectively, the Grant-in-Aid of Special Coordination Funds for Pro-
moting Science and Technology, and the Grant-in-Aid for Young Scientists (B)
(Grant number 187602935003), both by the Ministry of Education, Culture,
Sports, Science and Technology, Japan (MEXT).

References

1. The LogiCal Project, INRIA. The Coq proof assistant: http://coq.inria.fr.

2. Thompson, S. Type Theory and Functional Programming. Addison-Wesley, 1991.

3. Winskel, G. The Formal Semantics of Programming Languages. MIT Press, 1993.

4. Mihir Bellare and Phillip Rogaway. Random Oracle are Practical: A Paradigm for
Designing Efficient Protocols. In 1st ACM Conference on Computer and Commu-
nications Security (CCS 1993), p. 62–73. ACM Press.

5. Mihir Bellare and Phillip Rogaway. The Exact Security of Digital Signatures—
How to Sign with RSA and Rabin. In Advances in Cryptology (EuroCrypt 1996),
volume 1070 of Lecture Notes in Computer Science, p. 399–416. Springer.

6. Victor Shoup. Sequence of Games: A Tool for Taming Complexity in Secu-
rity Proofs. Manuscript. Available at http://www.shoup.net/papers/games.pdf.
2004. Revised 2006.

7. Mihir Bellare and Phillip Rogaway. Code-Based Game-Playing Proofs and the
Security of Triple Encryption. In Advances in Cryptology (EuroCrypt 2006), vol-
ume 4004 of Lecture Notes in Computer Science, p. 409–426. Springer. Extended
version: Cryptology ePrint Archive: Report 2004/331.

8. David Pointcheval. Provable Security for Public Key Schemes. In Contempo-
rary Cryptology, Advanced Courses in Mathematics CRM Barcelona, p. 133–189.
Birkhäuser Publishers, 2005.

9. Shai Halevi. A plausible approach to computer-aided cryptographic proofs. Cryp-
tology ePrint Archive: Report 2005/181.

10. Sabrina Tarento. Machine-Checked Security Proofs of Cryptographic Signature
Schemes. In 10th European Symposium on Research in Computer Security (ES-
ORICS 2005), volume 3679 of Lecture Notes in Computer Science, p. 140–158.
Springer.

11. Nicolas Marti, Reynald Affeldt, and Akinori Yonezawa. Formal Verification of the
Heap Manager of an Operating System using Separation Logic. In 8th International
Conference on Formal Engineering Methods (ICFEM 2006), volume 4260 of Lecture
Notes in Computer Science, p. 400–419. Springer.

12. Ricardo Corin and Jerry den Hartog. A Probabilistic Hoare-style Logic for Game-
Based Cryptographic Proofs. In 33rd International Colloquium on Automata, Lan-
guages and Programming (ICALP 2006), volume 4052 of Lecture Notes in Com-
puter Science, p. 252–263. Springer.

13. Bruno Blanchet and David Pointcheval. Automated Security Proofs with Sequences
of Games. In 26th Annual International Cryptology Conference (CRYPTO 2006),
volume 4117 of Lecture Notes in Computer Science, p. 537-554. Springer. Extended
version: Cryptology ePrint Archive: Report 2006/069.

14. Reynald Affeldt and Nicolas Marti. An Approach to Formal Verification of Arith-
metic Functions in Assembly. In 11th Annual Asian Computing Science Conference
(ASIAN 2006), Focusing on Secure Software and Related Issues, to appear in Lec-
ture Notes in Computer Science. Springer.

15. David Nowak. A Framework for Game-Based Security Proofs. Cryptology ePrint
Archive: Report 2007/199.

16. Reynald Affeldt, Miki Tanaka, and Nicolas Marti. Formal Proof of Provable Se-
curity by Game-playing in a Proof Assistant. Coq scripts. Available at http:

//staff.aist.go.jp/reynald.affeldt/secprf/provsec2007.

A Formalization Excerpt: Operational Semantics

Inductive exec (prg : prog) : pstate → cmd → pstate → Prop :=
| exec_skip : ∀ st, prg ||- st -- skip --> st

| exec_assign : ∀ x e st,
prg ||- st -- x <- e -->
fork ((1, fun s => update x (eval e s) s)::nil) st

| exec_sample_b : ∀ x p st, 0 < p < 1 →
prg ||- st -- x <-b- p -->
fork ((p, update x 1)::(1-p, update x O)::nil) st

| exec_find_value : ∀ x st e,
prg ||- st -- find_value x e -->
fork ((1, fun s =>
update x (oracle.find_value (eval e s) (get_oracle s)) s)::nil) st

| exec_sample_n: ∀ x n st, n > O →
prg ||- st -- x <-$- n --> fork (sample_n_fork_distrib O n n x) st

| exec_ifte : ∀ e c d st st_true st_false stc std,
st_true = filter (fun s => beq_nat (eval (neg_e e) s) O) st →
st_false = filter (fun s => beq_nat (eval e s) O) st →
prg ||- st_true -- c --> stc →
prg ||- st_false -- d --> std →
prg ||- st -- ifte e c d --> stc ++ std

| exec_seq : ∀ st st’’ st’ c d,
prg ||- st -- c --> st’’ →
prg ||- st’’ -- d --> st’ →
prg ||- st -- c ; d --> st’

| exec_insert : ∀ st e e’,
prg ||- st -- insert e e’ -->
fork ((1, fun s => (get_store s,
oracle.insert (eval e s) (eval e’ s) (get_oracle s)))::nil) st

| exec_call : ∀ st st’ callee c,
get_fun_cmd prg callee = Some c →
prg ||- st -- c --> st’ →
prg ||- st -- call callee --> st’

where "prg ||- st -- c --> st’" := (exec prg st c st’).

B Proof Sketch for the Lemma of Sect. 4.3

In order to prove the fundamental lemma of game-playing, we need the fol-
lowing two lemmas identical_until_bad and after_bad_is_set that relate the
condition (ii) and the executions of “identical-until-bad” commands. The lemma
identical_until_bad states that, given two games that are “identical-until-bad”
(defined with no_assign_cmd bad and no_assign bad predicates), the condition (ii)
is preserved by the execution of the games:

Lemma identical_until_bad :
∀ prg (c0:nat → cmd) b bad c1 c2 c2’ c3 q st st’ end end’,
no_assign_cmd_list bad c1 c2 c2’ c3 → (∀ i, no_assign_cmd bad (c0 i)) →
no_assign bad prg → coeff_pos st → coeff_pos st’ →
Permutation (filter (sets bad 1) st) (filter (sets bad 1) st’) →
prg ||- st --
loop q (fun i => c0 i; ifte b c1 (bad <- int_e 1; c2); c3) --> end →

prg ||- st’ --
loop q (fun i => c0 i; ifte b c1 (bad <- int_e 1; c2’); c3) --> end’ →

Permutation (filter (sets bad 1) end) (filter (sets bad 1) end’).

Concerning the lemma after_bad_is_set, note that when both (ii) and sum st

= sum st’ hold, the two initial distributions of the execution have the same
probabilities for the sets bad 1 event. The lemma states that this property is
also preserved after the execution of “identical-until-bad” games:

Lemma after_bad_is_set :
∀ prg (c0:nat → cmd) b bad c1 c2 c2’ c3 q st st’ end end’,
no_assign_cmd_list bad c1 c2 c2’ c3 → (∀ i, no_assign_cmd bad (c0 i)) →
no_assign bad prg → coeff_pos st → coeff_pos st’ → sum st = sum st’ →
Permutation (filter (sets bad 1) st) (filter (sets bad 1) st’) →
prg ||- st --
loop q (fun i => c0 i; ifte b c1 (bad <- int_e 1; c2); c3) --> end →

prg ||- st’ --
loop q (fun i => c0 i; ifte b c1 (bad <- int_e 1; c2’); c3) --> end’ →

Pr (sets bad 1) end = Pr (sets bad 1) end’.

The proof of the fundamental lemma of game-playing proceeds along the
lines of the proof of the abstract fundamental lemma of Sect. 4.1. First, we prove
Pr (sets bad 1) end = Pr (sets bad 1) end’ by direct application of the lemma
after_bad_is_set. Second, using the lemma identical_until_bad we prove

Pr (f ∩ (sets bad 1)) end = Pr (f ∩ (sets bad 1)) end’

which is equivalent to the condition (i) in Sect. 4.1. We use this equality to
eliminate the terms with complement. Then the difference becomes

Rabs (Pr (f ∩ (sets bad 1)) end - Pr (f ∩ (sets bad 1)) end’)

and the rest of the argument is exactly the same as the case of abstract funda-
mental lemma.

