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Abstract
TLS is such a widespread security protocol that errors in its imple-
mentation can have disastrous consequences. This responsibility is
mostly borne by programmers, caught between specifications with
the ambiguities of natural language and error-prone low-level pars-
ing of network packets. We provide new Coq libraries for the for-
mal verification of TLS packet processing written in C. The origi-
nality of our encoding of the core subset of C is its use of dependent
types to guarantee statically well-formedness of datatypes and cor-
rect typing. We further equip this encoding with a Separation logic
that enables byte-level reasoning and also provide a logical view
of data structures. We also formalize a significant part of the RFC
for TLS, again using dependent types to capture succinctly con-
straints that are left implicit in the prose document. Finally, we ap-
ply the above framework to an existing implementation of TLS of
which we specify and verify a parsing function for network pack-
ets. Though not yet completed, this experiment already led us to
spot correctness issues with the RFC and the C source code.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Correctness proofs; F.3.1 [Specifying and Verifying
and Reasoning about Programs]: Mechanical Verification

Keywords Dependent types, Coq, C, Separation logic, TLS

1. Introduction
TLS (Transport Layer Security) [14] is such a widespread secu-
rity protocol that errors in its implementation can have disastrous
consequences. This responsibility is mostly borne by programmers,
caught between error-prone low-level programming with C and
specifications with the ambiguities of natural language.

We want to use verification with a proof-assistant to improve
the implementations of TLS. One can think of several ways to use
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proof-assistants to improve the implementations of communica-
tion protocols in general. For example, Sewell et al. developed an
HOL specification of TCP to test implementations of the Socket
API [8]; this proves effective but lets open the question of the
source code adequacy to the programmer’s intent. Brady proposed
to use a dependently-typed programming language to specify and
verify network packet processing [11]; yet, such implementations
continue to be developed in C for performance reasons.

Our purpose is to provide a framework in the Coq proof-
assistant [12] for the interactive verification of C programs that
process TLS packets. Our viewpoint is the following. Program-
mers “almost” always get it right when they write a program. The
problem is that when it comes to security, “almost” is everything.
We believe that it should be possible to use proof-assistants to de-
velop programs that are correct-by-construction by adding just a
little overhead at programming-time. This is a long-term goal but
this is our motivation to work on interactive theorem proving rather
than aiming at full automation.

The main element of our framework is a new library for the ver-
ification of the core subset of C. It is based on Separation logic [25],
a variant of Hoare logic that deals with pointers, the latter being per-
vasively used in network packet processing. The originality of our
encoding is the use of dependent types. Technically, we parametrize
the encoding of C types with a type context and provide functions
to check well-formedness (Sect. 2 and 3); we then use this encod-
ing of C types in an “intrinsic” encoding [7] of C expressions and C
commands that enforces correct typing “by construction” (Sect. 4).
We have encoded standard Separation logic, equipped with the ex-
pected lemmas such as the frame rule. In addition to direct manipu-
lation of memory in terms of bytes, we provide reasoning rules that
treat C data structures in a “logical” way, abstracting low-level de-
tails such as padding. This proves useful even for a simple example
such as the mandatory in-place list reversal (Sect. 5).

The task of processing network packets is disciplined by various
RFCs that describe in a semi-formal fashion the format of the
network packets. In order not to depart from common practice, we
insist on having a formalization of the RFC for TLS that can be
syntactically compared with the original document [14]. This not
only gives us formal grounds to lay down specifications of the C
source code, but also has the side-effect of improving the original
RFC by making precise prose-only statements (Sect. 6).

Finally, we investigate (Sect. 7) application to an existing imple-
mentation of TLS, namely PolarSSL [23]. Concretely, we formal-
ize the function that parses initialization packets, specify it w.r.t. the
formal RFC, and verify it. It is interesting to note that even recent
security bugs can be found in such well-scrutinized functions (e.g.,
CVE-2011-0014 for ClientHello in OpenSSL [22]). At the time of
this writing, the experiment is not yet completed but progress is
significant, and we already found implementation errors.



2. A Standard-Compliant Encoding of C Types
In C, recursive references in types can only appear as pointers, so as
to ensure that all types have a finite size. This can be modeled with
a structurally recursive definition of types [18], but at the price of
a tedious encoding of mutually recursive types. We choose to refer
to C structures by names, using a type context. The result is a more
natural type representation, but also a more involved mechanization
because of non-trivial termination issues.

2.1 Encoding of C Types and of Type Contexts
We define our subset of the C types as an inductive type1:

Inductive typ : Set ∶=
| btyp of ityp | ptyp of typ | styp of tag

Inductive ityp : Set ∶=
| uint | sint | uchar | ulong.

Inductive tag ∶= mkTag : string → tag.

The type typ models: basic arithmetic types (defined in ityp: un-
signed and signed integers, unsigned characters, and unsigned long
integers), pointers types, and structure types (identified by a tag).

To each structure tag, we want to associate a list of pairs of a
string and a typ that model the fields of C structures:

Module Fields <: finmap.EQTYPE.
Definition A ∶= [eqType of seq (string * typ)].
End Fields.

Type contexts are finally obtained by instantiating a module for
finite maps: Module Γ ∶= compmap TagOrder Fields (TagOrder is a
module that equips tag with the lexicographical order).

We say that a type is covered when all the tags it contains are
in the domain of the type context (otherwise it is “incomplete” in C
parlance). Put formally:

Definition cover g t ∶= inc (tags t) ( Γ .dom g).

(The function tags collects the tags in a typ.)

2.2 Well-formedness of Type Contexts
In C, a type context is well-formed when (1) it is complete, (2) it has
no empty structure, and (3) recursion only goes through pointers.
(1) Completeness A context is said complete when all the types in
its codomain are covered:

Definition complete g ∶=
∀ tg flds , Γ .get tg g = ⌊ flds ⌋ →
∀ t, t ∈ unzip2 flds →
∀ tg ’, tg ’ ∈ tags t →
∃ flds ’, Γ .get tg’ g = ⌊ flds ’ ⌋.

Completeness can be decided by checking whether the set of tags
in the codomain of the context is included in the domain.
(2) Non-emptiness Contrary to C++, C forbids empty structure:

Definition no_empty g ∶= ∀ flds ,
flds ∈ Γ .cdom g → size flds ≠ 0.

(3) No cycle No structure can be defined in terms of itself, even
indirectly, unless recursion goes through a pointer. To define this
property, we introduce the notion of nesting of tags:

Definition nested g tg 1 tg 2 ∶=
if Γ .get tg 1 g is ⌊ l ⌋ then

has (fun x ⇒ match x.2 with
| styp tg ⇒ tg 2 = tg | _ ⇒ false
end) l

else false.

1 We have also extended typ to deal with arrays of structures but since we
do not rely on this extension in our use-case we skip this explanation.

This computable relation states that the tag tg 1 refers to a structure
with at least one field whose type contains a structure with tag
tg 2. Using this relation, we build the set of all paths of nested tags
({:n.+1.-tuple tag} is the type of lists of tags of size n.+1):

Definition path_nested g n : Set ∶=
{ p : {:n.+1.- tuple tag} | (thead p ∈ Γ .dom g)

&& path (nested g) (thead p) (behead p) }.

Finally, there is no cycle in a type context when all possible paths
(of any size) do not contain twice the same tag (this is the meaning
of the predicate uniq, sval is the dependent pair projection):

Definition no_cycle g ∶=
∀ n (p : path_nested g n), uniq (sval p).

So, formally, a well-formed context is defined as follows:

Definition wf_ctxt g ∶=
no_cycle g ∧ complete g ∧ no_empty g.

We reflect the well-formedness property to make Coq auto-
matically enforce it. Reflection is a bit involved for (3), essen-
tially because of the universal quantification over the paths’ size
in no_cycle. We observe that if a path has no cycle then its size
is bounded by the size of the type context. Therefore, to decide the
absence of cycles, one only needs to check a finite number of paths,
as provided by the following function, which provably enumerates
all the paths of a given size:

Fixpoint compute_paths g n :
seq {:n.+1.- tuple tag} ∶= ...

Lemma compute_paths_spec g n (p : path_nested g n) :
sval p ∈ (compute_paths g n).

We can now build a function that checks the uniqness of all the
paths and prove that it implies the absence of cycles (iota a b is
the list of the b integers following a; tval is the dependent pair
projection):

Definition no_cycleb g ∶= all
(fun n ⇒ all (fun x ⇒ uniq (tval x))
(compute_paths g n))

(iota 0 (size ( Γ .dom g))) &&
(compute_paths g (size ( Γ .dom g)) = nil).

Lemma no_cycleb_sound g : no_cycleb g → no_cycle g.

Similarly, we reflect (1) and (2) as the functions completeb and
no_emptyb, and arrive at a provably sound boolean definition:

Definition wf_ctxtb g ∶=
no_cycleb g && completeb g && no_emptyb g.

Lemma wf_ctxtb_sound g : wf_ctxtb g → wf_ctxt g.

We finally encode well-formed contexts as dependent pairs; by
combining Coq lazy-parsing rules and reflection-proofs, we even
provide a notation that automatically enforces well-formedness:

Definition wfctxt ∶= {g | wf_ctxt g}.
Notation "\wfctxt{ g }" ∶=

(exist _ g (wf_ctxtb_sound g (eq_refl _))).

Similarly, covered types (or “complete” types in C parlance)
are built as dependent pairs of a type and a proof that the type is
covered by a well-formed type context:

Definition covered (g : wfctxt) : Type ∶=
{t : typ | cover (sval g) t }.

Definition mkCovered g t H : covered g ∶=
exist (cover (sval g)) t H.

Notation "g ’.-typ:’ t " ∶=
(mkCovered g t (eq_refl _)).

We also note “btyp: t” the construction of a covered basic arith-
metic type and “:∗t” the construction of a covered pointer type.



2.3 Example of Type Declaration
Let us consider two self-referential C structures:

{struct cell ;
struct header {struct cell *first ;};
struct cell {char data; struct header *head ;};}

The Coq script below defines the context g that consists of the
cell and header structures, automatically checking that it is well-
formed, and eventually defines the cell and header types, auto-
matically checking that they are covered by g. We will pursue this
example in Sect. 3.2 by providing sizeof calculations.

Definition cell_tg ∶= mkTag "cell".
Definition header_tg ∶= mkTag "header".
Definition cell_flds ∶= ("data", btyp uchar) ::

("head", ptyp (styp header_tg )) :: nil.
Definition header_flds ∶=

("first", ptyp (styp cell_tg )) :: nil.
Definition g ∶= \wfctxt{ "cell" ▹ cell_flds,

"header" ▹ header_flds, ∅ }.
Definition cell ∶= g.-typ: styp cell_tg.
Definition header ∶= g.-typ: styp header_tg.

3. Alignment and Size of C Types
In hardware, a memory access is faster when the address is a mul-
tiple of the alignment of the data. This fact has triggered partic-
ular attention for aligned memory footprints for C types in the C
standard. As a consequence, in the case of structures, preserving
alignment of the data often requires to add padding bytes between
fields. For our encoding of C to be realistic, we need to compute
alignment and correct size information for all types.

3.1 A Generic Traversal Function for C Types
Our goal is to produce a function fp_typ that traverses objects of
type g.-typ to compute some result, such as alignment or sizeof.
For basic arithmetic types or pointers, this is simple: alignments
and sizes are given by definition. But for structures, one needs to
recursively go through all the fields, and termination is non-trivial.

Before all, let us parametrize fp_typ with a record so that it can
be later instantiated to perform different computations:

Variable g : wfctxt.
Record config {Res Tmp : Type} ∶= mkConfig {

f_ityp : ityp → Res ;
f_ptyp : typ → Res ;
f_styp_iter : Tmp → g.-typ * Res → Tmp ;
f_styp_acc : Tmp ;
f_styp_fin : g.-typ → Tmp → Res}.

The functions f_ityp and f_ptyp treat the cases of the basic arith-
metic types and of the pointer types. For structures, we will perform
a (left-)fold over the fields with f_styp_acc as the initial accumu-
lator, f_styp_iter as the iterator function, and f_styp_fin as a “fi-
nalizer function” whose first argument is the styp currently treated.

Although Coq accepts natively only structurally-recursive func-
tions, its standard library allows functions to be built with termi-
nation based on a measure of their arguments. This is enough to
ensure the termination of the following fix-point combinator:

frec : ∀ (Arg Res : Type) (metric : Arg → nat),
(∀ a : Arg ,
(∀ a’ : Arg , metric a’ < metric a → Res) → Res) →

Arg → Res

Hereafter, let us assume that Res is the return type of the traver-
sal function fp_typ, Tmp is the auxiliary type used by the fold on
structures, and c is an arbitrary computation configuration:

Variables Res Tmp : Type.
Variable c : @config Res Tmp.

We now produce a function fp_styp_body such that recursive
traversal for structures will be obtained by using the fix-point com-
binator.

Record Trace : Type ∶= mkTrace {
next : {tg : tag | cover (sval g) (styp tg)} ;
prev_sz : nat ;
prev : {p : path_nested (sval g) prev_sz |

tlast (sval p) = sval next} }.

Definition remains tr ∶=
size ( Γ .dom (sval g)) - prev_sz tr.

Program Definition fp_styp_body (tr : Trace)
(f : ∀ tr’, remains tr’ < remains tr → Res) : Res
∶= ...

The function fp_styp_body has its arguments packed in a dependent
record of type Trace: next is the next structure tag to proceed,
and prev is the path (of size prev_sz) representing the previous
nested calls of the function (with next as its last argument). As
observed in Sect. 2.2, such a path is bounded by the size of the
type context. By defining fp_styp_body’s argument measure as the
difference between the current path and its bound, we can prove
that any recursive call will terminate. This gives us the recursive
function fp_styp for structure traversal, that we use to define the
traversal function fp_typ for any typ traversal:

Definition fp_styp ∶=
frec Trace Res remains fp_styp_body.

Program Definition fp_typ (t : g.-typ) : Res ∶=
match sval t with

| btyp i ⇒ c.( f_ityp) i
| ptyp p ⇒ c.( f_ptyp) p
| styp tg ⇒ fp_styp (mkTrace tg 0 _)

end.

Alignment and Sizeof Here follows the instantiation of fp_typ to
compute alignment:

0 Definition align_ityp it ∶=
1 match it with uint ⇒ 4 | sint ⇒ 4 |
2 uchar ⇒ 1 | ulong ⇒ 8 end.
3 Definition align_config g ∶= mkConfig g
4 align_ityp (fun _ ⇒ 4)
5 (fun a x ⇒ maxn x.2 a)
6 1 (fun _ x ⇒ x).
7 Definition align {g} ∶= fp_typ (align_config g).

This construction respects the C standard. For example, the fact that
the “alignment requirement for a structure type will be at least as
stringent as for the component having the most stringent require-
ments” [17, p. 158] is encoded by taking the maximal alignment of
the structure’s fields types (line 5 above).

To compute the size of a structure, one needs to compute the
padding, as the C standard requires to have all the fields aligned.
We therefore need to use the previous align function together with
a padding function:

Definition padd addr ali ∶=
let r ∶= addr % ali in

if r = 0 then 0 else ali - r.

Here follows the instantiation of fp_typ to compute the size of
datatypes:

0 Definition sizeof_ptr : nat ∶= 4.
1 Definition ptr_len ∶= sizeof_ptr * 8.
2 Definition sizeof_ityp it ∶=



3 match it with uint ⇒ 4 | sint ⇒ 4
4 | uchar ⇒ 1 | ulong ⇒ 8 end.
5 Definition sizeof_config g ∶= mkConfig g
6 sizeof_ityp (fun _ ⇒ sizeof_ptr)
7 (fun a x ⇒ a + padd a (align x.1) + x.2) 0
8 (fun t a ⇒ a + padd a (align t)).
9 Definition sizeof {g} ∶= fp_typ g (sizeof_config g).

This rigorously models the C standard. For example, for structures,
the “rule is that the structure will be padded out to the size the type
would occupy as an element of an array of such types” [17, p.158].
This is achieved by the finalizer function at line 8.

The above definitions let us prove in Coq the expected proper-
ties of alignment and sizeof, e.g.:

Lemma align_sizeof (t : g.-typ) : align t ∣ sizeof t.

3.2 Examples of Alignment and Sizeof
Let us illustrate with the example of Sect. 2.3 the results of sizeof.
For example, it will correctly compute the 3 bytes of padding
between the "data" and the "head" fields of cell structures, whereas
header structures have the same size as the pointer they carry:

Goal (sizeof cell = 1 + 3 + 4). by []. Qed.
Goal (sizeof header = 4). by []. Qed.

4. A Dependently-typed Encoding of Core C
4.1 The Physical View of C Values
The semantics of C exposes details at the byte-level. A value for
C is therefore essentially a list of bytes, whose size ought to corre-
spond to some type, as defined by the following dependent record:

Record phy {g} (t : g.-typ): Type ∶= mkPhy {
phy2seq :> seq (int 8) ;
Hphy : size phy2seq = sizeof t }.

We note ty.-phy the type of physical values of type ty. We will use
physical values in the next sections (Sect. 4.2 and 4.3) to define the
evaluation of C expressions and the execution of C commands.

4.2 Dependently-typed C Expressions
Our encoding of C expressions is an inductive type exp indexed by
a C type that varies in the result types of the different constructors.
This makes it possible to build the type rules into the definition
of the syntax, so that terms are well-typed by construction. For
example, the constant 1 seen as a signed integer (the default in
C) is an expression of type exp (btyp: sint). Assume now that
we are given a variable buf (noted %"buf" when considered as an
expression) of type exp (:∗(btyp: uchar)). If we define addition,
multiplication, etc. only for basic arithmetic types:

| bop_n : ∀ t, binop_ne (* numerical operators *) →
exp (btyp: t) → exp (btyp: t) → exp (btyp: t)

and pointer arithmetic (noted +p) as follows:

| add_p : ∀ t,
exp (:∗ t) → exp (btyp: sint) → exp (:∗ t)

then %"buf"∗ [ 1 ]sc is forbidden but %"buf"+p [ 1 ]sc is allowed,
and moreover deemed to have type exp (:∗(btyp: uchar)), as de-
sired. Here follows a more exhaustive definition of C expressions
(g is a type context and σ is an environment that associates free
variables to types):

Inductive exp {g σ} : g.-typ → Type ∶=
| var_e : ∀ str t, env_get str σ = ⌊ t ⌋ → exp t
| cst_e : ∀ t (v : t.-phy), exp t
| bop_n : ∀ t, binop_ne (* numerical operators *) →

exp (btyp: t) → exp (btyp: t) → exp (btyp: t)
| bop_r : ∀ t, binop_re (* relational operators *) →

exp (btyp: t) → exp (btyp: t) → exp (g.-btyp: uint)
| add_p : ∀ t,

exp (:∗ t) → exp (btyp: sint) → exp (:∗ t)
| bop_p : ∀ t, exp (:∗ t) → exp (:∗ t) →

exp (g.-btyp: uint)
| ifte_e : ∀ t, exp (btyp: uint) →

exp t → exp t → exp t.
(* to continue in Sect. 4.2.2 and 4.2.1 *)

var_e is for variables (noted %"x", etc.); the type of variables is
fixed by the environment σ. cst_e is for constants (noted [ x ]c,
etc.; [ x ]sc (resp. [ x ]uc) is for signed (resp. unsigned) integers);
any list of bytes whose size corresponds to a valid C type can be a
constant. bop_n is for numerical operations over integral types (such
as addition +, left shift ≪, bitwise or ∣ , etc.). bop_r is for relational
operators for arithmetic types (comparisons, etc.); it returns an
integer (0 or 1). add_p is for pointer arithmetic (noted +p). bop_p
is for pointer comparisons. ifte_e is for conditional expressions.

Boolean expressions are implemented similarly (see [2]).

4.2.1 Field Accesses
The constructor fldp of exp is for field access (notation⇒):

0 (* continued from Sect. 4.2 *)
1 | fldp : ∀ f tg t (e : exp (:∗ t)) H t’,
2 assoc_get f (get_fields t tg H) = ⌊ t’ ⌋ →
3 exp (:∗ t’)

We use the type of the dereferenced pointer to check whether the
field is indeed valid (line 2; get_fields t tg H returns the list of
fields of the C structure tagged tg). Note that a field access returns
a pointer to the field instead of the field itself; this is because we do
not support read side-effects from the heap in expressions.

4.2.2 Type Conversions
In C, type conversions between basic integral types may occur im-
plicitly when necessary for execution. For example, when adding
a character to an integer, the character is promoted to an integer
beforehand. These conversions can lead to data loss and misinter-
pretations. For example, when signed integers are used in place of
unsigned integers, a type conversion silently occurs that is in gen-
eral unsafe when the signed integer is strictly negative.

Our encoding of C expressions supports (safe and potentially
unsafe) type conversions. Safety can be decided based on the
types of the conversion (boolean conditions safe, data_loss, and
misinterpret below; see the implementation [2] or standard litera-
ture, e.g. [27, p. 162–163], for the precise definitions):

(* continued from Sect. 4.2 *)
| safe_cast : ∀ t t’, exp (btyp: t) →

UnConv.safe t t’ → exp (btyp: t’)
| unsafe_cast : ∀ t t’, exp (btyp: t) →

UnConv.data_loss t t’ ||
UnConv.misinterpret t t’ → exp (btyp: t’)

Hereafter, “(int) e” is syntax for safe casts to (signed) integers
(automatic checking of boolean conditions can be hidden in nota-
tions). We have chosen to make implicit type conversions visible
(and we write the unsafe casts with uppercases, e.g., “(UINT) e”).
To illustrate, the addition of a character and an integer is written
(int) ([ 5 ]8sc) +[ 5 ]sc.

4.2.3 Evaluation of Expressions
Since expressions are well-typed by construction, the evaluation
of an expression of type t always succeeds and returns a physical
value of type t.-phy. Evaluation is performed w.r.t. a store, which
is essentially a list of identifiers and physical values. We note



[ e ]_s the evaluation of e w.r.t. store s. The complete definition
is a bit long (see [2]) so we just content ourselves with the example
of pointer arithmetic. e 1 +p e 2 is of type pointer to t. Dependent
types impose that e 1 is also a pointer to t and that e 2 is an integer.
First, we evaluate e 1 and convert the result to the value of a pointer
(conversion ptr◃i8 below2). Second, we evaluate e 2 and convert the
result to a finite-size integer (conversion i32◃i8); the latter is further
interpreted as signed (conversion Z◃s). Finally, the pointer is scaled
by the size of the type t:

Fixpoint eval {g σ t} (s : store σ) (e : exp t) :
t.-phy ∶= match e with (* ... *)

| add_p t’ e 1 e 2 ⇒
match [ e 1 ]_s, [ e 2 ]_s with

| mkPhy l 1 H 1, mkPhy l 2 H 2 ⇒
let p ∶= ptr◃ i8 l 1 H 1 in
let k ∶= i32◃ i8 l 2 H 2 in
ptyp ◃ptr t’ (scalez p (sizeof t’) (Z◃s k))

end (* ... *)

4.3 Syntax and Semantics of Core Subset of C
The core subset of C that we formalize is a while-language (the
control-flow is expressed using sequences, while-loops, and struc-
tured branching) with assignment, lookup (memory dereference),
and mutation (destructive update). We derive the syntax and se-
mantics (as well as various lemmas) by instantiating a parametrized
module adapted from previous work [3]. We only need to pro-
vide the syntax and semantics for the basic commands: assignment,
lookup, and mutation.

Like for expressions, the encoding of commands exploits de-
pendent types to enforce well-typed programs by construction. For
example, the lookup constructor defined below requires that the ex-
pression to be dereferenced is of pointer type :∗t and that the des-
tination variable is of the type t (constraint line 5):

0 Inductive cmd0 : Type ∶=
1 | skip
2 | assign : ∀ {t : g.-typ} x, @exp _ σ t →
3 env_get x σ = ⌊ t ⌋ → cmd0
4 | lookup : ∀ {t : g.-typ} x, @exp _ σ (:∗ t) →
5 env_get x σ = ⌊ t ⌋ → cmd0
6 | mutation : ∀ {t : g.-typ}, @exp _ σ (:∗ t) →
7 @exp _ σ t → cmd0 .

We refer to the complete language (with control-flow) as the
type cmd. The constraints can be checked automatically when we
write down concrete programs, so that we can hide them in user-
friendly notations:

Notation "x ’←∗ ’ e" ∶= (@lookup _ x e (eq_refl _)).
Notation "x ’←’ e" ∶= (@assign _ x e (eq_refl _)).
Notation "e 1 ’ ∗← ’ e 2" ∶= (@mutation _ e 1 e 2).

The operational semantics for the basic commands is given in
Fig. 1. It is a relation between an optional state (a pair of a store
s and a heap h) (⊥ represents an execution error). The effect of
an assignment (constructor exec_assign) is to update the store. A
lookup (exec_lookup) evaluates the expression to be dereferenced,
turns the resulting physical value into an address, then uses this
address to get a chunk of memory of the appropriate size from
the heap; finally the value obtained is stored back in the store
(function store_upd). Lookup fails when the addressed memory is
not initialized (constructor exec_lookup_err). The constructors for
mutation should now be self-explanatory.

2 We use many such conversions in this paper. They are displayed for the
sake of completeness but can be ignored on a first reading.

5. Separation Logic for the Core Subset of C
5.1 Hoare Logic for the Core Subset of C
Like for the syntax and the semantics of the core subset of C, the
Hoare logic and its properties are obtained using a parametrized
module from previous work [3]. The type of assertions is shallow-
encoded: Definition assert ∶=store →heap →Prop. Fig. 2 dis-
plays the inductive relation hoare0 of the Hoare triples for the basic
commands. For example, the assignment rule

{P{e/x}}x← e{P}

is encoded by the constructor hoare_assign. Its precondition is ex-
pressed using the predicate transformer wp_assign; since assertions
are shallow-encoded, substitution is encoded by updating the store.
Other Hoare rules should be self-explanatory since they follow the
operational semantics explained in Sect. 4.3.

5.2 The Mapsto Connective of Separation Logic for C
Regarding the encoding of Separation logic, what is new is not
the separating conjunction › or implication −› (their encoding is
as usual, see for example [3]), but rather the primitive mapsto
connective. The mapsto connective is noted e ↦ e′ and holds for
a heap containing one cell with contents e′ at address e. For the
archetypal language of textbook Separation logic, a cell consists
of an (arbitrary-precision) integer. It would not be practical for
C to make every memory byte a cell. A cell ought rather be a
C (physical) value. This amounts to provide a version of mapsto
parametrized with the accessed type (like the “chunks” in Appel
and Blazy’s Separation logic [5]).

The physical values of Sect. 4.1 bear no relation with the mem-
ory of the computer, but C has strict requirements regarding stor-
age. In order to define a meaningful mapsto connective for C, one
needs to abide by alignment rules and the absence of the null
pointer in allocated areas. To define such a relation between a phys-
ical value, an address, and a heap, it suffices, as encoded below,
to prevent the area to overrun the memory (line 4) and to impose
alignment of the physical value (line 5):

0 Inductive phy_mapsto {g} {t : g.-typ} :
1 t.-phy → nat → hp.t → Prop ∶=
2 | mkPhy_mapsto : ∀ a (v : t.-phy) h,
3 hp.cdom h = v → hp.dom h = iota a (sizeof t) →
4 Z ◃nat a + Z ◃nat (sizeof t) < 2ˆptr_len →
5 align t ∣ a →
6 phy_mapsto v a h.

phy_mapsto gives us the basis to define (a raw form of) the mapsto
connective of Separation logic, a ↦p v (subscript “p” for “physi-
cal”) that associates an address a to a (typed) physical value v:

Notation "a ’↦p ’ v" ∶= (fun _ ⇒
phy_mapsto v (nat◃Z (Z◃u (ptr◃ptyp a)))).

5.3 Example of Derived Separation-logic Triple
As an example of reasoning involving the physical mapsto con-
nective, let us consider the first backward-reasoning form for
lookup [26, p.88]:

{∃v.(e↦ v) › (e↦ v −› P{v/x})}x←∗e{P}

First, we provide a definition for the precondition (wp_assign has
been explained in Sect. 5.1):

Inductive wp_lookup_back {t} x H
(e : @exp g σ (:∗ t)) P : assert ∶=

| wp_lkbr1 : ∀ s h (v : t.-phy),
([ e ]_s ↦p v › ([ e ]_ s ↦p v −›

wp_assign x H [ v ]c P)) s h →
wp_lookup_back x H e P s h.



Inductive exec0 : option state → cmd0 → option state → Prop ∶=
| exec_skip : ∀ s, ⌊ s ⌋ � skip ; ⌊ s ⌋
| exec_assign : ∀ s h t x H (e : exp t), ⌊ s, h ⌋ � assign x e H ; ⌊ store_upd s x H [ e ]_s, h ⌋
| exec_lookup : ∀ s h t x H e v, let a ∶= nat◃u (ptr◃ptyp [ e ]_s) in

heap_get t a h = ⌊ v ⌋ → ⌊ s, h ⌋ � lookup x e H ; ⌊ store_upd s x H v, h ⌋
| exec_lookup_err : ∀ s h t x H (e : exp (:∗ t)), let a ∶= nat◃u (ptr◃ptyp [ e ]_s) in

heap_get t a h = ⊥ → ⌊ s, h ⌋ � lookup x e H ; ⊥
| exec_mutation : ∀ s h t e 1 e 2 v, let a ∶= nat◃u (ptr◃ptyp [ e 1 ]_s) in

heap_get t a h = ⌊ v ⌋ → ⌊ s, h ⌋ � e 1 ∗← e 2 ; ⌊ s, heap_upd t a [ e 2 ]_s h ⌋
| exec_mutation_err : ∀ s h t e 1 (e 2 : exp t), let a ∶= nat◃u (ptr◃ptyp [ e 1 ]_s) in

heap_get t a h = ⊥ → ⌊ s, h ⌋ � e 1 ∗← e 2 ; ⊥.

Figure 1. Big-step operational semantics of basic commands of the core subset of C

Inductive wp_assign {t : g.-typ} x H (e : @exp g σ t) (P : assert) : assert ∶=
| wp_assign_c : ∀ s h, P (store_upd s x H [ e ]_s) h → wp_assign x H e P s h.

Inductive wp_lookup {t : g.-typ} x H (e : @exp g σ (:∗ t)) (P : assert) : assert ∶=
| wp_lookup_c : ∀ s h v, heap_get t (nat◃Z (Z◃u (ptr◃ptyp [ e ]_ s))) h = ⌊ v ⌋ →

P (store_upd s x H v) h → wp_lookup x H e P s h.

Inductive wp_mutation {t : g.-typ} (e 1 : @exp g σ (:∗ t)) e 2 (P : assert) : assert ∶=
| wp_mutation_c : ∀ s h v, let a ∶= ptr◃ptyp [ e 1 ]_s in

heap_get t (nat◃Z (Z◃u a)) h = ⌊ v ⌋ →
P s (heap_upd t (nat◃Z (Z◃u a)) [ e 2 ]_s h) → wp_mutation e 1 e 2 P s h.

Inductive hoare0 : assert → cmd0 → assert → Prop ∶=
| hoare_skip : ∀ P, hoare0 P skip P
| hoare_assign : ∀ P t x H (e : exp t), hoare0 (wp_assign x H e P) (assign x e H) P
| hoare_lookup : ∀ P t x H (e : exp (:∗ t)), hoare0 (wp_lookup x H e P) (lookup x e H) P
| hoare_mutation : ∀ P t e 1 (e 2 : exp t), hoare0 (wp_mutation e 1 e 2 P) (mutation e 1 e 2) P.

Figure 2. Hoare logic for basic commands of the core subset of C

Then, the above rule becomes provable using the Hoare triples seen
in Sect. 5.1:

Lemma hoare_lookup_back {t} x H (e : exp (:∗ t)) P :
{ wp_lookup_back x H e P } lookup x e H { P }.

5.4 The Logical View of C Values
It was simple to define the physical view of C values. Yet, it is
not practical to deal with it when it comes to formal verification
of programs. For example, when accessing a structure field, one
does not want to deal with the interleaving padding. To overcome
this issue, we provide a “logical view” of C values. In this view, C
structures are decomposed into the list of their fields, all the way
down to basic datatypes.

Logical values are defined by the inductive type log (Fig. 3, on
the left). We note t.-log for the type of logical values of type t.

Like for physical values, we define a relation between a logical
value, an address, and a heap, stating that the heap contains an
encoding of the logical value and that this encoding is correctly
stored. The difference with the physical mapsto is that it leaves
undefined the contents of the interleaving padding, if any. This
relation is defined by the predicate log_mapsto (Fig. 3, on the
right), and like its physical counterpart, this predicate gives rise
to a “logical mapsto” connective for Separation logic:

Notation "a ’ ↦ l ’ v" ∶= (fun _ ⇒
log_mapsto v (nat◃Z (Z◃u (ptr◃ptyp a)))).

Example: Singly-linked Lists We first define the C type lst of
structures containing two fields: "data" of type uint and "next"
of type pointer to a lst structure:

Definition lst_tg ∶= mkTag "lst".

Definition flds ∶= ("data", btyp uint) ::
("next", ptyp (styp lst_tg )) :: nil.

Definition g ∶= \wfctxt{ "lst" ▹ flds, ∅ }.
Definition lst ∶= g.-typ: (styp lst_tg ).

Using this type, one can define a Separation-logic assertion that
relates a Coq list of int 32 (the contents of the "data" fields) with
a pointer of type :∗lst (that points to the singly-linked list):

Inductive list_seplog :
seq (int 32) → (:∗ lst).-phy → assert ∶=

| list_nil : ∀ s, list_seplog nil phy 0 s hp.emp
| list_cons : ∀ s hd tl h 1 h 2, h 1 ⊥ h 2 →
∀ a p, a ≠ phy 0 →

(a ↦ l mk_cell hd (ptr◃ptyp p)) s h 1 →
list_seplog tl p s h 2 →
list_seplog (hd :: tl) a s (h 1 ⊎ h 2).

where mk_cell constructs a logical value of log lst. The complete
example of in-place reverse-list example can be found online [2].

5.5 Example of Derived Hoare Triple using Logical Values
We formalize a variant of the first backward-reasoning form for
lookup that uses a logical value lv in the mapsto formula and a
“convertible” physical value pv for substitution:

pv & lv

{∃lv pv .(e↦ lv) › ((e↦ lv) −› P{pv/x})}x←∗e{P}

The relation pv & lv identifies pv and lv as two different views of
the same value, in the absence of any padding:

Definition phylog_conv {g} {t : g.-typ}
(pv : t.-phy) (lv : t.-log) ∶=
∀ h a, phy_mapsto pv a h ←→ log_mapsto lv a h.



Inductive log : g.-typ → Type ∶=
| uint_log :

int 32 → log (btyp: uint)
| sint_log :

int 32 → log (btyp: sint)
| uchar_log :

int 8 → log (btyp: uchar)
| ulong_log :

int 64 → log (btyp: ulong)
| ptyp_log :
∀ t, int ptr_len → log (:∗ t)

| styp_log : ∀ t tg H,
logs (get_fields t tg H) → log t

with logs : g.-env → Type ∶=
| nil_logs : logs nil
| cons_logs : ∀ h t,

log h.2 → logs t → logs (h :: t).

Inductive log_mapsto {g} : ∀ {t : g.-typ},
t.-log → nat → hp.t → Prop ∶=

| uint_log_mapsto : ∀ a h (v : (g.-btyp: uint).-log),
hp.dom h = iota a (sizeof (g.-btyp: uint)) →
Z ◃nat a + Z ◃nat (sizeof (g.-btyp: uint)) < 2ˆptr_len →
o i32◃ i8 (hp.cdom h) = ⌊ log_to_uint v ⌋ →
align (g.-btyp: uint) ∣ a →
log_mapsto v a h

| sint_log_mapsto : ... (* similar to uint_log_mapsto *)
| uchar_log_mapsto : ... (* similar to uint_log_mapsto *)
| ulong_log_mapsto : ... (* similar to uint_log_mapsto *)
| ptyp_log_mapsto : ... (* similar to uint_log_mapsto *)
| styp_log_mapsto : ∀ t tg H a vs h pad_sz pad ,

align t ∣ a → logs_mapsto (get_fields t tg H) vs a h →
pad_sz = padd (a + size (hp.dom h)) (align t) →
hp.dom pad = iota (a + size (hp.dom h)) pad_sz →
Z ◃nat (a + size (hp.dom h)) + Z ◃nat pad_sz < 2ˆptr_len →
log_mapsto (styp_log t tg H vs) a (h ⊎ pad)

with logs_mapsto {g} : ∀ (l : g.-env),
logs l → nat → hp.t → Prop ∶=

| nil_logs_mapsto : ∀ a, logs_mapsto nil nil_logs a hp.emp
| cons_logs_mapsto : ∀ hd tl v vs a pad pad_sz h 1 h 2,

pad_sz = padd a (align hd.2) → hp.dom pad = iota a pad_sz →
Z ◃nat a + Z ◃nat pad_sz < 2ˆptr_len →
log_mapsto v (a + pad_sz) h 1 →
logs_mapsto tl vs (a + pad_sz + sizeof hd.2) h 2 →
logs_mapsto (hd :: tl) (cons_logs hd tl v vs) a (pad ⊎ h 1 ⊎ h 2).

Figure 3. Logical view of C values (on the left) and the corresponding mapsto connective (on the right)

This lets us read/write basic arithmetic or pointer types to/from
stored structures in memory. Yet, the relation above does not make
it possible to read/write complete padded structures; in other words,
C programs that manipulate structures as first-class objects would
require a more permissive definition of convertibility. Fortunately,
the above definition is sufficient to already treat many programs,
such as the non-trivial use-case we present in Sect. 7.

Here follows the formalization of the Separation logic rule
above:

Inductive wp_lookup_back_conv {t} x H
(e : @exp g σ (:∗ t)) P : assert ∶=

| wp_lkbr1_conv : ∀ s h
(pv : t.-phy) (lv : t.-log), pv & lv →
([ e ]_ s ↦ l lv › ([ e ]_ s ↦ l lv −›

wp_assign x H [ pv ]c P)) s h →
wp_lookup_back_conv x H e P s h.

Lemma hoare_lookup_back_conv {t} x H
(e : exp (:∗ t)) P :

{ wp_lookup_back_conv x H e P } lookup x e H { P }.

6. Formalization of the RFC of TLS
TLS enhances network applications by providing, on top of TCP,
a cryptographic layer consisting of four protocols: packets from
the Record protocol carry packets from the Handshake, Alert, or
Change Cipher Spec protocols. The description of all these packet
formats in the RFC [14] is semi-formal: a dedicated syntax (the
presentation language) is introduced, but its use is not entirely
consistent and many conditions remain described in prose. Despite
these defects, the RFC is still a useful document. Our purpose is
therefore not to provide a formal alternative to the RFC for TLS
but more modestly to improve it by providing formal definitions
that can be used to verify programs, while still being convincingly
mapped to their informal counterparts (as will be illustrated in
Fig. 5).

6.1 An Encoding of The TLS Presentation Language
The presentation language [14, §4] consists of six datatypes:

1. opaque is the type of bytes.

2. T T’[n] defines the type T’ of fixed-size vectors made of n
bytes, where n is a multiple of the size of T.

3. T T’<a..b> defines the type T’ of variable-size vectors. They
comprise a payload, whose size lies between a and b and that
encodes data structures of type T, and a header (the “length
field”) that is large enough (but no larger) to encode the size
of the payload.

4. enum { e1(v1), ..., en(vn) [[, (m)]] } T defines the enu-
merated type T. The size of the payload must be sufficient to
encode the largest value (one of vi or m). This payload is pre-
ceded by a “length field”, like variable-size vectors above.

5. Structure types are defined as being close to C structures but are
in fact often used as dependent records (see Sect. 6.2).

6. Variants extend structures with fields whose type depends “on
some knowledge that is available within the environment” [14,
§4.6.1]. This “knowledge” is the (implicit) environment (e.g.,
the “length field” of the enclosing Handshake packet in the case
of ClientHello, [14, §7.4.1.2]) or the value of an enumerated
that can come from preceding fields in the structure (e.g., the
body field of Handshake, [14, §7.4]) (in which case we are in fact
dealing with a dependent record).

Putting dependent records aside for a moment (see Sect. 6.2),
we encode the presentation language using the tls_typ inductive
type below. Since it is important for bound-checking in parsing
functions, we give tls_typ the minimum and maximum size of
the underlying list of bytes as parameters. We use dependent types
to check automatically the “length field” of variable-size vectors
(line 6) and enumerateds (lines 10–11), and to check divisibility
constraints on fixed-length vectors. These proof obligations can be



inferred automatically and hidden using notations that mimic those
used in the RFC (see [2] for definitions).

0 Inductive tls_typ : Z → Z → Type ∶=
1 | opaque : tls_typ 1 1
2 | arr : ∀ n, tls_typ n n → ∀ m, 0 ≤ m →
3 m mod n = 0 → tls_typ m m
4 | varr : ∀ n m (t : tls_typ n m) (k : nat) a b,
5 k ≠ O → a ≤ b →
6 b < 2ˆ(k * 8) → 2ˆ((k - 1) * 8) ≤ b →
7 m ≤ (Z ◃nat k) + b →
8 tls_typ (Z ◃nat k + a) (Z ◃nat k + b)
9 | enum : ∀ k l n, uniq l →

10 Zmax_lst l n < 2ˆ(k * 8) →
11 2ˆ((k - 1) * 8) ≤ Zmax_lst l n →
12 tls_typ (Z ◃nat k) (Z ◃nat k)
13 | pair : ∀ {n 1 m 1 n 2 m 2},
14 string * tls_typ n 1 m 1 → tls_typ n 2 m 2 →
15 tls_typ (n 1 + n 2) (m 1 + m 2)
16 | typ_nil : tls_typ 0 0.

Consistency of Definitions in the RFC tls_typ gives a syntax to
formalize many of the packet formats, and its use of dependent
types led us to spot inconsistencies in the RFC. Here is a concrete
example. Fig. 4 shows on the left the Extension type [14, §7.4.1.4]:
by definition, a value of type Extension is represented by at most 2+
2 + 216 bytes. The right part of Fig. 4 displays the Coq counterpart
using tls_typs. The problem is that this type is used to define
the type of the extensions field of ClientHello packets using the
following declaration ([14, §7.4.1.2]. or line 27 in Fig. 5):

Extension extensions <0..2ˆ16 -1 >;

The field extensions is therefore limited to 2 + 216 bytes, which is
not consistent with the definition of Extension that accepts val-
ues 2 bytes larger. tls_typ definitions cannot type because of
this inconsistency. A fix is to restrict a bit more the definition of
extension_data_type in Fig 4:

Definition extension_data_type ∶=
opaque < 0 .. 2ˆ16 - 1 - 2> 2.

Another example of dubious specification is about the size of
variable-size vectors. According to [14, §4.3], it “must be an
even multiple of the length of a single element” which is not
possible in general when variable-size vectors are nested such as
in extensions_type.

6.2 Dealing with Dependent Records in Packet Formats
tls_typ does not give a syntax for the type of structure types
that are in fact dependent records. When this occurs, we resort to
shallow-embedding using Coq dependent records. For this purpose,
we first introduce a generic decoding function for tls_typ.

Fixpoint decode k {n m} (t : tls_typ n m)
(l : seq byte) : bool * seq byte ∶= ...

Definition decoder {n m} (t : tls_typ n m) ∶=
decode (depth t) t.

Definition decodep {n m} (t : tls_typ n m) l ∶=
let: (a, l’) ∶= decoder t l in
a && (size l’ = O).

decoder matches a list l of bytes against a tls_typ t (recursion is on
the depth of t). decodep decides whether a list of bytes conforms to
a tls_typ. We also introduce the type packet p of lists of bytes that
satisfy the predicate p, where p is typically a decoding function:

Record packet (p : seq byte → bool) : Type ∶= {
body :> seq byte ;
decodable : p body }.

As an example of dependent record from TLS, let us consider
the specification of ClientHello packets ([14, § 6.2.1], reproduced

on the left of Fig. 5). There is a dependency between the field
extensions and its predecessors: the predicate extensions_present
decides the presence of extensions depending on the contents of
session_id, cipher_suites, and compression_methods. This relation
is only expressed in prose in the RFC. In the Coq formalization,
each field is expressed as a packet of some predicate. Checking
whether extensions_present is true can be expressed naturally.
Contrary to tls_typ, we have no generic decoder for dependent
records but we can write systematically decoders as follows:

Definition ClientHello_decoder {n}
(_ : decodep uint24 n) l : bool * seq byte ∶=

let (a 1, l 1) ∶= decoder ProtocolVersion l in
let (a 2, l 2) ∶= decoder Random l 1 in
let (a 3, l 3) ∶= decoder SessionID l 2 in
let (a 4, l 4) ∶= decoder cipher_suites_type l 3 in
let (a 5, l 5) ∶= decoder compression_methods_type l 4 in
if extensions_present ( nat ◃ bytes n)

(size l 2 - size l 3) (size l 3 - size l 4)
(size l 4 - size l 5) then

let (a 6, l 6) ∶= decoder extensions_type l 5 in
([&& a 1, a 2, a 3, a 4, a 5 & a 6], l 6)

else
([&& a 1, a 2, a 3, a 4 & a 5], l 5).

Definition ClientHellop {n} (H : decodep uint24 n)
(l : seq byte) : bool ∶=

let (a, l’) ∶= ClientHello_decoder H l in
(a && (size l’ = O)).

ClientHellop_decoder is parametrized by n which is a list of bytes
coming from an outer packet3. Using above ideas, we formalized
many of the packet formats of the TLS protocol; this gives us all
the definitions we need for formal verification of source code.

7. Verification of PolarSSL ClientHello Parsing
We experiment our framework to the verification of the source code
of a parsing function from PolarSSL [23], an implementation of
the TLS protocol. We verify the function ssl_parse_client_hello
(library/ssl_srv.c, version 0.14.0) that parses initialization Clien-
tHello packets. Fig. 6 displays a byte-level presentation of the pack-
ets that ssl_parse_client_hello is intended to parse. It is a Record
protocol packet, containing a Handshake protocol packet (starting
at byte index 5), itself being a ClientHello packet.

7.1 The Main Data Structures
The central data structure in PolarSSL is of type ssl_context. It
records the characteristics of the TLS connection: the stage of
the protocol (field "state"), the version used (fields "*_ver"), the
session number (field "session"), the negotiated cipher suite (field
"cipher" of ssl_session), the session id (field "id" of ssl_session,
the field "length" is the length of the session id), cipher suites of
the server (field "ciphers"), and the nonce for this session (field
"randbytes"). The other fields ("in_hdr", "in_msg", "in_left") are
for navigation into the buffer that stores the bytes coming from the
network (bottom part of Fig. 6). Here follows the corresponding
typ definition (Fig. 7 provides a pictorial representation):

Definition ssl_ctxt ∶=
("state", btyp sint) ::
("major_ver", btyp sint) ::
("minor_ver", btyp sint) ::
("max_major_ver", btyp sint) ::
("max_minor_ver", btyp sint) ::
("session", ptyp ssl_session) ::
("in_hdr", ptyp (btyp uchar)) ::

3 ClientHello packets belong to the Handshake protocol, whose packets are
encapsulated into the Record protocol.



enum {
signature_algorithms (13), (65535)

} ExtensionType;

struct {
ExtensionType extension_type;
opaque extension_data <0..2ˆ16 -1 >;

} Extension;

Definition signature_algorithms ∶= 13.
Definition ExtensionType ∶=

enum 2 { [:: signature_algorithms] } 65535.

Definition extension_data_type ∶= opaque < 0 .. 2ˆ16 - 1 > 2.
Definition Extension ∶=

struct{ ("extension_type", ExtensionType) ;
("extension_data", extension_data_type) }.

Figure 4. Formalization of the Extension type, TLS RFC on the left, Coq formalization on the right

0 struct {
1 uint8 major;
2 uint8 minor;
3 } ProtocolVersion;
4

5 struct {
6 uint32 gmt_unix_time;
7 opaque random_bytes [28];
8 } Random;
9

10 opaque SessionID <0..32 >;
11

12 uint8 CipherSuite [2];
13

14 enum { null(0), (255) } CompressionMethod;
15

16 struct {
17 ProtocolVersion client_version;
18 Random random;
19 SessionID session_id;
20 CipherSuite cipher_suites <2..2ˆ16 -2 >;
21 CompressionMethod
22 compression_methods <1..2ˆ8 -1 >;
23 select (extensions_present) {
24 case false:
25 struct {};
26 case true:
27 Extension extensions <0..2ˆ16 -1 >;
28 };
29 } ClientHello;

Definition ProtocolVersion ∶=
struct{ ("major", uint8) ; ("minor", uint8) }.

Definition Random ∶=
struct{ ("gmt_unix_time", uint32) ;

("random_bytes", opaque [ 28 ])}.
Definition SessionID ∶= opaque < 0 .. 32 > 1.
Definition CipherSuite ∶= uint8 [ 2 ].
Definition cipher_suites_type ∶=

CipherSuite < 2 .. 2ˆ16 - 2 > 2.
Definition CompressionMethod ∶= enum 1 { [:: null] } 255.
Definition compression_methods_type ∶=

CompressionMethod < 1 .. (2 ˆ 8 - 1) > 1

Definition Hello_sz sid ∶= fixed_sz ProtocolVersion +
fixed_sz Random + fixed_sz SessionID + Z ◃nat sid.

Definition ClientHello_sz sid cys cpm ∶= Hello_sz sid +
fixed_sz cipher_suites_type + Z ◃nat cys +
fixed_sz compression_methods_type + Z ◃nat cpm.

Definition extensions_present n sid cys cpm ∶=
ClientHello_sz sid cys cpm < Z ◃nat n.

Structure ClientHello_packet {n} (H: decodep uint24 n) ∶= {
client_version : packet (decodep ProtocolVersion );
random : packet (decodep Random) ;
session_id : packet (decodep SessionID) ;
cipher_suites : packet (decodep cipher_suites_type) ;
compression_methods :

packet (decodep compression_methods_type) ;
extensions : packet ( select(

extensions_present ( nat ◃ bytes n) (size session_id)
(size cipher_suites) (size compression_methods) \) {
(false , decodep struct {}) ;
(true , decodep extensions_type) } ) }.

Figure 5. Formal specification of a ClientHello packet, TLS RFC on the left, Coq on the right. See Fig. 4 for the Extension type.
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("in_msg", ptyp (btyp uchar)) ::
("in_left", btyp sint) ::
("fin_md5", md5_context) ::
("fin_sha 1", sha 1 _context) ::
("ciphers", ptyp (btyp sint)) ::
("randbytes", ptyp (btyp uchar)) :: nil.

Definition ssl_context ∶= styp (mkTag "ssl_context").
Definition ssl_sess ∶=
("cipher", btyp sint) ::
("length", btyp sint) ::
("id", ptyp (btyp uchar)) :: nil.

Definition ssl_session ∶= styp (mkTag "ssl_session").

We can now define the type context g containing the definitions
of PolarSSL for ssl_context, ssl_session, etc.:

Definition g ∶= \wfctxt{"ssl_context" ▹ ssl_ctxt,
"ssl_session" ▹ ssl_sess, "md5_context" ▹ md5_cont,
"sha 1 _context" ▹ sha 1_cont, ∅ }.

7.2 The Parsing Function
Roughly, the original C function ssl_parse_client_hello is around
160 lines long, around 85 lines if we remove comments and debug-
ging information; once converted to Coq, it is around 115 lines. C
expressions are almost ported as they are. Yet, we need to adapt
the original code to structured control-flow by replacing gotos with
if-then-else’s and by merging returns, and, since the expression lan-
guage is side-effect free, some C expressions need to be split into
several commands using temporary variables. This is systematic
enough to be automated, and indeed this is actually what is done in
other proof assistant-based verification projects such as seL4 [29].

The formal model of the PolarSSL function that parses Clien-
tHello packets of TLS version 1.0 can be found online [2] or in
Appendix A (Fig. 8 and 9). Its variables are typed according to the
following environment σ:

Definition σ : g.-env ∶= ("ret", btyp: sint) ::
("ssl", :∗ (g.-typ: ssl_context )) ::
("buf", :∗ (btyp: uchar)) :: ("n", btyp: sint) ::
("sess_len", btyp: sint) ::
("ciph_len", btyp: sint) ::
("comp_len", btyp: sint) :: ("i", btyp: sint) ::
("j", btyp: sint) :: ("p", :∗ (btyp: uchar)) :: ...

Dealing with External Functions ssl_parse_client_hello calls
several library functions, such as PolarSSL-specific functions (e.g.,
ssl_fetch_input, a function that reads bytes from the input socket
to fill a buffer), or standard C functions (memset, memcpy, etc.). For
the time being, we just axiomatize their correctness in the form of
Separation-logic triples.

Since we do not have yet a proper encoding of function calls,
we formalize external functions by augmenting the cmd type with
axioms. To encode call-by-value semantics, we also axiomatize
the fact that no variable is modified by an external function. Here
follows the example of memcpy:

(* void *memcpy(void *d, const void *s, size_t l); *)
Definition size_t ∶= g.-btyp: uint.
Definition void_p ∶= g.-typ: ptyp (btyp uchar).
Axiom memcpy : ∀ x, env_get x σ = ⌊ void_p ⌋ →

@exp g σ void_p → @exp g σ void_p →
@exp g σ size_t → cmd.

Lemma memcpy_triple x H e l D S
(ret src : exp (:∗ (btyp: uchar ))) :
size S = nat◃u l → size D = nat◃u l →
{ !b b[ e = [uint ◃ i32 l ]c ] › src ↦ S › ret ↦ D }
memcpy x H ret src e
{ !b b[ e = [uint ◃ i32 l ]c ] › src ↦ S › ret ↦ S }.

7.3 Verification Goal, Approach and First Results
We want to prove that, given some input from the network (modeled
as a list of bytes SI, for “socket input”), ssl_parse_client_hello
either fails (by returning a non-zero value, assertion error) or
succeeds (by returning 0, assertion success) in checking that the
incoming packet is valid:

0 Lemma POLAR_parse_client_hello_triple ...
1 { init_ssl_var › init_bu › init_rb › init_id ›

2 init_ses › init_ssl › init_ciphers }
3 ssl_parse_client_hello
4 { error ∨ (success › final_bu › final_rb ›

5 final_id › final_ssl › final_ciphers ›

6 PolarSSLRecordClientHellop SI) }.

The precondition specifies the initial state: the values of the vari-
ables and the state of the heap. This is captured by a Separation
logic formula that formalizes the left part of Fig. 7. init_ssl_var
gives the initial value of the "ssl" variable. init_bu defines the ex-
istence of a buffer for the incoming bytes; it is a sensitive storage
space and verification must make sure that it is not overrun. Simi-
larly, init_rb (resp. init_id, init_ses, init_ssl, init_ciphers) is
space for the nonce of the TLS connection (resp. the initial state of
the session id data structure, of the session id, of the ssl_context
data structure, and the ciphers known by the server).

By way of example, let us look at the init_ssl predicate. It
formalizes in terms of a mapsto formula the central data structure of
Fig. 7. Initially, the stage of the protocol is S74.client_hello4 and
in_left is 0 (no byte read so far), version fields are uninitialized,
and pointer fields are set to point to other data structures:

let init_ssl ∶= %"ssl" ↦le mk_ssl_context
(Z2u 32 S74.client_hello)
majv0 minv0 mmaj0 mmin0
(ptr◃ptyp ses)
(ptr◃ptyp bu +i Z2u ptr_len 8)
(ptr◃ptyp bu +i Z2u ptr_len 13)
032 md5s sha1s
(ptr◃ptyp ciphers) (ptr◃ptyp rb) in

(Z2u converts integers to binary representations, +i is hardware ad-
dition). Parameters md5s and sha1s are for cryptographic functions
but we are not concerned with them in parsing.

The postcondition first specifies that the state of the heap after
parsing has been updated correctly with the incoming data. As for
the precondition, this is captured by a Separation logic formula.
Fig. 7 (right part) provides a pictorial representation that can be
compared with the initial heap state (on the left). final_bu says that
the buffer array is filled with the incoming bytes. final_rb says that
the array for random bytes RB has been half-filled with the client
nonce. final_id says that the session id has been saved. final_ssl
says that the state of the protocol has moved to S74.server_hello
state, etc. final_ciphers says that there is a two-bytes index of a
cipher in SI on which the server has agreed.

Most importantly, PolarSSLRecordClientHellop specifies that
the incoming bytes form a valid ClientHello packet:

Definition PolarSSLRecordClientHellop l ∶=
(* the Record packet is a Handshake *)
!(Z◃u (l_O) = S621.handshake) ›

(* the Handshake packet is a ClientHello *)
!(Z◃u (l_(nat◃Z (S74.Handshake_hd + 1))) =

S74.client_hello) ›

(* requested protocol version is 3 *)
!(Z◃u (l_req_maj) = S621.SSLv30_maj) › ...

4 S74 is a Coq module named after the Section 7.4 of the RFC. We use this
nomenclature to keep track of all the magic numbers from the RFC.
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Figure 7. Pictorial representation of PolarSSL’s memory state before and after parsing a ClientHello packet

Current Status At the time of this writing, verification is not
yet completed but we made significant progress. We passed the
point where the function parses the compression methods header,
that makes for more than two-thirds of the code. What is left is
a search to find out whether the cipher asked by the client is
known by the server. So, we already checked most conditions
in PolarSSLRecordClientHellop, for example that the incoming
packet is a Handshake, that it contains a ClientHello packet,
etc. Ultimately, we should be able to show that the predicate
PolarSSLRecordClientHellop above implies the more general spec-
ification ClientHellop5 Sect. 6.2.
Errors found so far We already found bugs in the course of verifi-
cation. Checks are indeed not sufficient to ensure well-formedness
of packets. Concretely, at the beginning of the function, PolarSSL
retrieves the length of the Handshake packet and checks its value:

n = ( buf [3] << 8 ) | buf [4];
if( n < 45 || n > 512 )
{ return(POLARSSL_ERR_SSL_BAD_HS_CLIENT_HELLO ); }

It later retrieves the length of the session id and also check its value:

sess_len = buf [38];
if( sess_len < 0 || sess_len > 32 )
{ return(POLARSSL_ERR_SSL_BAD_HS_CLIENT_HELLO ); }

But it does not check that the session id can actually be contained
into the Handshake message (in other words, that sess_len is not
too large w.r.t. n). Formal verification stumbles because we try to
memcpy the contents of the session id to a n bytes buffer that may
not be large enough to welcome sess_len more bytes.

8. Related Work
Mechanization of Separation Logic Tuch proposes a formaliza-
tion in the Isabelle proof-assistant of Separation logic for C with an

5 It will not be possible to guarantee that parsing succeeds for any cor-
rect packet because PolarSSL has several restrictions (e.g., Record pack-
ets are assumed to be larger that the Handshake packets they embed—
“Theoretically, a single handshake message might span multiple records,
but in practice this does not occur.”, [24, p.70]; also, PolarSSL does not
handle packets as large as what is allowed by the RFC).

application to a memory allocator [28]. A trusted C-to-HOL trans-
lation is responsible for encoding C types as Isabelle/HOL records
together with lemmas [28, §5.3]; padding is encoded in the form of
extra fields [28, p.140]. Proofs do not fail when types are correct
but “this is fragile and does not scale well” [28, p.146]. In contrast,
we formalize the alignment/sizeof functions completely in Coq and
therefore avoid external trusted machinery. Tuch favors a variant
of Burstall-Bornat memory model for heap access, but this causes
problems with C structures: What is the type of the start address?
The type of the whole structure or of the first field? In compari-
son, we favor direct, byte-level heap access annotated with types.
It is in our Separation logic that we accommodate a logical view of
datatypes to hide low-level details such as padding (Sect. 5.4).

There are several other mechanizations of Separation logic in
proof-assistants but they address archetypal languages, so that en-
coding of types and typed expressions is not as important as in our
case. Ynot [20] is a Coq axiomatization of Hoare Type Theory al-
lowing for Separation logic-like reasoning for an imperative lan-
guage with advanced features such as strong updates. Bedrock [13]
is a framework that emphasizes “mostly automated verification”.
It uses an “idealized machine language” with arbitrary-precision
words and infinite memory (this limitation seems to be addressed in
the latest implementation), without notion of alignment or padding.
In contrast, our formalization of C takes into account realistic hard-
ware constraints. In order to perform verification (Sect. 7.3), we use
semi-automation using tactics like Appel [4].

Winwood et al. propose a different approach to interactive veri-
fication of C programs [29]. There is no Separation logic per se, but
Hoare logic is used to establish simulations [29, Sect. 5.2]. Appli-
cation of this approach to PolarSSL verification would require the
construction of a reference implementation, what would be another
way to formalize the RFC for TLS.

Formalization of the Semantics of C CompCert is a comprehen-
sive formalization of C that supports most of ANSI C. We restrict
ourselves to the core subset of C because, since we are aiming at
verification of C programs, we need to equip instructions with rea-
soning facilities, in particular Separation logic rules. In CompCert,
Separation logic was a side-project for the intermediate language
only [5]. In CompCert, recursive structures must be encoded “struc-
turally”: inner fields can only refer to enclosing fields [9, Sect. 2.1].



This obviates the need to carry a typing environment. We did not
chose this direction because it requires to rework the types from
the original program. We do carry around a typing environment:
this makes the writing of the sizeof function more subtle (Sect. 2.2)
but it becomes more natural to write mutually recursive structures
(Sect. 2.3). Also, we use dependent types so that the Coq type-
checker guarantees that programs are well-typed, thus obviating
the need for explicit type-checking functions (Sect. 4). There are
side-effects in CompCert expressions but when it comes to formal
reasoning this is something that is difficult to handle (this is also a
simplification made in [29]).

One of the last formalization of C semantics is provided by
Ellison et al. [15]. It consists of an executable semantics built on
top of the Maude rewriting system, that allows for the derivation of
an interpreter and a debugger, thus paving the road for a formal
runtime analysis system. However, it has not been designed for
formal verification so that it remains elusive if, and how, one might
build a reasoning system on top of it.

Nita et al. formally explore the platform dependency of the C
semantics [21]. By collecting the platform-dependent parts of a
program, they build a logical formula encoding memory layout
conditions under which the program is memory-safe. The theory
is wrapped up into a static safety analysis tool. While our model
of C instantiates some platform dependent values (such as pointer
size), our library should become parametrizable with a reasonable
amount of work. Still,our work is oriented towards verification of
functional properties, which are more general than safety.
Specification of Network Packets The formal verification of a pars-
ing function naturally calls for a formalization of network packet
formats. This is an issue that we have already tackled [1] with
parsing combinators based on invertible syntax descriptions to sim-
plify the programming of reference implementations. The formal-
ization introduced in Sect. 6 can be seen as a stripped-down ver-
sion with more emphasis on producing a formalization that can be
convincingly compared with the RFC. This turned out to be im-
portant to handle the magic numbers that pop up in implementa-
tions. Producing formal specifications of packet formats has been a
long-standing issue for which types emerged as a promising solu-
tion [19].
Automated Source Code Verification The software stack Frama-
C/Jessie/Why3 proposes a pragmatic approach for verification by
relaxing the minimal trusted base constraint. Frama-C is a plugin-
based framework for analysis of C source code. Hoare-style anno-
tations can be processed by the Jessie plugin to generate verifica-
tion conditions. These goals are generated for Why3 (a framework
for expressing multi-sorted first-order theories) that can discharge
them using a wide set of automated theorem provers, or generate
Coq goals as a last resort. The whole stack has been used for ex-
ample to verify C functions for numerical analysis [10]. No exper-
iment about communication protocols seems to have been carried
out yet. Regarding automated verification of TLS implementations,
Bhargavan et al. successfully verified a small reference implemen-
tation but written with a functional language [6].
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Definition ssl_parse_client_hello ∶=
"ret" ←ssl_fetch_input (%"ssl", [ 5 ]sc) ;
If b[ %"ret" ≠ [ 0 ]sc ] Then

ret
Else (
"buf" ←∗ %"ssl" ⇒ in_hdr ;
"_buf0_" ←∗ %"buf" ;
If b[ (%"_buf0_" & [ -128 ]8sc) ≠ [ 0 ]8sc ] Then

"ret" ← [ POLARSSL_ERR_SSL_BAD_HS_CLIENT_HELLO ]c ; ret
Else (
If b[ %"_buf0_" ≠ [ SSL_MSG_HANDSHAKE ]c ] Then

"ret" ← [ POLARSSL_ERR_SSL_BAD_HS_CLIENT_HELLO ]c ; ret
Else (
"_buf1_" ←∗ %"buf" +p [ 1 ]sc ;
If b[ %"_buf1_" ≠ [ SSL_MAJOR_VERSION_3 ]c ] Then

"ret" ← [ POLARSSL_ERR_SSL_BAD_HS_CLIENT_HELLO ]c ; ret
Else (
"_buf3_" ←∗ %"buf" +p [ 3 ]sc ;
"_buf4_" ←∗ %"buf" +p [ 4 ]sc ;
"n" ← (( (int) %"_buf3_") ≪ [ 8 ]sc) ∣ (int) %"_buf4_" ;
If b[ %"n" < [ 45 ]sc ] Then

"ret" ← [ POLARSSL_ERR_SSL_BAD_HS_CLIENT_HELLO ]c ; ret
Else (
If b[ %"n" > [ 512 ]sc ] Then

"ret" ← [ POLARSSL_ERR_SSL_BAD_HS_CLIENT_HELLO ]c ; ret
Else ((
"ret" ←ssl_fetch_input (%"ssl", [ 5 ]sc + %"n") ;
If b[ %"ret" ≠ [ 0 ]sc ] Then

ret
Else (
"buf" ←∗ %"ssl" ⇒ in_msg ;
"_n0_" ←∗ %"ssl" ⇒ in_left ;
"n" ← %"_n0_" − [ 5 ]sc ;
md5_update (%"ssl" ⇒ fin_md5 , %"buf", %"n") ;
sha 1 _update (%"ssl" ⇒ fin_sha 1, %"buf", %"n") ;
"_buf0_" ←∗ %"buf" ;
If b[ %"_buf0_" ≠ [ SSL_HS_CLIENT_HELLO ]c ] Then

"ret" ← [ POLARSSL_ERR_SSL_BAD_HS_CLIENT_HELLO ]c ; ret
Else (
"_buf4_" ←∗ %"buf" +p [ 4 ]sc ;
If b[ %"_buf4_" ≠ [ SSL_MAJOR_VERSION_3 ]c ] Then

"ret" ← [ POLARSSL_ERR_SSL_BAD_HS_CLIENT_HELLO ]c ; ret
Else (
%"ssl" ⇒ major_ver ∗← (int) ([ SSL_MAJOR_VERSION_3 ]c) ;
"_buf5_" ←∗ %"buf" +p [ 5 ]sc ;
%"ssl" ⇒ minor_ver ∗← (int) (%"_buf5_" ≤ [SSL_MINOR_VERSION_2 ]c ? %"_buf5_" : [SSL_MINOR_VERSION_2 ]c) ;
%"ssl" ⇒ max_major_ver ∗← (int) %"_buf4_" ;
%"ssl" ⇒ max_minor_ver ∗← (int) %"_buf5_" ; (
"_it_" ←∗ %"ssl" ⇒ randbytes ;
"_it_" ←memcpy (%"_it_", %"buf" +p [ 6 ]sc, [ 32 ]uc) ;
"_buf1_" ←∗ %"buf" +p [ 1 ]sc ;
(* continue in Fig. 9 *)

Figure 8. Formal model of the function ssl_parse_client_hello (first half, see Fig. 9 for the second half)



(* continued from Fig. 8 *)
If b[ %"_buf1_" ≠ [ 0 ]8sc ] Then

"ret" ← [ POLARSSL_ERR_SSL_BAD_HS_CLIENT_HELLO ]c ; ret
Else (
"_buf2_" ←∗ %"buf" +p [ 2 ]sc ;
"_buf3_" ←∗ %"buf" +p [ 3 ]sc ;
If b[ %"n" ≠ [ 4 ]sc + (( (int) %"_buf2_" ≪ [ 8 ]sc) ∣ (int) %"_buf3_") ] Then

"ret" ← [ POLARSSL_ERR_SSL_BAD_HS_CLIENT_HELLO ]c ; ret
Else (
"_buf38_" ←∗ %"buf" +p [ 38 ]sc ;
"sess_len" ← (int) %"_buf38_" ;
If b[ %"sess_len" < [ 0 ]sc ∣ ∣ %"sess_len" > [ 32 ]sc ] Then

"ret" ← [ POLARSSL_ERR_SSL_BAD_HS_CLIENT_HELLO ]c; ret
Else
"_ssl_session_0_" ←∗ %"ssl" ⇒ session ; (
%"_ssl_session_0_" ⇒ length ∗← %"sess_len";
"_it_" ←∗ %"_ssl_session_0_" ⇒ id ;
"_it_" ←memset (%"_it_", [ 0 ]sc, [ 32 ]uc) ;
"_ssl_session_0_length_" ←∗ %"_ssl_session_0_" ⇒ length ;
"_it_" ←∗ %"_ssl_session_0_" ⇒ id ;
"_it_" ←memcpy (%"_it_", %"buf" +p [ 39 ]sc, ((UINT) %"_ssl_session_0_length_") ) ;
"_buf39_plus_sess_len_" ←∗ %"buf" +p ([ 39 ]sc + %"sess_len") ;
"_buf40_plus_sess_len_" ←∗ %"buf" +p ([ 40 ]sc + %"sess_len") ;
"ciph_len" ← ( (int) %"_buf39_plus_sess_len_" ≪ [ 8 ]sc) ∣ ( (int) %"_buf40_plus_sess_len_") ; (
If b[ %"ciph_len" < [ 2 ]sc ∣ ∣ %"ciph_len" > [ 256 ]sc ∣ ∣ %"ciph_len" \% 1 ≠ [ 0 ]sc ] Then

"ret" ← [ POLARSSL_ERR_SSL_BAD_HS_CLIENT_HELLO ]c ; ret
Else (
"comp_len ’" ←∗ %"buf" +p ([ 41 ]sc + %"sess_len" + %"ciph_len") ;
"comp_len" ← (int) %"comp_len ’" ;
If b[ %"comp_len" < [ 1 ]sc ∣ ∣ %"comp_len" > [ 16 ]sc ] Then

"ret" ← [ POLARSSL_ERR_SSL_BAD_HS_CLIENT_HELLO ]c ; ret
Else (
"_goto_have_cipher_" ← [ 0 ]sc ;
For("i" ← [ 0 ]sc ;

"_ssl_ciphers_" ←∗ %"ssl" ⇒ ciphers; "_ssl_ciphers_i_" ←∗ %"_ssl_ciphers_" +p %"i" ,
%"_goto_have_cipher_" = [ 0 ]sc && %"_ssl_ciphers_i_" ≠ [ 0 ]sc ;
"i" ++ ){

For("j" ← [ 0 ]sc ; "p" ← %"buf" +p [ 41 ]sc +p %"sess_len" ;
%"_goto_have_cipher_" = [ 0 ]sc && %"j" < %"ciph_len" ;
nop ){

"_p0_" ←∗ %"p" ;
If b[ %"_p0_" = [ 0 ]8uc ] Then

"_p1_" ←∗ %"p" +p [ 1 ]sc ;
If b[ (int) %"_p1_" = %"_ssl_ciphers_i_" ] Then

"_goto_have_cipher_" ← [ 1 ]sc
Else

"j" +← [ 2 ]sc ; "p" +p← [ 2 ]sc
Else

"j" +← [ 2 ]sc ; "p" +p← [ 2 ]sc
}

} ;
If b[ %"_goto_have_cipher_" ≠ [ 0 ]sc ] Then

%"_ssl_session_0_" ⇒ cipher ∗← %"_ssl_ciphers_i_" ;
%"ssl" ⇒ in_left ∗← [ 0 ]sc ;
"_ssl_state_" ←∗ %"ssl" ⇒ _state ;
%"ssl" ⇒ _state ∗← %"_ssl_state_" + [ 1 ]sc ;
"ret" ← [ 0 ]sc ; ret

Else
"ret" ← [ POLARSSL_ERR_SSL_NO_CIPHER_CHOSEN ]c ; ret ))))))))))))))))).

Figure 9. Formal model of the function ssl_parse_client_hello (second half, see Fig. 8 for the first half)


