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Abstract

Separation logic is an extension of Hoare logic that is

convenient to verify imperative programs with pointers

and mutable data-structures. Although there exist sev-

eral implementations of verifiers for separation logic, none

of them has actually been itself verified. In this paper, we

propose a verifier for a fragment of separation logic that

is verified inside the Coq proof assistant. This verifier is

implemented as a Coq tactic by reflection to verify sep-

aration logic triples. Thanks to the extraction facility to

OCaml, we can derive a certified, stand-alone, and effi-

cient verifier for separation logic.

1 Introduction

Separation logic is an extension of Hoare logic that
has proved convenient to verify imperative programs
with pointers and mutable data structures [4]. There
exist several implementations of verifiers for separa-
tion logic [9, 10, 12]. However, they all share a com-
mon weak point: they are not themselves verified.

It makes little doubt that a verifier for separation
logic can be verified using a proof assistant. The real
question is: At which price? Indeed, such verifiers are
non-trivial pieces of software. They require manipu-
lation of concepts such as fresh variables, that are
notoriously difficult to get right in a proof assistant.
They also rely on decision procedures for arithmetic
that are not necessarily available in a suitable form.
This means at least a non-negligible implementation
work.

Our contribution is to develop and verify in the
Coq proof assistant [1] a verifier for a fragment of
separation logic. This verifier can be used inside Coq
as a tactic to prove separation logic triples. Thanks
to the extraction facility of Coq to OCaml, this ver-
ifier can also be used as a certified, stand-alone, and
efficient verifier.
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In this paper, we explain the implementation and
the verification of our verifier in the Coq proof assis-
tant. The verifier is organized in several phases for
each of which we provide a correctness lemma proved
in Coq. Though our verifier is not as versatile as ex-
isting prototypes, we believe that it provides a good
evaluation of the effort required by formal verification
and it provides a good basis for further extensions.

The goal of our verifier is to prove automatically
separation logic triples {P}c{Q}, where c is a com-
mand, P and Q are assertions of separation logic.
For the assertions, we cannot use the full separation
logic language because validity is undecidable. In-
stead, we deal with a fragment identified in previ-
ous work by other authors [5, 9] as a good candidate
for automation. We extend this language with Pres-
burger arithmetic so as to be able to handle pointer
arithmetic. The only datatypes we handle are singly-
linked lists, but the ideas extend to other recursive
datatypes such as trees. A formal description of sep-
aration logic follows in Sect. 3; our target assertion
language is formally explained in Sect. 4.

Our verifier is organized in three successive phases:

1. Verification conditions generator: The input
separation logic triple is cut into a list of loop-free
triples.

2. Triple transformation: Every loop-free triple is
turned into logical implications between assertions.

3. Entailment: Every implication derived from the
previous phase is proved valid.

The rest of this paper essentially consists of the suc-
cessive explanation of each phase. In Sect. 5, we ex-
plain the entailment phase. In Sect. 6, we explain the
triple transformation phase. In Sect. 7, we explain
the verification conditions generator. The resulting
tactic amounts to a simple combination of these three
phases, as summarized in Sect. 8. In Sect. 9, we
comment on practical aspects: the size of generated
proof-terms (by comparison with the forward reason-
ing approach) and performance benchmarks for the
derived stand-alone OCaml verified. Sect. 10 is dedi-
cated to comparison with related work. We conclude
in Sect. 11.



2 Background: Tactics in Coq

There are two ways to verify goals in the Coq proof
assistant: apply successively lemmas until the goal
assertion is proved, or develop and certify a deci-
sion procedure as a Coq function. The latter method
is referred to as reflection. Its main benefit is that
generated proof-terms are small, because the tactic
amounts to computing the return value of a function.
(Another advantage is that it allows for formal proof
in Coq of the completeness of the decision procedure
but we are not concerned with this aspect in this pa-
per.) Let us illustrate this with an example. The
most direct way to prove an inequality over naturals
in Coq is to use Coq native tactics:

Goal 18 <= 30.

repeat constructor.

Qed.

Intuitively, repeat constructor is a tactic to solve in-
equalities over naturals. It has the defects to gener-
ate large proof-term (this can be checked with Show

Proof) and to forbid meta-reasoning (there is no way
to prove inside Coq the completeness of this tactic).
To solve such inequalities by reflection, one would
first write a Coq function deciding inequalities and
prove it correct:

Fixpoint leq_nat (x y:nat) {struct x} : bool :=

match x with

| O => true

| S x’ => match y with

O => false | S y’ => leq_nat x’ y’ end

end.

Lemma leq_nat_correct : forall x y,

leq_nat x y = true -> x <= y.

Then, our goal can be proved by applying the cor-
rectness lemma:

Goal 18 <= 30.

apply leq_nat_correct; auto.

Qed.

Decision procedures implemented by reflection lead
to short proof-terms and are amenable to complete-
ness proofs. The downside is a more difficult imple-
mentation. This is nonetheless a tactic by reflection
that we propose to implement in this paper.

3 Separation Logic in Coq

The Coq tactic we build in this paper (and from
which we will derive our certified verifier) is tailored
to verification of separation logic triples as defined in
our previous work [11]. In this section, we recall the

aspects of our encoding that are necessary to under-
stand the correctness statements in this paper. All
proof scripts we refer can be found online [13].

3.1 The Programming Language

Separation logic is an extention of Hoare logic with
a native notion of heap and pointers. In separation
logic, the state of a program is a couple of a store
(a map from variables to values) and a heap (a map
from locations to values). There are two commands
to access the heap: lookup (or dereference) and mu-
tation (or destructive update). The syntax of the
programming language in Coq is defined as follows
(file axiomatic.v in [13]):

Inductive cmd : Set :=

| assign : var.v -> expr -> cmd

| lookup : var.v -> expr -> cmd

| mutation : expr -> expr -> cmd

| seq : cmd -> cmd -> cmd

| ifte : expr_b -> cmd -> cmd -> cmd

...

Notation "x <- e" := (assign x e).

Notation "x ’<-*’ e" := (lookup x e).

Notation "e ’*<-’ f" := (mutation e f).

Notation "c ; d" := (seq c d).

...

The type expr (respectively expr_b) is the type of
numerical (resp. boolean) expressions:

Inductive expr : Set :=

| var_e : var.v -> expr

| int_e : val -> expr

| add_e : expr -> expr -> expr

| min_e : expr -> expr -> expr

...

Inductive expr_b : Set :=

| true_b: expr_b

| eq_b : expr -> expr -> expr_b

| neg_b : expr_b -> expr_b

| and_b : expr_b -> expr_b -> expr_b

...

Expressions are evaluated evaluated for a given store
by the functions eval and eval_b:

Fixpoint eval (e:expr) (s:store.s) : Z := ...

Fixpoint eval_b (e:expr_b) (s:store.s):bool:=...

Let us explain the operational semantics informally.
The assignment x <- e updates the value of the vari-
able x with the result of the evaluation of the expres-
sion e in the current state (eval e s, with s the store
of the current state). The lookup x <-* e updates the
value of the variable x with the value contained in-
side the cell of location eval e s. The heap mutation



e1 *<- e2 modifies the cell of location eval e1 s with
the value eval e2 s (heap accesses fail if the accessed
cell is not in the heap).

3.2 The Assertion Language

The assertion language is defined on top of the propo-
sitional language of Coq (the Prop type). Precisely,
an assertion is defined as a function from states to
Coq propositions:

Definition assert := store.s -> heap.h -> Prop.

This technique of encoding is known as shallow en-
coding . It is a convenient way to encode logical con-
nectives and reason using them. For example, the
classical implication of separation logic can be di-
rectly encoded using the classical implication of Coq:

Definition entails (P Q : assert) : Prop :=

forall s h, P s h -> Q s h.

Notation "P ==> Q" := (entails P Q).

There are four constructs specific to separation
logic. The atoms empty (Coq notation: emp) and
mapsto (notation: |->), and the connectives separat-

ing conjunction (notation: **) and separating impli-

cation (notation: -*).

Definition emp : assert := fun s h => h=heap.emp.

Definition mapsto e1 e2 : assert :=

fun s h => exists p, val2loc (eval e1 s) = p /\

h = heap.singleton p (eval e2 s).

Notation "e1 ’|->’ e2" := (mapsto e1 e2).

e1 |-> e2 holds when the heap is a single cell con-
taining the value eval e2 s and whose location is
eval e1 s (val2loc is a cast).

Definition con (P Q : assert) : assert :=

fun s h => exists h1, exists h2,

h1 # h2 /\ h = h1 +++ h2 /\ P s h1 /\ Q s h2.

Notation "P ** Q" := (con P Q).

P ** Q holds when we can split the heap into two
disjoint heaps (disjointness is noted # and union is
noted +++) such that P holds for one of them, and Q

holds for the other.
The separating implication P -* Q holds when Q

holds on the current heap extended with any heap
for which P holds. This connective is essential for
reasoning because it captures logically the notion of
destructive update. But it is seldom used in specifi-
cations because its semantics is not intuitive.

3.3 Separation Logic Triples

The semantics of separation logic triples {P}c{Q} is
defined as follows: considering the program c, for ev-
ery initial state such that the precondition P holds,
(1) the execution ends in a valid state, and (2) the
postcondition Q holds for every final state. Put for-
mally in Coq:

Definition semax’ (c:cmd) (P Q :assert): Prop :=

forall s h,

(P s h -> ~exec (Some (s, h)) c None) /\

(forall s’ h’, P s h ->

exec (Some (s, h)) c (Some (s’, h’)) ->

Q s’ h’).

where exec is a big-step operational semantics.
The axiomatic semantics is defined as a Coq in-

ductive type whose constructors rephrase Reynolds’
axioms [4]:

Inductive semax: assert-> cmd-> assert-> Prop :=

...

Notation "{{ P }} c {{ Q }}" := (semax P c Q).

We formally proved that semax is sound and complete
w.r.t. semax’, in other words, using Reynolds’ axioms,
we can prove any valid separation logic triple.

4 Target Fragment of Separa-

tion Logic

In this section, we present the fragment of the as-
sertion language of separation logic that our verifier
deals with. Basically, this is the same fragment as [5],
where it was chosen as a good candidate for automa-
tion because entailment (classical implication of as-
sertions) is decidable. We extend this fragment with
Presburger arithmetic to handle pointer arithmetic.
Since programs never multiply pointers between each
other, we think that this extension suffices to enable
most verifications; the same extension is done in [12].
The only datatype we deal with is singly-linked lists.
We think that the ideas we develop in this paper for
lists extend to other recursive datatypes such as trees,
along the same lines as [9].

4.1 Syntax and Informal Semantics

Formulas of our fragment represent states symboli-
cally. To represent a store symbolically, we use the
language of boolean expressions expr_b introduced
in Sect. 3.1. This gives us enough expressiveness
to write pointer arithmetic formulas. To represent



a heap symbolically, we use the following fragment
Sigma of the assertion language of separation logic:

Inductive Sigma : Set :=

| emp : Sigma

| singl : expr -> expr -> Sigma

| cell : expr -> Sigma

| star : Sigma -> Sigma -> Sigma

| lst : expr -> expr -> Sigma.

Simply put, this syntax represents the connectives
defined in Sect. 3.2: emp represents the empty heap
like the homonym connective defined by shallow en-
coding; singl is syntax for mapsto; cell e represents a
singleton heap whose contents is unknown; star h h’

is the syntactic separating conjunction (Coq nota-
tion: h ** h’; in informal arguments, we will write ?

for the separating conjunction). In particular, Sigma
does not contain the separating implication of sepa-
ration logic. The novely w.r.t. the shallow encoding
of Sect. 3.2 is the formula lst e e’ that represents
a heap that contains a singly-linked list whose head
has location e and whose last element points to e’,
as illustrated below:

e’

e

To summarize, the syntax of our assertion language
assrt is defined as a product of expr_b and Sigma:

Definition Pi := expr_b.

Definition assrt := prod Pi Sigma.

In informal arguments, we will write 〈π, σ〉 for as-
sertions.

In this section, contrary to Sect. 3.2, we have de-
fined the syntax of formulas directly in Coq. In the
next section, we define their semantics by a satisfia-
bility relation. This technique of encoding is called
deep encoding and is typical of tactics by reflection.
Indeed, the latter need to “parse” the assertion lan-
guage to prove the validity of formulas, what is diffi-
cult to do when the syntax is not an inductive type.

4.2 Formal Semantics

The formal semantics of Sigma is defined
by a satisfiability relation between (syn-
tactic) formulas and states. We define
this relation by a function Sigma_interp of
type Sigma -> store.s -> heap.h -> Prop. Since
store.s -> heap.h -> Prop is precisely the type assert

of formulas in our shallow encoding, we can use the
connective defined by shallow encoding to define the
semantics of Sigma formulas:

Fixpoint Sigma_interp (a : Sigma) : assert :=

match a with

| singl e1 e2 =>

fun s h => (e1 |-> e2) s h /\ eval e1 s <> 0

| cell e => fun s h => (exists v,

(e |-> int_e v) s h) /\ eval e s <> 0

| emp => sep.emp (* the module sep contains

the shallow encoding *)

| star s1 s2 => Sigma_interp s1 **

Sigma_interp s2

| lst e1 e2 => Lst e1 e2

end.

where Lst is an inductive type of the appropriate type
defining singly-linked lists:

Inductive Lst : expr -> expr -> assert :=

| Lst_end: forall e1 e2 s h,

eval e1 s = eval e2 s ->

sep.emp s h ->

Lst e1 e2 s h

| Lst_suiv: forall e1 e2 e3 e4 s h h1 h2,

h1 # h2 -> h = h1 +++ h2 ->

eval e1 s <> eval e3 s ->

eval e1 s <> 0 ->

eval (e1 +e nat_e 1) s <> 0 ->

(e1 |-> e2 ** (e1 +e nat_e 1 |-> e4)) s h1 ->

Lst e2 e3 s h2 ->

Lst e1 e3 s h.

The semantics of our fragment is finally defined
as the conjunction of the satisfiability relations of
its two components (expr_pi is syntactically equal to
expr_b):

Definition assrt_interp (a : assrt) : assert :=

match a with (pi, sigm) =>

fun s h => eval_pi pi s = true /\

Sigma_interp sigm s h

end.

4.3 Disjunctions of Assertions

In fact, we further need to extend our assertion lan-
guage to represent disjunctions of assertions. Intu-
itively, this is because loop invariants are usually
written as disjunctions. We encode disjunctions of
assertions by lists: Definition Assrt := list assrt.
Like for assrt, the semantics of Assrt is defined as a
satisfiability relation, that is simply the disjunction
of the satisfiability relations of the assrt disjuncts
(function Assrt_interp, of type Assrt -> assert).

In informal arguments, we will write 〈π1, σ1〉∨ . . .∨
〈πn, σn〉 for disjunctions of assertions.



5 Entailment

In this section, we present a proof system for en-
tailments of assertions defined in the previous sec-
tion. Using this proof system, we implement a
Coq tactic and a function that prove that valid-
ity for the entailment between two formulas of type
assrt. This section has been written so as to be self-
explanatory; more details can be found in the files
frag_list_entail.v and expr_b_dp.v in [13].

5.1 Entailment Proof System

The proof system we provide is a set of rules to
derive entailments of the form assrt -> assrt -> Prop

such that the lhs (left hand side) semantically implies
the rhs (right hand side). The proof system in Coq
takes the form of a Coq inductive type entail. An
excerpt is displayed in Fig. 2. To ease reading, it is
reproduced informally in Fig. 1. Most rules are fairly
intuitive. For example, we can take a look at the con-
structor entail_coml, that captures the fact that the
separating conjunction is commutative on the left of
implication.

neg b π1

〈π1, emp〉 ` 〈π2, emp〉
entail_incons

π1 → π2

〈π1, emp〉 ` 〈π2, emp〉
entail_tauto

〈π1, σ2 ? σ1〉 ` 〈π, σ〉

〈π1, σ1 ? σ2〉 ` 〈π, σ〉
entail_coml

Π1 → e1 = e3 ∧ e1 6= e4 ∧ e1 6= 0
〈π1, σ1〉 ` 〈π2, σ2 ? e1+1 7→ ? lst e2 e4〉

〈π1, σ1 ? e1 7→ e2〉 ` 〈π2, σ2 ? lst e3 e4〉
entail_lstelim’’’

〈π1 ∧ e1 6= e3, σ1 ? e1 7→ e2 ? e3 7→ e4〉 ` 〈π2, σ2〉

〈π1, σ1 ? e1 7→ e2 ? e3 7→ e4〉 ` 〈π2, σ2〉
entail_sepcon_neq

〈π1 ∧ e1 6= 0, σ1 ? e1 7→ e2〉 ` 〈π2, σ2〉

〈π1, σ1 ? e1 7→ e2〉 ` 〈π2, σ2〉
entail_singl_not_null

Figure 1: entail Proof System (informal excerpt)

We have implemented a tactic (Entail, not ex-
tractable) that iteratively applies the constructors of
entail to solve entailments. Here follows an example
of such a goal; Fig. 3 provides an informal account of
the proof built underneath:

Inductive entail : assrt -> assrt -> Prop :=

| entail_incons : forall pi1 pi2 sig1 sig2,

(forall s, eval_pi pi1 s = true -> False) ->

entail (pi1, sig1) (pi2, sig2)

| entail_tauto : forall pi1 pi2,

(forall s, eval_pi pi1 s = true ->

eval_pi pi2 s = true) ->

entail (pi1, emp) (pi2, emp)

| entail_coml : forall pi1 sig1 sig2 L,

entail (pi1, sig2 ** sig1) L ->

entail (pi1, sig1 ** sig2) L

| entail_lstelim’’’ :

forall pi1 sig1 pi2 sig2 e1 e2 e3 e4,

(forall s, eval_pi pi1 s = true ->

eval_pi (e1 == e3) s = true) ->

(forall s, eval_pi pi1 s = true ->

eval_pi (e1 =/= e4) s = true) ->

(forall s, eval_pi pi1 s = true ->

eval_pi (e1 =/= int_e 0%Z) s = true) ->

entail (pi1, sig1) (pi2, sig2 **

((cell (e1 +e nat_e 1)) ** (lst e2 e4))) ->

entail (pi1, sig1 ** (singl e1 e2))

(pi2, sig2 ** (lst e3 e4))

| entail_star_elim :

forall pi1 pi2 sig1 sig2 e1 e2 e3 e4,

(forall s, eval_pi pi1 s = true ->

eval_pi (e1 == e3) s = true) ->

(forall s, eval_pi pi1 s = true ->

eval_pi (e2 == e4) s = true) ->

entail (pi1, sig1) (pi2, sig2) ->

entail (pi1, sig1 ** (singl e1 e2))

(pi2, sig2 ** (singl e3 e4))

| entail_sepcon_neq :

forall pi1 sig1 pi2 sig2 e1 e2 e3 e4,

entail (pi1 &&& (e1 =/= e3), sig1 **

(singl e1 e2 ** singl e3 e4)) (pi2, sig2) ->

entail (pi1, sig1 **

((singl e1 e2) ** (singl e3 e4))) (pi2, sig2)

| entail_singl_not_null :

forall pi1 sig1 pi2 sig2 e1 e2,

entail (pi1 &&& (e1 =/= (nat_e 0)),

sig1 ** (singl e1 e2)) (pi2, sig2) ->

entail (pi1, sig1 ** (singl e1 e2)) (pi2, sig2)

| ...

Figure 2: entail Proof System (Coq excerpt)

Goal entail

(true_b, list e e’ ** e’ |-> e’’ **

cell (e’+1) ** list e’’ 0)

(true_b, list e 0).

unfold e; unfold e’; unfold e’’.

Entail.

Qed.



We have proved formally in Coq that the entail

proof system is indeed correct, i.e., that only valid
entailments can be derived:

Lemma entail_soundness : forall P Q,

entail P Q ->

assrt_interp P ==> assrt_interp Q.

We think that the entail relation is also complete.
An important point for this relation to be complete
is that it makes explicit the arithmetic constraints
that are deducible from the Sigma formulas. There
are two kinds of such constraints: (1) by definition of
cell and singl, all cells’ locations are strictly posi-
tive integers (e.g., rule entail_singl_not_null), and
(2) cells on both sides of star have pairwise different
locations (e.g., rule entail_sepcon_neq).

5.2 Entailment Verification Proce-

dure

In this section, we explain a Coq function (entail_dp)
that proves entailments. Because it is implemented
as a certified function, it can be used as a tactic by
reflection. It implements a reasoning similar to the
proof system in the previous section but this is no re-
dundant work: we will actually use the Entail tactic
to prove the correctness of the entail_dp function.

5.2.1 Implication Between Heaps

In this section, we explain a function Sigma_impl to
prove the validity of implication between two abstract
heaps. This function iteratively calls the function
elim_common_subheap (Fig. 4), that tries to eliminate,
subheap by subheap, the lhs star sig1 remainder from
the rhs sig2. This elimination is performed by the
function elim_common_cell (Fig. 5), that tries to re-
move the subheap sig from both star sig sig1 and
sig2. It is essentially a case-analysis on both heaps
leading to the application of an entail rule. For
instance, Fig. 5 shows the case for which the rule
entail_lstelim’’’ is applied.

5.2.2 Entailments Between Assertions

In the previous section, we explained a function
Sigma_impl to prove the validity of the implication
between two abstract heaps. In this section, we ex-
plain how to use this function to verify entailments
of assertions.

There are two ways of proving entailments be-
tween assertions (type assrt). The first way is to

Fixpoint elim_common_subheap :

(pi : Pi) (sig1 sig2 remainder : Sigma)

: option (Sigma * Sigma):=

match sig1 with

| star sig11 sig12 =>

match elim_common_subheap pi sig11 sig2

(star sig12 remainder) with

| None => None

| Some (sig11’, sig12’) =>

Some (remove_empty_heap pi

(star sig11’ sig12), sig12’)

end

| _ => elim_common_cell pi sig1 remainder sig2

end.

Figure 4: Elimination of Common Subheaps

Fixpoint elim_common_cell (pi : Pi) (sig sig1

sig2 : Sigma) : option (Sigma * Sigma) :=

match sig2 with

...

| _ => match (sig, sig2) with

...

(* this case correspond to the application

of the constructor entail_lstelim’’’ *)

| (singl e1 e2, lst e3 e4) =>

if andb (expr_b_dp (pi =b> (e1 == e3)))

(andb (expr_b_dp (pi =b> (e1 =/= e4)))

(expr_b_dp (pi =b> (e1 =/= nat_e 0))))

then Some (emp, star

(cell (e1 +e nat_e 1)) (lst e2 e4))

else None

end

end.

Figure 5: Elimintation of Common Cells

prove that the lhs is contradictory (i.e., it implies
False); this corresponds to the application of the rule
entail_incons. The second way is to prove the im-
plication between the abstract heaps on both hand
sides (using Sigma_impl) and to prove the implica-
tion between the abstract stores; this corresponds to
the application of the rule entail_tauto. In order
to prove the implication between abstract stores, we
need a function to decide Presburger arithmetic; for
this purpose, we have certified in Coq a decision pro-
cedure based on Fourier-Motzkin variable elimination
(function expr_b_dp).

The above reasoning is implemented by the func-
tion assrt_entail_dp that extends beforehand the lhs
of the entailment with arithmetic constraints, as de-



true_b→ true_b

〈true_b, emp〉 ` 〈true_b, emp〉
entail_tauto

〈true_b, lst e’’ 0〉 ` 〈true_b, lst e’’ 0〉
entail_lstsamelst

〈true_b, cell e’+1**lst e’’ 0〉 ` 〈true_b, cell e’+1**lst e’’ 0〉
entail_star_elim’’’

〈true_b, e’ 7→e’’**cell e’+1**lst e’’ 0〉 ` 〈true_b, lst e’ 0〉
entail_elim’’’

〈true_b, lst e e’**e’ 7→e’’**cell e’+1**lst e’’ 0〉 ` 〈true_b, lst e 0〉
entail_lstelim

Figure 3: Example of Entailment—List Composition

scribed a the end of Sect. 5.1.

5.2.3 Entailments Between Disjunctions

In the previous section, we explained a function
assrt_entail_dp to verify entailments of assertions
(type assrt). In this section, we explain how to use
this function to verify entailments of disjunctions of
assertions (type Assrt). For this purpose, we use the
set of rules of Fig. 6. Let us explain these rules in
details.

∧

i
(〈πi, σi〉 ` A)

(
∨

i
〈πi, σi〉

)

` A
elim_lhs_disj

∨

i
(〈π, σ〉 ` 〈πi, σi〉)

〈π, σ〉 `
(
∨

i
〈πi, σi〉

)
elim_rhs_disj1

π →
(
∨

i
πi

)

∧

i
(〈π ∧ πi, σ〉 ` 〈true_b, σi〉)

〈π, σ〉 `
(
∨

i
〈πi, σi〉

)
elim_rhs_disj2

Figure 6: Entailment of Disjunctions of Assertions

Elimination of Disjunctions in the Lhs To
eliminate disjunctions in the lhs of the entailment
we use the rule elim_lhs_disj. Thanks to this rule,
we can decompose entailment between Assrt formu-
las into a list of entailments between an assrt formula
(on the lhs) and an Assrt formula (on the rhs) (see
function Assrt_entail_Assrt_dp in [13]).

Elimination of Disjunctions in the Rhs The
elimination of disjunctions in the rhs of the entail-
ment is more delicate. It is possible to use the rule
elim_rhs_disj1 (see function orassrt_impl_Assrt1 in
[13]). But this rule is not complete, as shown by the
following counter-example:

〈true_b, σ〉 ` 〈y = 0, σ〉 ∨ 〈y 6= 0, σ〉

Such rhs are however important because of
loop invariants. To resolve them, we use
the rule elim_rhs_disj2 (see functions orpi and
orassrt_impl_Assrt2 in [13]). In practice, the com-
bined use of these two rules is sufficient.

The entail_dp function is the function that proves
the validity of entailments. It takes as input an assrt

and an Assrt, uses the rules from Fig. 6 to eliminate
the disjunctions in the rhs, and calls assrt_entail_dp

from the previous section:

Definition entail_dp

(a:assrt) (A:Assrt) (l:list (assrt * assrt))

: result (list (assrt * assrt)) := ...

The entail_dp function returns an option type (con-
structor Good if everything is proved). The proof
of correctness of entail_dp amounts to the following
lemma:

Lemma entail_dp_correct: forall A a l,

entail_dp a A l = Good ->

assrt_interp a ==> Assrt_interp A.

6 Triple Transformation

In the previous section, we saw how to solve en-
tailments of assertions of separation logic. In
this section, we explain how to transform a loop-
free separation logic triple into such an entailment.
This section has been written so as to be self-
explanatory; additional details can be found in the
file frag_list_triple.v in [13].

6.1 Language for Weakest-precondi-

tions

Before explaining the triple transformation, we need
to introduce the type wpAssrt. This type represents
the weakest precondition of a program with respect
to its postcondition:

Inductive wpAssrt : Set :=

| wpElt: Assrt -> wpAssrt



| wpSubst: list (var.v*expr)-> wpAssrt-> wpAssrt

| wpLookup: var.v -> expr -> wpAssrt -> wpAssrt

| wpMutation: expr -> expr -> wpAssrt -> wpAssrt

| wpIf: Pi -> wpAssrt -> wpAssrt -> wpAssrt.

The constructor wpElt represents a postcondition
with no program. The wpSubst constructor represents
the weakest precondition of a sequence of assignments
whose postcondition is itself some weakest precondi-
tion, etc.

The interpretation of this language is computed by
a weakest precondition generator using backward sep-
aration logic axioms from [4]:

Fixpoint wpAssrt_interp (a: wpAssrt) : assert :=

match a with

| wpElt a1 => Assrt_interp a1

| wpSubst l L =>

subst_lst2update_store l (wpAssrt_interp L)

| wpLookup x e L => (fun s h => exists e0,

(e |-> e0 ** (e |-> e0 -*

update_store2 x e 0 (wpAssrt_interp L))) s h)

| wpMutation e1 e2 L => (fun s h => exists e0,

(e1|->e0 ** (e1|->e2 -* wpAssrt_interp L)) s h)

| wpIf b L1 L2 => (fun s h =>

(eval_pi b s = true -> wpAssrt_interp L1 s h)

/\

(eval_b b s = false -> wpAssrt_interp L2 s h))

end.

6.2 Triple Transformation Proof Sys-

tem

Now that we have explained wpAssrt, we can explain
the role of the tritra proof system. It has type
assrt -> wpAssrt -> Prop. Intuitively, the two parame-
ters form a triple of separation logic: the first param-
eter is a assertion of separation logic (a precondition)
and the second parameter is a weakest precondition,
or equivalently a program with a postcondition. The
constructors of the tritra proof system represent el-
ementary triple transformations. Fig. 7 contains an
informal excerpt of the proof system; for reference,
the formal Coq counterpart appears in Fig. 8.

The two rules tritra_lookup and tritra_mutation

are intuitive because the lookup (resp. mutation)
is the leading command of the program. When
lookups and mutations are preceded by assign-
ments, the transformation rules must take care of
captures of variables, as exemplified by the rule
tritra_subst_lookup. Despite these technical diffi-
culties (in particular, the usage of fresh variables),
we managed to prove the soundness of this proof sys-
tem inside Coq:

π1 → v1 = e1

{π1, σ1 ? e1 7→ e2}x1←e2; c{π2, σ2}

{π1, σ1 ? e1 7→ e2}x1← ∗v1; c{π2, σ2}
tritra_lookup

π1 → v1 = e1

{π1, σ1 ? e1 7→ v2}c{π2, σ2}

{π1, σ1 ? e1 7→ e2}v1∗ ←v2; c{π2, σ2}
tritra_mutation

{π1, σ1 ? e1 7→ e2}
x′←e2; x1←v1; . . . ; xn←vn; x←x′; c

{π2, σ2}
π1 → e1 = e[vn/xn] . . . [v1/x1]

{π1, σ1 ? e1 7→ e2}x1←v1; . . . ; xn←vn; x← ∗e; c{π2, σ2}
tritra_subst_lookup

Figure 7: tritra Proof System (informal excerpt)

Lemma tritra_soundness :

forall P Q, tritra P Q ->

assrt_interp P ==> wpAssrt_interp Q.

6.3 Triple Transformation Procedure

Equipped with the tritra proof system, we can
transform any valid triple {P}c{Q} into a cou-
ple (P, Q′) where Q′ is a wpAssrt of the form
wpElt. The implication P → Q′ (or equivalently
the entailment P ` Q′) can then be solved by
entail_dp. This operation is implemented by the
function tritra_step of type Pi -> Sigma -> wpAssrt ->

option (list ((Pi * Sigma) * wpAssrt)) that tries to ap-
ply tritra rules (at the price of some rewriting of the
precondition), so as to return a list of subgoals.

The function that implements the whole triple
transformation phase is triple_transformation: it re-
cursively calls tritra_step and then entail_dp on re-
sulting subgoals:

Fixpoint triple_transformation

(P:Assrt) (Q:wpAssrt) {struct P}

: option (list ((Pi * Sigma) * wpAssrt)) := ...

Lemma triple_transformation_correct: forall P Q,

triple_transformation P Q = Some nil ->

Assrt_interp P ==> wpAssrt_interp Q.

7 Verification Conditions Gen-

erator

In the previous section, we explained how to prove
loop-free separation logic triples. In this section, we
explain how to turn a separation logic triple whose



Inductive tritra : assrt -> wpAssrt -> Prop :=

| tritra_lookup : forall pi1 sig1 e1 e2 e x L,

(forall s, eval_pi pi1 s = true ->

eval_pi (e1 == e) s = true) ->

tritra (pi1, sig1 ** (singl e1 e2))

(wpSubst ((x,e2)::nil) L) ->

tritra (pi1, sig1 ** (singl e1 e2))

(wpLookup x e L)

| tritra_mutation :

forall pi1 sig1 e1 e2 e3 e4 L,

(forall s, eval_pi pi1 s = true ->

eval_pi (e1 == e3) s = true) ->

tritra (pi1, sig1 ** (singl e1 e4)) L ->

tritra (pi1, sig1 ** (singl e1 e2))

(wpMutation e3 e4 L)

| tritra_subst_lookup :

forall pi1 sig1 e1 e2 e x x’ l L,

(forall s, eval_pi pi1 s = true ->

eval_pi (e1 == (subst_e_lst l e)) s = true)

-> fresh_lst x’ l -> fresh_wpAssrt x’ L

-> fresh_e x’ (var_e x) ->

tritra (pi1, sig1 ** (singl e1 e2))

(wpSubst ((x,var_e x’)::l++((x’,e2)::nil)) L)

-> tritra (pi1, sig1 ** (singl e1 e2))

(wpSubst l (wpLookup x e L))

| ...

Figure 8: tritra Proof System (Coq excerpt)

loops are annotated with invariants into a list of loop-
free triples. Here again, this section has been written
so as to be self-explanatory; additional details can be
found in the file frag_list_vcg.v in [13].

The generation of loop-free triple from a separation
logic triple is the role of the verification conditions
generator. The main idea of this operation can be
explained as follows. Suppose we are given a triple
{P}c1; whileI b do c; c2{Q} (I is an invariant). To
prove this triple, it is sufficient to prove the three
triples {P}c1{I}, {I ∧ b}c{I}, and {I ∧ ¬b}c2{Q}.
Applying this idea recursively turns a separation logic
triple into a set of loop-free triples, as implemented
by the function vcg:

Fixpoint vcg (c:cmd’) (Q:wpAssrt) {struct c}

: option (wpAssrt * (list (Assrt * wpAssrt)))

:= ...

In addition to a list of subgoals, vcg returns the weak-
est precondition of the program (this is the first pro-
jection of the return value).

The verification of vcg amounts to check that,
under the hypothesis that subgoals can be veri-
fied, the returned condition is indeed a weakest pre-
condition. Recall from Sect. 3.3 that separation

logic triples are noted {{ · }} · {{ · }}; Assrt_interp

and wpAssrt_interp were defined respectively in Sec-
tions 4.3 and 6.1.

Lemma vcg_correct : forall c Q Q’ l,

vcg c Q = Some (Q’, l) ->

(forall A L, In (A, L) l ->

Assrt_interp A ==> wpAssrt_interp L) ->

{{ wpAssrt_interp Q’ }}

proj_cmd c

{{ wpAssrt_interp Q }}.

8 Put It All Together

The resulting verification procedure is a Coq function
that takes as input a command c (annotated with
loop invariants), a precondition P, and a postcondi-
tion Q. First, it calls vcg to compute a set of sufficient
subgoals. Then, it calls triple_transformation for all
these subgoals. If all of them can be proved, it returns
Some nil. Otherwise, it returns the list of unsolved
subgoals for information.

Definition bigtoe_dp (c: cmd’) (P Q: Assrt)

: option (list ((Pi * Sigma) * wpAssrt)) :=

match vcg c (wpElt Q) with

| None => None

| Some (Q’, l) =>

match triple_transformation P Q’ with

| Some l’ =>

match triple_transformations l with

| Some l’’ => Some (l’ ++ l’’)

| None => None

end

| None => None

end

end.

The correctness of this tactic amounts to prove
that, if it returns Some nil, then the corresponding
separation logic triple holds:

Lemma bigtoe_dp_correct: forall P Q c,

bigtoe_dp c P Q = Some nil ->

{{ Assrt_interp P }}

proj_cmd c

{{ Assrt_interp Q }}.

Now, in our formal proofs of Hoare triples, we can
apply this lemma to delegate the proof to the com-
putation of the function bigtoe_dp.

9 Experimental Measurements

In this section, we present a comparison between our
approach and backward/forward reasoning, as well as
a benchmark for our verifier.



9.1 Comparison With Backward and

Forward Reasoning

All previous work on automatic verification of sepa-
ration logic triples use forward reasoning [9, 10, 12].
The main reason is that backward reasoning (using
a standard weakest precondition generator for sep-
aration logic) produces postconditions with separat-
ing implications for which there exists no automatic
prover (as pointed out in [9]). Although decidability
results exist [3, 8, 7], the separating implication is
actually seldom used in specifications of algorithms
(the only exception is [2]). Yet, forward reasoning
has the disadvantage of adding a conjunctive clause,
with possibly a fresh variable, for each variable mod-
ification. This is not desirable in practice because de-
cision procedures for Presburger arithmetic have an
exponential complexity w.r.t. the number of clauses
and variables. Our approach based on the proof sys-
tem tritra can be shown experimentally to produce
less clauses.

In Fig. 9, we illustrate transformation steps for a
program swapping the values of two cells, using our
approach. The transformations produced by forward
and backward reasoning are displayed in Figures 10
and 11. We can observe that tritra does not add
new connectives or variables, contrary to both back-
ward and forward reasoning. (For the latter, no fresh
variables have been introduced, because the variables
modified by the program do not appear in the pre-
condition.)

In order to measure more precisely differences be-
tween our approach and forward reasoning, we have
implemented, inside of Coq, a proof system similar
to [9] extended with pointer arithmetic (file LSF.v

in [13]). We proved interactively several separation
logic triples, and compared the size of the compiled
proofs terms produced by both approaches. This
comparison was done on three different programs.
swap is the separation logic triple whose transforma-
tion is illustrated in Fig. 9. The init(n) program is
a loop that initializes a given field for n contiguous
occurences of a data-structure. This program makes
use of pointer arithmetic, as the loop iteratively in-
crements the value of the pointer to the current
data-structure, while the data-structures locations
are specified by a multiple of the data-structure’s
size in the pre/post-condition. Finally, max3 is a pro-
gram that returns the maximum value of three vari-
ables. The results are presented in Table 1, where
the percentages correspond to the overhead of for-
ward reasoning. We can conclude that our approach

produces smaller proof-terms, because the underlying
arithmetic decision procedure (here, the Coq omega)
applies less lemmas to prove the goals.

Program tritra forward reasoning

swap 16 20 (+19%)
init (5) 46 69 (+33%)
init (10) 138 225 (+38%)
init (15) 195 320 (+39%)
3max 9.0 7.9 (−14%)

Table 1: Size of Proof-terms files in kbytes

9.2 The Extracted OCaml Verifier

Thanks to the extraction facility of Coq, we can ex-
tract the verification function bigtoe_dp (and its un-
derlying functions and data structures) in the OCaml
language. The certified verifier is in file extracted.ml

in [13]. We use OCaml-yacc to parse the input lan-
guage (see files lexer.mll and grammar.mly). The
resulting verifier can handle three kind of goals:
(1) arithmetic formulas (for which all variable are
universally quantified), (2) entailments between as-
sertions of Assrt, and (3) separation logic triples. As
the verification functions return a list of unsolved sub-
goals, the verifier is able to print these subgoals to
help for the debugging of program specifications.

We measure the performance of the OCaml verifier.
The first version uses a decision procedure for arith-
metic based on variable elimination using the Fourier-
Motzkin theorems (FMVE). This is a decision proce-
dure by reflection that we have implemented for our
verifier (the omega tactic of Coq cannot be used be-
cause it is not implemented by reflection). Of course,
this decision procedure has also been verified in Coq
(file expr_b_dp.v in [13]). The second version uses a
non-certified decision procedure based on the Cooper
algorithm [14]. The reason why we provide this sec-
ond version is that our decision procedure for arith-
metic, though necessary for use inside of Coq, is not
optimized enough to solve large arithmetic subgoals.
A certified implementation of a more efficient decision
procedure (such as the Cooper algorithm) is among
our future work (Chaieb and Nipkow already did this
work in the Isabelle proof assistant [6]). Table 2 sum-
marizes the measurements (environment: Pentium IV
2.4GHz with 1GB of RAM).

Here follows a brief description of the benchmark



Program FMVE Cooper

Reverse list 0.240 s 0.111 s
List traversal 0.160 s 0.085 s
List append 147.593 s 0.660 s
Insert head 0.009 s 0.108 s
Insert tail unknown 2.580 s

Table 2: Execution Time

programs: Reverse list is an in-place reverseal of a
list as the one described in [4], List traversal is a
program that iteratively explores each element of a
list, List append merges two lists, and Insert head

(resp. Insert tail) inserts an element at the head
(resp. tail) of a list.

The extracted verifier using the Cooper algorithm
is available for download and testing through a Web
interface, see [13].

10 Related Work

Our main contribution w.r.t. related work is to pro-
vide a certified automatic verifier for separation logic
triples.

Berdine et al. have developed Smallfoot, a tool for
checking separation logic specifications [9]. It uses
symbolic, forward execution to produce verification
conditions, and a decision procedure to prove them.
Although Smallfoot is automatic (even for recursive
and concurrent procedures), the assertion language
does not allow to deal with pointer arithmetic.

Calcagno et al. have proposed an extension of
Smallfoot to verify automatically memory alloca-
tors [10]. More precisely, the assertion language is
extended with: arithmetic, advanced data-structures
(lists with variable-size arrays), and abstract inter-
pretation, allowing to compute automatically loop in-
variants. A prototype has been developed and used
on several examples, such as the Kernighan allocator.

A decision procedure for separation logic with user-
defined data-structure has been proposed in [12].
This decision procedure uses folding/unfolding of
data-structures definitions to prove entailments. A
prototype has been developed and used for verifica-
tion of several functions with advanced invariants.

We believe that the algorithms implemented in
these last two work are so complex that a certified
implementation in Coq would be an order of magni-
tude harder than the work presented in this paper.

11 Conclusion

In this paper, we presented a verification procedure
for a fragment of separation logic together with its
verification in the Coq proof assistant. This verifi-
cation procedure can be used both as a Coq tactic
by reflection and as a stand-alone, certified, and ef-
ficient verifier thanks to Coq extraction in OCaml.
Our verifier is in many ways comparable to Small-
foot, the first automatic verifier for separation logic
triples. Thus, we think that our work gives a good
idea of the effort required to certify a state-of-the-art
verifier for separation logic triples.

As for future work, we are interested in extending
our fragment with commands for allocation of fresh
memory and arrays.
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〈true_b, x 7→vy**y 7→vx〉 ` 〈true_b, x 7→vy**y 7→vx〉

{〈true_b, x 7→vy**y 7→vx〉}t2’ <- vy; t1 <- vx; t2 <- t2’{〈true_b, x 7→vy**y 7→vx〉}
tritra_subst_elt

{〈true_b, x 7→vy**y 7→vy〉}y *<- vx; t2’ <- vy; t1 <- vx; t2 <- t2’{〈true_b, x 7→vy**y 7→vx〉}
tritra_mutation

{〈true_b, x 7→vy**y 7→vy〉}t2’ <- vy; t1 <- vx; t2 <- t2’; y *<- t1{〈true_b, x 7→vy**y 7→vx〉}
tritra_subst_mutation

{〈true_b, x 7→vx**y 7→vy〉}x *<- vy; t2’ <- vy; t1 <- vx; t2 <- t2’; y *<- t1{〈true_b, x 7→vy**y 7→vx〉}
tritra_mutation

{〈true_b, x 7→vx**y 7→vy〉}t2’ <- vy; t1 <- vx; t2 <- t2’; x *<- t2; y *<- t1{〈true_b, x 7→vy**y 7→vx〉}
tritra_subst_mutation

{〈true_b, x 7→vx**y 7→vy〉}t1 <- vx; t2 <-* y; x *<- t2; y *<- t1{〈true_b, x 7→vy**y 7→vx〉}
tritra_subst_lookup

{〈true_b, x 7→vx**y 7→vy〉}t1 <-* x; t2 <-* y; x *<- t2; y *<- t1{〈true_b, x 7→vy**y 7→vx〉}
tritra_lookup

Figure 9: Swap of Cells using our Proof System (see Figures 10 and 11 for the same example using forward
and backward reasoning)

〈t1= vx∧t2=vy, x 7→t2**y 7→t1〉 ` 〈true_b, x 7→vy**y 7→vx〉

{〈t1=vx∧t2=vy, x 7→t2**y 7→vy〉}y *<- t1{〈true_b, x 7→vy**y 7→vx〉}

{〈t1=vx∧t2= vy, x 7→vx**y 7→vy〉}x *<- t2; y *<- t1{〈true_b, x 7→vy**y 7→vx〉}

{〈t1= vx, x 7→vx**y 7→vy〉}t2 <-*y; x *<- t2; y *<-t1{〈true_b, x 7→vy**y 7→vx〉}

{〈true_b, x 7→vx**y 7→vy〉}t1 <-*x; t2 <-*y; x *<-t2; y *<-t1{〈true_b, x 7→vy**y 7→vx〉}

Figure 10: Swap of Cells using Forward Reasoning

〈true_b, x 7→vx**y 7→vy〉 ` ∃v4, y 7→v4**(y 7→v4−?(∃v3, y 7→v3**(y 7→v3−?(∃v2, . . .))))

{〈true_b, x 7→vx**y 7→vy〉}t1 <-*x{∃v3, y 7→v3**(y 7→v3−?(∃v2, y 7→v2**(y 7→t1−?(∃v1, . . .))))}

{〈true_b, x 7→vx**y 7→vy〉}t1<-* x; t2 <-* y{∃v2, y 7→v2**(y 7→t1−?(∃v1, . . .))}

{〈true_b, x 7→vx**y 7→vy〉}t1 <-*x; t2 <-*y; x *<-t2{∃v1, y 7→v1**(y 7→t1−?〈true_b, x 7→vy**y 7→vx〉)}

{〈true_b, x 7→vx**y 7→vy〉}t1 <-*x; t2 <-*y; x *<-t2; y *<-t1{〈true_b, x 7→vy**y 7→vx〉}

Figure 11: Swap of Cells using Backward Reasoning


