
Formal Network Packet Processing with Minimal Fuss ∗ †

Invertible Syntax Descriptions at Work

Reynald Affeldt† David Nowak‡ Yutaka Oiwa†
†Research Center for Information Security ‡Information Technology Research Institute

National Institute of Advanced Industrial Science and Technology, Japan
{reynald.affeldt,david.nowak,y.oiwa}@aist.go.jp

Abstract
An error in an Internet protocol or its implementation is rarely be-
nign: at best, it leads to malfunctions, at worst, to security holes.
These errors are all the more likely that the official documentation
for Internet protocols (the RFCs) is written in natural language. To
prevent ambiguities and pave the way to formal verification of In-
ternet protocols and their implementations, we advocate formaliza-
tion of RFCs in a proof-assistant. As a first step towards this goal,
we propose in this paper to use invertible syntax descriptions to
formalize network packet processing. Invertible syntax descriptions
consist in a library of combinators that can be used interchangeably
as parsers or pretty-printers: network packet processing specified
this way is not only unambiguous, it can also be turned into a trust-
ful reference implementation, all the more trustful that there is no
risk for inconsistencies between the parser and the pretty-printer.
Concretely, we formalize invertible syntax descriptions in the Coq
proof-assistant and extend them to deal with data-dependent con-
straints, an essential feature when it comes to parsing network
packets. The usefulness of our formalization is demonstrated with
an application to TLS, the protocol on which e-commerce relies.

Categories and Subject Descriptors D.3.2 [Programing Lan-
guages]: Language Classifications—Applicative (functional) lan-
guages; C.2.2 [Computer-Communication Networks]: Network
Protocols—Protocol verification

General Terms Languages, Standardization, Verification

Keywords data-dependent grammar, Internet protocol, Coq, type
classes, parsing and pretty-printing

1. Introduction
The official documentation for Internet protocols takes the form of
memorandums published by the Internet Engineering Task Force:

∗ This work is supported by the National Institute of Information and Com-
munications Technology of Japan.
†ACM, (2012). This is the authors version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in PLPV’12 Proceedings, VOL#, ISS#,
(Jan. 2012) http://doi.acm.org/10.1145/2103776.2103780

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLPV’12, January 24, 2012, Philadelphia, PA, USA.
Copyright c© ACM [to be supplied]. . . $10.00

the so-called Requests for Comments (RFCs). They are the de facto
standards for the development of network applications but since
they are written in natural language, developers are sometimes led
to resolve inherent ambiguities by reading the source code of other
existing implementations. This “deciphering” task is all the more
difficult that the specifications of Internet protocols are long and
complex. For example, the specification of the Transport Layer
Security protocol (TLS), the Internet protocol that provides privacy
and data integrity to most e-commerce applications, consists of
104 pages [4], and is not self-contained. At best, errors in TLS
implementations can disrupt the usage of network applications;
at worst, they can be exploited by malicious users. In order to
avoid these problems, we advocate the use of formal specification
for Internet protocols. A formal specification not only eliminates
ambiguities, but it also paves the way to formal verification of the
protocol and its implementation.

As a first but substantial step towards formal specification of
Internet protocols, we propose to use invertible syntax descrip-
tions [18] to formalize network packet processing. Invertible syn-
tax descriptions consist of a set of combinators that can be used
interchangeably as parsers or pretty-printers (hereafter, printers).
By formalizing network packet processing with invertible syntax
descriptions, we actually fulfill two important objectives simulta-
neously: (1) we obtain an unambiguous grammar for the syntax of
network packets, and (2) thanks to combinators, this formalization
can be turned into reference implementations for both parsing and
printing. Moreover, the reference implementation obtained in this
way is arguably a trustful one because, and this is to put to the credit
of invertible syntax descriptions, we get rid of inconsistencies that
may arise from the parser and printer being developed separately.

However, invertible syntax descriptions as presented in [18] suf-
fer several limitations. First, because they are implemented in the
Haskell programming language [6], they do not provide the cor-
rectness guarantees expected of a trustful formalization. For exam-
ple, the relations between parsers and printers, such as invertibility,
cannot be checked formally. While formalizing invertible syntax
descriptions in the Coq proof-assistant [21], we also provide for-
mal proofs of properties (cf. Sect. 3.3) about parsing and printing,
thus improving confidence in the formalization of network packet
processing.

The second limitation of invertible syntax descriptions as pre-
sented in [18] is that they do not deal with data-dependent parsing.
Given the advances in parsing technology, the untrained developer
may be misled to think that getting a workable parser is just a mat-
ter of laying down the grammar into the appropriate tool. This is
far from true, as experienced, for example, by Eric Rescorla, a rec-
ognized expert in TLS, who “attempted to write a grammar-driven
parser (using Yacc) for the language with the aim of mechanically
generating a decoder, but abandoned the project in frustration” [19].

The main difficulty is that the grammar of TLS packets is context-
sensitive. For a concrete example, Sect. 7.4 of [4] defines Hand-
shake packets as follows:

struct {
HandshakeType msg_type; /* handshake type */
uint24 length; /* bytes in message */
select (HandshakeType) {

case hello_request: HelloRequest;
/* most cases omitted */
case finished: Finished;

} body;
} Handshake;

The above structure is actually a dependent record. The select
construct introduces a dependency between the last field body and
the value of the first field msg_type. (This syntax is explained in
Sect. 7.4 of [4]; we will come back to it in Sect. 4.1 of this paper). A
clean way to specify such a context-sensitive syntax is to use data-
dependent grammars, where the next grammar rule to apply might
depend on the previously parsed value [11].

Contributions The purpose of this paper is to allow for specify-
ing formally the syntax of binary protocol packets, and to automat-
ically extract reference implementations of a parser and a printer.
Our contributions are (1) a formalization in the Coq proof-assistant
of invertible syntax descriptions that allow to unify parsing and
printing, including formalization of properties such as invertibil-
ity, (2) an extension of invertible syntax descriptions to deal with
data-dependent parsing (data-dependent constraint w.r.t. the parsed
value and also w.r.t. the input list of bytes), and (3) an application
to the TLS protocol. The extraction feature of Coq then allows for
generating automatically a certified parser and a certified printer.

Outline In Sect. 2, we briefly review the state of the art for pars-
ing and printing, including invertible syntax descriptions. In Sect. 3,
we introduce our formalization and extension of invertible syntax
descriptions in the Coq proof-assistant. In Sect. 4, we investigate
the use of invertible syntax descriptions for the specification of TLS
network packets; we illustrate in particular data-dependent parsing
and show that data-dependent constraints need not only be w.r.t.
the parsed value but also w.r.t. the input list of bytes. In Sect. 5, we
discuss practical considerations that come into play when dealing
with a large formalization such as an RFC. In Sect. 6, we discuss
work in progress, review related work in Sect. 7, and conclude in
Sect. 8.

2. Background on parsing and pretty-printing
In this section, we briefly summarize and comment on the most
common approaches to parsing and printing. Parsing (a.k.a. decod-
ing or disassembling when dealing with network packets) consists
in analyzing an input string (a sequence of bytes or characters) into
its syntactic components according to a given grammar. It can either
fail if the input string does not agree with the grammar, or return the
syntactic components organized as an abstract syntax tree (AST).
Printing (a.k.a. encoding or assembling) consists in the reverse pro-
cess that transforms an AST into a string that it represents.

Parsing with Yacc and its variants In the programming lan-
guages community, it is common practice to use the parser gen-
erator Yacc [12] or one of its variants for implementing the parser
in a compiler. Yacc takes as input the formal grammar of the pro-
gramming language and output a parser for it. Although Yacc fits
the needs for parsing simple programming languages, it has too
much limitations for other uses such as the parsing of domain-
specific languages, data formats, configuration files, networking
protocols, etc. In fact, most of those parsers are done by hand and
without using any formal grammar (see [11] for examples).

Parsing with a monad In functional programming, as an alter-
native to parser generator, it is common to encode a parser as a
monad. A monad is an algebraic structure stemming from category
theory [15] and that has proved useful to model imperative fea-
tures in purely functional programming languages [23]. With this
monadic approach, a parser of values of type A is encoded as a func-
tion that takes as input a list of bytes and either outputs the parsed
value (of type A) and the remaining bytes, or fails in case of a syntax
error [8]. This allows to define grammar constructions as combina-
tors, i.e., higher-order functions that input parsers and output a new
parser. Note that there were already parser combinators long be-
fore monads were introduced in functional programming (See for
example [3]).

Pretty-printing As far as we know, for printing, there is no im-
perative programming tool that might be seen as the counterpart
of Yacc. On the other hand, in functional programming there are
combinator libraries to deal with printing (e.g., [7, 24]). Since they
do not form a monad, it is not obvious how to unify them with
combinator libraries for parsing. This means that we are still facing
redundancy of and potential inconsistencies between two specifica-
tions of the same grammar.

Invertible syntax descriptions Rendel and Ostermann have re-
cently proposed invertible syntax descriptions as a way to unify
parsing and printing [18]. Invertible syntax descriptions is a unique
programming interface that consists of combinators for describing
a grammar. Those combinators are overloaded thanks to the type-
class mechanism provided by the Haskell programming language.
Overloading allows for giving terms completely different seman-
tics depending on the context of their use. A typical example is the
overloading of arithmetic operators. For example, in the expression
“x + y” the semantics of + will be either integer or floating-point
addition depending on the types of x and y. In invertible syntax de-
scriptions, combinators are given two semantics: the first one as a
parser and the second one as a printer.

3. Data-dependent invertible syntax descriptions
In this section, we propose a formalization of invertible syntax
descriptions in Coq. It improves previous work [18] in two ways:
(1) by formally delimiting cases when parsers and printers are
indeed inverse of each other, and (2) by extending invertible syntax
descriptions with combinators for data-dependent constraints [11].
Moreover, data-dependent constraints are not only w.r.t. parsed
data but also w.r.t. the input list of bytes, which is important to
formalize some kinds of network packets (see Sect. 4 for a concrete
illustration using TLS).

In the following, first, we formalize partial isomorphisms
(Sect. 3.1), a prerequisite for formalization of invertible syntax
descriptions. Second, we formalize invertible syntax descriptions
with data-dependent constraints, focusing on the most useful set
of combinators for network packet processing (Sect. 3.2). Then,
we comment on the formal relations between parsers and printers
(Sect. 3.3).

3.1 Partial isomorphisms
A partial isomorphism is a pair of partial functions that are inverse
of each other (on their domain) [18]. We formalize partial isomor-
phisms in Coq by the type Iso:

Record Iso (A B : Type) : Type := {
apply : A → option B ;
unapply : B → option A ;
apply_unapply a b:
apply a = Some b → unapply b = Some a ;
unapply_apply a b:
unapply b = Some a → apply a = Some b

}.

Partial functions are formalized using the option type (fields apply
and unapply). In order to prevent ill-defined partial isomorphisms,
we require proofs that the partial functions are indeed invertible
(fields apply_unapply and unapply_apply). From this definition
we can deduce that, as expected of an inverse, it is unique when
it exists. Note that this comes as an improvement over [18] because
ill-defined partial isomorphisms cannot be prevented as easily in
Haskell.

Variables A B : Type.

Program Definition cons_iso :
Iso (A * list A) (list A) := {|
apply := λ al ⇒ Some (fst al :: snd al);
unapply := λ l ⇒
match l with nil ⇒ None | a::l’ ⇒ Some (a,l’) end

|}.

Program Definition cond_iso (cond:A → bool) :
Iso A A := {|
apply := λ a ⇒ if cond a then Some a else None;
unapply := λ a ⇒ if cond a then Some a else None
|}.

Program Definition undep_iso :
Iso {_:A & B} (A*B) := {|
apply := λ x ⇒ Some (projT1 x, projT2 x);
unapply :=
λ len ⇒ Some (existT _ (fst len) (snd len))

|}.

Program Definition chop_len_iso :
Iso (Z * list A) (list A) := {|
apply := λ nl ⇒
if Z_of_nat (length (snd nl)) == fst nl
then Some (snd nl) else None;
unapply := λ l ⇒ Some (Z_of_nat (length l), l)
|}.

Program Definition Some_iso :
Iso A (option A) := {|
apply := λ a ⇒ Some (Some a);
unapply := λ a ⇒ match a with
| Some a ⇒ Some a
| None ⇒ DEBUG ”Some iso” None end

|}.

Figure 1. Examples of partial isomorphisms

Fig. 1 provides examples of partial isomorphisms to be used
later in this paper (Figures 3, 4, and 9). In one direction, cons_iso
is a total function that adds a value at the head of a list. The inverse
(partial) function splits a list into its head and its tail when it is non-
empty, and fails otherwise. cond_iso is parametrized by a boolean
condition: in both directions, it returns unchanged any input that
satisfies the boolean condition and fails otherwise. undep_iso al-
lows to see a non-dependent pair as a special case of dependent
pair when the type of the second component does not depend on
the value of the first component. chop_len_iso is the isomorphism
between a pair made of a list and its length, and the list alone.
Some_iso adds (and, in the other direction, removes) the construc-
tor Some in front of a value (The function DEBUG used in the defini-
tion is explained in Sect. 5).

Note that only the definitions of the partial functions appear
in Fig. 1; the proof obligations corresponding to apply_unapply

and unapply_apply are generated by Coq and proved by the user
(interactively in general, and automatically in the simplest cases).

3.2 Invertible syntax descriptions in Coq
We use the type class mechanism [20] of Coq to formalize invert-
ible syntax descriptions. This takes the form of a class Syntax that
defines the types of a set of combinators. Fig. 2 summarizes the
most useful set of combinators for network packet processing. The

Class Syntax (T : Type → Type) := {
Tok : T byte ;
Ret : ∀ {A : Type}{_ : EqDec A eq}, A → T A ;
Fail : ∀ (A : Type), T A ;
Map : ∀ {A B : Type}, Iso A B → T A → T B ;
Prod : ∀ {A B : Type}, T A → T B → T (A * B) ;
Many : ∀ {A : Type}, nat → T A → T (list A) ;
(∗ combinators for data−dependent constraints ∗)
Prod_dep : ∀ {A : Type} {B : A → Type},
T A → (∀ a, T (B a)) → T {a : A & B a} ;

Len : ∀ {A : Type}, T A → T (A * Z)
}.

Figure 2. The type class of invertible syntax descriptions with
data-dependent constraints

class Syntax is parametrized by a type T for which we define two
possible instances: one for parsing and one for printing.

The parser instance makes use of a parser whose type is the
same as the one used in a parser monad1 (cf. Sect. 2):

Definition parser (A : Type) : Type :=
list byte → option (A * list byte).
Instance Syntax_parser : Syntax parser := {

(∗ see below for the instances of combinators ∗)
...
}.

A printer of values of type A is encoded as a function that takes
as input a value of type A and either output a list of bytes that is the
printing of the input value, or fail if the value is invalid w.r.t. the
grammar:

Definition printer (A : Type) : Type :=
A → option (list byte).
Instance Syntax_printer : Syntax printer := {

(∗ see below for the instances of combinators ∗)
...
}.

As a result of this formalization, one has to write the grammar only
once by using the combinators, and depending on the context of use
it will either be interpreted as a parser or a printer for the encoded
grammar rule.

Of course, combinators in the class Syntax must be meaningful
as parsers as well as printers. We now go on explaining their
instances.

3.2.1 Basic combinators (no data-dependent constraints)
The combinator Tok (for “token”), as a parser, returns the head of
the input list of bytes, failing when the latter is empty (like in [18],
we talk about tokens but the parser is in fact fed with bytes). In the
parsing instance of the class Syntax, it is defined as follows:

Instance Syntax_parser : Syntax parser := {
Tok := λ s ⇒
match s with
| nil ⇒ None

1 In order to make the parser a monad we would need an additional com-
binator of type T A → (A → T B) → T B. Although there would be
an obvious choice for instantiating this combinator in the case of a parser,
there is no meaningful choice in the case of a printer.

| b :: s’ ⇒ Some (b, s’)
end ;
...
}.

As a printer, the combinator Tok inputs one byte that it returns are
a singleton list. In the printing instance of the type class Syntax, it
is defined as follows:

Instance Syntax_printer : Syntax printer := {
Tok := λ b ⇒ Some [b];
...
}.

The combinator Ret v, as a parser, does not consume any byte
but always returns successfully the value v. As a printer, it only
accepts the value v as input and prints the empty string, while
failing on any other value. This requires decidable equality on the
value type, hence the constraint EqDec A eq in the type of Ret.

The combinator Fail, as a parser or a printer, simply fails by
returns None whatever the input. In terms of grammar, the combi-
nators Tok, Ret v and Fail correspond to terminal symbols, while
the other combinators below correspond to nonterminals.

Map combines a combinator with a partial isomorphism (as de-
fined in Sect. 3.1). The parsing interpretation is as follows: if p

parses values of type A and f is a partial isomorphism from A to B,
then Map f p is the parser that applies the parser p and then the
function f to its result. In the printing interpretation, Map f p is
the printer that first applies f−1 and then prints the result with p.
Fig. 3 provides concrete examples of the use of Map. guard cond p

is like p except that it fails if the parsed (resp. printed) value does
not satisfy the boolean condition cond. repeat n p is a parser (or a
printer) that consists in repeating n times the parser (or printer) p.

Variables T : Type → Type.
Hypothesis S : Syntax T.
Variable A : Type.
Hypothesis E : EqDec A eq.

(∗ Combinator to add a condition to a grammar rule ∗)
Definition guard (cond : A → bool) (p : T A) : T A :=
Map (cond_iso cond) p.

(∗ Combinator to repeat a grammar rule n times ∗)
Fixpoint repeat (n : nat) (p : T A) : T (list A) :=
match n with O ⇒
| Ret nil
| S n’ ⇒ Map (cons_iso _) (p * repeat n’ p)
end.

Figure 3. Examples of use of the Map combinator

The combinator Prod p1 p2 (also noted p1 * p2 hereafter) is the
product parser (resp. printer) of parsers (resp. printers) p1 and p2:
it consists in applying sequentially p1 and then p2.

The combinator Many n p is either a parser that consumes ex-
actly n bytes to parse a list of elements with the parser p, or a printer
that prints a list of elements with the printer p to form a list of ex-
actly n bytes.

3.2.2 Combinators for data-dependent constraints
A variable-length list where the number of bytes to parse is stored
in the first bytes is an example of dependently-typed data structures:

In order to parse dependently-typed data structures, we gener-
alize the combinator Prod into a combinator Prod_dep that is
dependently-typed and returns a parser or a printer for dependent
pairs of type {a:A & B a}, where the type B a of the second com-
ponent depends on the value of the first component a of type A. As
a parser, Prod_dep p1 p2 parses the first component of the depen-
dent pair with p1, and then parses the second component with p2 a

where a is the value parsed by p1: the parsing of the second com-
ponent depends on the previously parsed value. It is similar to
the bind combinator in a monadic parser except that bind only re-
turns the second component. As a printer, Prod_dep p1 p2 takes
a dependent pair (a, b) as input and prints the first and second
components with printers p1 and p2 a, respectively.

As a concrete example, Fig. 4 displays a parser/printer for
variable-length lists whose number of elements is encoded in a
header. repeat_dep p1 p2 is a parser (resp. a printer) for variable-
length lists where p1 is a parser (resp. printer) for positive integers
used to parse (resp. print) the length and p2 is a parser (resp. printer)
for individual elements in the list.

Variable T : Type → Type.
Hypothesis S : Syntax T.
Variable A : Type.
Hypothesis E : EqDec A eq.

(∗ A combinator to specify the grammar rule for
variable−length list ∗)

Program Definition repeat_dep
(p1 : T Z) (p2 : T A) : T (list A) :=
Map (chop_len_iso A o undep_iso _ _)
(Prod_dep p1 (λ n ⇒ repeat (Zabs_nat n) p2)).

Figure 4. Example of use of the Prod_dep combinator

The combinator Prod_dep therefore introduces data-dependent
constraints w.r.t. the parsed value. It turns out however that network
packet processing also requires data-dependent constraints w.r.t. the
input bytes. The combinator Len below provides such dependent
parsing. We introduce here its semantics for the sake of complete-
ness of this section but its usefulness will be demonstrated with a
concrete example in Sect. 4.3.

The combinator Len p, as a parser, extends the parser p such
that it does not only return the parsed value, but also the number of
input bytes consumed to parse this value. As a printer, when applied
to a pair (a, len), it prints the value a if it is printed by a list of
bytes of length len, and fails otherwise.

We then derive a combinator exa (cf. Fig. 5). As a parser,
exa len p extends the parser p such that it fails if the parsing by p

does not consume exactly len bytes. As a printer, when applied to
a value a, it prints this value only if it is printed by a list of bytes of
length len, or else it fails.

3.3 Properties of parsing and printing
In general, a parser and a printer for a given grammar are not ex-
actly inverse of each other. For example, in the case of a program-
ming language, consecutive blanks are often parsed at once and
printed as one. Such situations are less frequent in network packet
processing (for example, this does not occur for the fragment of
TLS that we are considering in this paper) so that we can state the
relation between a parser and a printer as follows (Sect. 6 discusses
tentative generalizations):

(i) The property parser_printer states that if one parses a list
of bytes s1 into a value a, then one gets back the list s1 when
printing a:

Variables A B : Type.
Hypothesis eq_B_dec : EqDec B eq.

Program Definition proj_left_iso (b : B) :
Iso (A * B) A := {|
apply := λ ab ⇒
if (snd ab) == b then Some (fst ab) else None;
unapply := λ a ⇒ Some (a, b)
|}.

. .

Variable T : Type → Type.
Hypothesis S : Syntax T.
Variable A : Type.

Program Definition exa (len : Z)(p : T A) : T A :=
Map (proj_left_iso _ _ Z_eq_eqdec len) (Len p).

Figure 5. The exa combinator

Definition parser_printer {A : Type}
(p : parser A) (q : printer A) : Prop :=
∀ s1 s2 a,
p (s1 ++ s2) = Some (a, s2) → q a = Some s1.

(ii) The property printer_parser states that if a value a is printed
into the list of bytes s1 that is then parsed in a larger context
where s1 is followed by a further list s2, then it will be parsed
again as a with s2 as the remaining list of bytes:

Definition printer_parser {A : Type}
(p : parser A) (q : printer A) : Prop :=
∀ s1 s2 a,
q a = Some s1 → p (s1 ++ s2) = Some (a, s2).

We proved that parser_printer and printer_parser hold for
the combinators Tok and Ret, and are preserved by the other combi-
nators of the class Syntax. For example, here follows the statement
for the product combinator:

Lemma Prod_printer_parser : ∀ A B
(p1 : parser A)(p2 : parser B)
(q1 : printer A)(q2 : printer B),
printer_parser p1 q1 → printer_parser p2 q2 →
printer_parser (p1 * p2) (q1 * q2).

For proving that the relation parser_printer is preserved, we
need the additional hypothesis that the parser accesses its input
sequentially (it consumes bytes at the head of the input list and
do not modify the tail):

Definition sequential
{A : Type} (p : parser A) : Prop :=
∀ s s2 a, p s = Some (a, s2) → ∃s1, s = s1 ++ s2.

This property holds for Tok and Ret and is preserved by other
combinators. We can thus, for example, prove that the prod-
uct combinator preserves the relation parser_printer assuming
that sequential holds for the parsers that are being paired:

Lemma Prod_parser_printer : ∀ A B
(p1 : parser A)(p2 : parser B)
(q1 : printer A)(q2 : printer B),
sequential p1 → sequential p2 →
parser_printer p1 q1 → parser_printer p2 q2 →
parser_printer (p1 * p2) (q1 * q2).

A parser and a printer that are related by the above rela-
tions parser_printer and printer_parser, are indeed inverse to
each other, and therefore unique when they exist. This unicity is

useful to convince oneself that a certain definition that might seem
odd at a first glance is in fact the right one. For instance, although
the definition of the combinator Ret as a parser is natural, one might
wonder if its definition as a printer is the right one. In fact this is
the unique one that satisfies the above relations parser_printer

and printer_parser.

4. Application to TLS packet processing
In this section, we apply our formalization of data-dependent in-
vertible syntax descriptions (explained in Sect. 3) to the formaliza-
tion of TLS packets as described in the RFC [4]. We show that
data-dependent constraints are conveniently expressed using the
combinators we proposed. Sect. 4.2 illustrates data-dependent con-
straints depending on the parsed value, as found in most commu-
nication protocols. More specific to TLS are data-dependent con-
straints w.r.t. the input list of bytes that are illustrated in Sect. 4.3.
First, we start with a technical overview of TLS and its RFC.

4.1 Overview of the TLS protocol
The TLS protocol provides privacy and data integrity to commu-
nication applications by adding a cryptographic layer on top of
TCP [17]. More precisely, the TLS protocol consists of four sub-
protocols (see Fig. 6). The Handshake protocol is for negotiating
a session. The Change Cipher Spec protocol is for signaling the
transition to the newly negotiated keys and parameters. The Alert
protocol is for dealing with exceptions such as deliberate interrup-
tion of the communication or errors. The Record protocol is used
by the above three protocols and the communication applications;
it serves as an intermediate with TCP and is in charge of fragmen-
tation, compression, encryption and adding a MAC.

Figure 6. Transport Layer Security (TLS)

In the RFC [4], TLS packets are specified using the so-called
presentation language (Sect. 4 of [4]). This language provides a C-
like syntax to write the format of packets as datatypes. An original
feature of TLS compared to other communication protocols is that
the length of a list-like data structure is always given in terms of
bytes, not in terms of the number of its elements. As a consequence,
the datatypes in the presentation language are augmented with ex-
plicit information about the number of bytes it takes to implement
the corresponding data structure. For example, using the presenta-
tion language of [4], the type of variable-length vectors T’ made
of elements of type T is written T T’<floor..ceiling>;. floor
and ceiling are the minimal and maximal number of bytes of the
payload, and this payload is preceded by a header large enough (but
no larger) to encode the length of the payload. The next section pro-
vides a concrete example of such a data structure.

4.2 Data-dependent constraints on the parsed value
A grammar rule for parsing (resp. printing) the next bytes may
depend on previously parsed (resp. printed) values. Let us illustrate

this with TLS session identifiers. They are defined in the RFC as
follows (Sect. 7.4.1.2 of [4]):

opaque SessionID<0..32>;

As seen in Sect. 4.1, this means that a session identifier is a list
of bytes, whose length lies between 0 and 32, and that is preceded
with a header containing the precise length in question.

Fig. 7 displays the grammar rule SessionID_syntax for parsing
(resp. printing) TLS session identifiers, expressed with our formal-
ization of invertible syntax descriptions. Since the length of a ses-

Variable T : Type → Type.
Hypothesis S : Syntax T.

Definition SessionID : Type := list byte.
Definition SessionID_syntax : T SessionID :=
repeat_dep (guard (λ z ⇒ Zle_bool z 32) Tok) Tok.

Figure 7. The grammar rule for TLS session identifiers

sion identifier is variable, we resort to data-dependent parsing as
provided by repeat_dep (Fig. 4). In order to rule out lists longer
than 32 bytes, we use the guard combinator (Fig. 3) to parse the
header. In Fig. 7, SessionID is the type for session identifiers in the
abstract syntax. It is defined as being a list of bytes whose length
is not constrained explicitly but we can prove the following: (1) if
this list is the result from the parser SessionID_syntax then it will
be of length at most 32, and (2) the printer SessionID_syntax will
fail when applied to a list of length greater than 32.

As another example of data-dependent constraints w.r.t. the
parsed value, Fig. 8 provides the grammar rule Handshake_syntax

to parse (resp. print) Handshake packets (that we used as a moti-
vating example in the Introduction of this paper). The type of the
field body of a Handshake packet explicitly depends on the value
of the field msg_type; there is also an implicit dependency be-
tween the length encoded in the field h_length and the function
to parse (resp. print) the body. The purpose of the partial isomor-
phism record_Handshake is to transform the dependent pair re-
turned by Prod_dep into a dependent record of type Handshake.
All partial isomorphisms whose name is prefixed by record_ serve
similar purpose.

The next section explains ClientHello_syntax as a concrete
example of a body of a Handshake packet.

4.3 Data-dependent constraints on the input bytes
The previous section (Sect. 4.2) gave grammar rules with data-
dependent constraints where the constraint was expressed w.r.t.
the parsed value. It turns out that the processing of network pack-
ets also requires parsing with data-dependent constraints where
the constraint is expressed w.r.t. the number of bytes used for
parsing (resp. printing) previous values. In the case of TLS, this
is exemplified by a Handshake packet whose field body is of
type ClientHello:

Record ClientHello : Type := {
client_version : ProtocolVersion;
random : Random;
session_id : SessionID;
cipher_suites : list CipherSuite;
compression_methods : list CompressionMethod;
extensions : option (list byte)
}.

The field of interest is the optional extensions field. At pars-
ing, its presence or absence is decided after parsing up to the
field compression_methods. If the value of the field h_length of

Variable T : Type → Type.
Hypothesis S : Syntax T.

Inductive HandshakeType : Type :=
| hello_request | client_hello | server_hello
| certificate | server_hello_done.

Definition HandshakeType_type
(ht : HandshakeType) : Type :=
match ht with
| hello_request ⇒ HelloRequest
| client_hello ⇒ ClientHello
| server_hello ⇒ ServerHello
| certificate ⇒ Certificate
| server_hello_done ⇒ ServerHelloDone
end.

Program Definition Handshake_body_syntax
(ht : HandshakeType) (len : Z) :
T (HandshakeType_type ht) :=
match ht with
| hello_request ⇒ HelloRequest_syntax
| client_hello ⇒ ClientHello_syntax len
| server_hello ⇒ ServerHello_syntax len
| certificate ⇒ Certificate_syntax
| server_hello_done ⇒ ServerHelloDone_syntax
end.

Record Handshake : Type := {
msg_type : HandshakeType;
h_length : Z;
body : HandshakeType_type msg_type }.

Program Definition Handshake_syntax : T Handshake :=
Map record_Handshake
(Prod_dep HandshakeType_syntax
(λ ht ⇒ Prod_dep int24_syntax
(λ len ⇒ Handshake_body_syntax ht len))).

Figure 8. The grammar rule for Handshake packets

the Handshake packet is greater than the number of byte processed
so far, then extensions are present and their length is the differ-
ence between h_length and the number of processed bytes. In the
RFC [4] for TLS it is specified as follows:

“The presence of extensions can be detected by determining
whether there are bytes following the compression methods
at the end of the ClientHello. Note that this method of de-
tecting optional data differs from the normal TLS method of
having a variable-length field, but it is used for compatibil-
ity with TLS before extensions were defined.”

Let us stress it again. The data-dependency here is different
from data-dependence constraints w.r.t. a previously parsed (resp.
printed) value: we are here concerned with the number of previ-
ously parsed (resp. printer) bytes. This is this difference that moti-
vates the introduction of the combinators Len and exa (Sect. 3.2.2).
We now show how to use them to parse (resp. print) ClientHello
packets.

We now explain the grammar rule for ClientHello packets
(Fig. 9) from the point of view of parsing. We omit the definitions of
the simpler ProtocolVersion_syntax (line 5) and Random_syntax

(line 6) grammar rules. SessionID_syntax (line 7) has been ex-
plained in Sect. 4.2. The grammar rules for cipher_suites and
compression_methods (lines 8 and 9) are similar to the grammar
rule SessionID_syntax but require additional tests to be performed

0 Variable T : Type → Type.
1 Hypothesis S : Syntax T.
2 Definition ClientHello_syntax (len : Z) : T ClientHello :=
3 exa len (
4 Map (record_ClientHello len) (Prod_dep (Len (
5 ProtocolVersion_syntax *
6 Random_syntax *
7 SessionID_syntax *
8 CipherSuites_syntax *
9 CompressionMethods_syntax))

10 (λ r ⇒
11 if snd r == len then (∗ case false ∗)
12 Ret None
13 else if Zlt_bool (snd r) len then (∗ error case ∗)
14 DEBUG (” ClientHello syntax ” ++ string_from_Z
15 (snd r) ++ ” ” ++ string_from_Z len) (@Fail _ _ _)
16 else (∗ case true ∗)
17 Map (Some_iso _ o chop_len_iso _ o undep_iso _ _)
18 (Prod_dep int16_syntax
19 (λ r ⇒ Many (Zabs_nat r) Extension_syntax))))).

struct {

ProtocolVersion client_version;
Random random;
SessionID session_id;
CipherSuite cipher_suites<2..2^16-2>;
CompressionMethod compression_methods<1..2^8-1>;

select (extensions_present) {
case false:

struct {};
case true:

Extension extensions<0..2^16-1>;
};

} ClientHello;

Figure 9. ClientHello packets: Grammar rule to on the left, RFC specification on the right

on the header of the variable-length vectors, as summarized by
varr_non_nil:

Variable T : Type → Type.
Hypothesis S : Syntax T.
Variables A B : Type.
Hypothesis X : EqDec B eq.

Program Definition varr_non_nil (header : T Z)
(tconv : Iso A B) (n : nat) (element : T A) :
T (list B) :=
repeat_dep
(Map (divn_iso n) (guard (Zlt_bool 0) header))
(Map tconv element).

Definition CipherSuites_syntax :
T (list CipherSuite) :=
varr_non_nil
int16_syntax bytes_CipherSuite 2 (Tok * Tok).

Definition CompressionMethods_syntax :
T (list CompressionMethod) :=
varr_non_nil
int8_syntax bytes_CompressionMethod 1 Tok.

Specifically, these variable-length vectors must not be empty
(hence the guard test) and their length must be a multiple of the
length of their elements (hence the divn_iso test). We now come
to the extensions field and data-dependent constraint w.r.t. the in-
put list of bytes. In the case of the parsing of a Handshake packet
with a ClientHello body, the combinator Len is used to determine
the length of the body (line 4). By using Prod_dep, this length is
passed to the next grammar rule to determine the presence or not
of extensions (line 11). Finally, the combinator exa (line 3) is used
to ensure that the length of the packet is the one specified in the
field h_length (that comes from the outer packet).

The explanations we gave in the previous paragraph were
from the point of view of parsing, where the presence/absence
of extensions is decided w.r.t. the length passed from the outer
packet (the field h_length of the Handshake packet, passed to
ClientHello_syntax). From the point of view of printing, the for-
malism of invertible syntax descriptions requires us to also pass
this length, which is redundant since it can be computed from the

AST. We defer to future work an improvement of invertible syntax
to avoid this redundancy.

5. Practical Considerations
Automation Each time we define a new grammar rule by us-
ing combinators, we prove that the relations parser_printer,
printer_parser and sequential hold (cf. Sect. 3.3). Those proofs
are automatic thanks to the tactic auto of Coq that works with
the dedicated libraries of hints that we have built for that purpose.
Since those proofs are automatic, one might wonder whether they
could not be replaced by one general theorem that would state that
those properties hold by construction. Indeed, (1) they are true of
basic combinators Tok and Ret, and (2) they are preserved by the
other combinators. It is however not possible to state such a theo-
rem because there is no syntax for combinators (they are shallow
embedded in Coq).

The specification of a protocol such as TLS includes long lists
of constants and their encoding. This might lead to oversights when
inserting these lists in the formalization. In order to avoid such a
problem, we propose to use a script that generates inductive types
for these lists and the partial isomorphisms between values in these
lists and their encoding in bytes. We have done that for TLS cipher
suites and their encodings as two bytes.

Extraction of reference implementations Using the extraction
mechanism of Coq, it is possible to obtain functional programs (in,
say, O’Caml) from the grammar rules formalized using invertible
syntax descriptions. Even though extracted programs can be com-
piled to native code, such reference implementations are unlikely
to be efficient and used in real applications. Yet, they provide solid
references to test real implementations. In the course of formalizing
TLS packet processing, we have developed such a testing infras-
tructure and confirmed proper Handshakes with the most wildely
used implementation of TLS (namely, OpenSSL [22]).

Extraction is automatic but there are some caveats. Since the
input channel is modeled in Coq as a list, we need to substitute
access to the input bytes by reading out of a socket. The only com-
binator that accesses to the input list of bytes is Tok. Its instance as
a parser accesses to the input bytes through the function read_byte

that simply get the first byte of byte list. In O’Caml this function is
extracted as a function that reads a byte on the input channel.

In order to locate syntax errors when a packet is not syntacti-
cally correct, we make use of the following function in the formal-
ization:

Definition DEBUG {A : Type} (s : string) (v : A) : A :=
v.

Its parameter s is ignored in Coq; but in O’Caml, DEBUG is extracted
as a function that prints the string s and returns the parameter v.

6. Work in Progress
Relations between parsing and printing In order to accommo-
date more grammars, it is possible to weaken the relations between
parsing and printing introduced in Sect. 3.3 so that parsing followed
by printing of a string can lead to an output different from the input.
As already hinted at in Sect. 3.3, this situation occurs in the case of
programming languages or textual protocols, where parsed blanks
might be printed differently. This can also be caused by padding in
the case of binary protocols. In the case of a data format including
a compression scheme such as DNS, there might also be different
encodings for the same data. Even in these situations, the following
relation is still satisfied: parsing, printing, and then parsing again is
the same as parsing only once:

Definition parser_printer_weak {A : Type}
(p : parser A) (q : printer A) : Prop :=
∀ s1 s1’ s2 a,
p (s1 ++ s2) = Some (a, s2) →
q a = Some s1’ →
p (s1’ ++ s2) = Some (a, s2).

The stronger version parser_printer introduced in Sect. 3.3 how-
ever holds for a binary protocol like TLS because there are no
blanks and padding is deterministic.

Similarly, the printer_parser relation introduced in Sect. 3.3
cannot be proved in general: for example, consider a parser for
arithmetic expressions and take s1 to by the expression “1+2” and
s2 to be the expression“× 3”, where× has precedence over +. The
printer_parser definition can however be weakened as follows:

Definition printer_parser_weak {A : Type}
(p : parser A) (q : printer A) : Prop :=
∀ s a, q a = Some s → p s = Some (a, nil).

The stronger version printer_parser introduced in Sect. 3.3 how-
ever holds for TLS because there is no notion of precedence in its
grammar since it is a binary protocol.

Relations between combinators In the process of simplifying the
formalization, we have been investigating relations between combi-
nators. Such relations can be extensions to the class Syntax (Fig. 2),
e.g., the relation between the composition of partial isomorphisms
(noted g o f) and the Map combinator:

Map_comp : ∀ A B C (f : Iso A B) (g : Iso B C) p,
Map (g o f) p = Map g (Map f p) ;

Such relations can also be lemmas external to the class Syntax

that express rewriting rules between combinators, e.g., the fact
that repeat (Fig. 3) can be expressed with Many under appropriate
hypotheses:

Variable T : Type → Type.
Hypothesis S : Syntax T.
Variable A : Type.
Hypothesis E : EqDec A eq.

Lemma exa_Many_repeat
(p : T Z) (q : T A) (nb size : nat) :
1 ≤ size → q = exa (Z_of_nat size) q →
Many (nb * size) q = repeat nb q.

We believe that there is much value in identifying and exploiting a
set of such relations but, at the time of this writing, this is still work
in progress.

7. Related work
In this paper, we extend invertible syntax descriptions [18] to deal
with data-dependencies. The treatment of such context-sensitive
restrictions is the subject of much related work: the meta-§ cal-
culus [9], YAKKER [10, 11], etc. Among them, [11] provides
a comprehensive presentation of parsing using data-dependent
grammars, complemented by an efficient implementation (effi-
ciency is achieved by allowing reuse of existing implementa-
tions for context-free grammars that have been optimized over
the years) [10]. To compare, our work addresses two complemen-
tary issues: the printing of context-sensitive syntax and machine-
checked proofs.

In this paper, we not only extend invertible syntax descrip-
tions [18] to deal with data-dependencies but also formalize them
in the Coq proof-assistant. Similarly, a dependently-typed data de-
scription language is given semantics both as parser and pretty-
printer in [14]. Also, [16] proposes a uniform approach to parsing
and printing by providing generic parsers and printers for a data
description language embedded in a dependently-typed language,
namely Agda (see Sect. 3 of [16]). This approach is further inves-
tigated and extended in [2] by dealing with the details of bit-level
processing for network packet processing. Our work goes one step
further by establishing formally the relationship between parsing
and printing.

There is also a large body of papers about bidirectional lan-
guages for which the relation between parsing and printing is an
illustration of choice. For instance, in [5] and [13], languages are
proposed that allow for unifying parsing and printing, but the au-
thors do not go as far as to embed them in a proof-assistant. Lenses,
and in particular string lenses, are bidirectional transformation (see
for example [1]). However it should be pointed out that bidirection-
ality is not the same as invertibility.

8. Conclusion
In this paper, we have extended invertible syntax descriptions so
that they can deal with data-dependent grammars and we have
formalized them as a library of functions in the Coq proof assis-
tant about which we also specify and prove their properties. Us-
ing the extraction mechanism of Coq, we confirmed that one can
obtain certified implementations of parsers and printers; since the
grammar is specified only once and is used both for parsing and
printing, such reference implementations are free of inconsisten-
cies that could occur with the usual approach where the parser and
the printer are developed separately. We have demonstrated the use-
fulness of the resulting library by specifying network packets for
the TLS protocol. This experiment showed in particular that data-
dependent grammars are not only useful when the data-dependent
constraint is expressed w.r.t. the parsed value, but also when it is
expressed w.r.t. the input list of bytes.

References
[1] A. Bohannon, J. N. Foster, B. C. Pierce, A. Pilkiewicz, and A. Schmitt.

Boomerang: resourceful lenses for string data. In Proceedings of the
35th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL 2008), pages 407–419. ACM, 2008.

[2] E. Brady. IDRIS — systems Programming meets Full Dependent
Types. In Proceedings of the 5th ACM SIGPLAN Workshop Program-
ming Languages meets Program Verification (PLPV 2011), Austin, TX,
USA, January, 29, 2011, pages 43–54. ACM, 2011.

[3] W. H. Burge. Recursive Programming Techniques. The Systems
programming series. Addison-Wesley, 1975.

[4] T. Dierks and E. Rescorla. The Transport Layer Security (TLS)
Protocol Version 1.2. RFC 5246 (Proposed Standard), Aug. 2008.
Updated by RFCs 5746, 5878, 6176.

[5] K. Fisher and R. Gruber. PADS: a domain-specific language for
processing ad hoc data. In Proceedings of the ACM SIGPLAN 2005
Conference on Programming Language Design and Implementation
(PLDI 2005), Chicago, Illinois, USA, June, 11–15, 2005, pages 295–
304. ACM, 2005.

[6] C. V. Hall, K. Hammond, S. L. P. Jones, and P. Wadler. Type classes
in Haskell. ACM Trans. Program. Lang. Syst., 18(2):109–138, 1996.

[7] J. Hughes. The design of a pretty-printing library. In Proceedings
of the First International Spring School on Advanced Functional Pro-
gramming Techniques, volume 925 of LNCS, pages 53–96. Springer,
1995.

[8] G. Hutton and E. Meijer. Monadic Parsing in Haskell. Journal of
Functional Programming, 8(4):437–444, 1998.

[9] Q. T. Jackson. Efficient formalism-only parsing of XML/HTML using
the §-calculus. SIGPLAN Notices, 38(2):29–35, 2003.

[10] T. Jim and Y. Mandelbaum. A new method for dependent parsing.
In Proceedings of the 20th European Symposium on Programming
(ESOP 2011), volume 6602 of LNCS, pages 378–397. Springer, 2011.

[11] T. Jim, Y. Mandelbaum, and D. Walker. Semantics and algorithms
for data-dependent grammars. In Proceedings of the 37th annual
ACM SIGPLAN-SIGACT Symposium on Principles of programming
languages (POPL 2010), pages 417–430. ACM, 2010.

[12] S. C. Johnson. YACC: Yet another compiler-compiler. Technical
Report CS-32, AT&T Bell Laboratories, Murray Hill, N.J., 1975.

[13] A. Madhavapeddy, A. Ho, T. Deegan, D. Scott, and R. Sohan.
Melange: creating a ”functional” internet. In Proceedings of the 2007
EuroSys Conference, pages 101–114. ACM, 2007.

[14] Y. Mandelbaum, K. Fisher, and D. Walker. A dual semantics for
the data description calculus (extended abstract). In Revised Selected
Papers of the Eight Symposium on Trends in Functional Programming
(TFP 2007), 2007.

[15] E. Moggi. Notions of computation and monads. Information and
Computation, 93:55–92, July 1991.

[16] N. Oury and W. Swierstra. The Power of Pi. In Proceeding of the 13th
ACM SIGPLAN international conference on Functional programming
(ICFP 2008), Victoria, British Columbia, Canada, September, 22–24,
2008, pages 39–50. ACM, 2008.

[17] J. Postel. Transmission Control Protocol. RFC 793 (Standard), Sept.
1981. Updated by RFCs 1122, 3168, 6093.

[18] T. Rendel and K. Ostermann. Invertible Syntax Descriptions: Uni-
fying Parsing and Pretty Printing. In Proceedings of the third ACM
SIGPLAN Haskell Symposium (Haskell 2010), Baltimore, Maryland,
September, 30, 2010, pages 1–12. ACM, 2010.

[19] E. Rescorla. SSL and TLS: Designing and Building Secure Systems.
Addison-Wesley, 2001.

[20] M. Sozeau and N. Oury. First-class type classes. In Proceedings of the
21st International Conference in Theorem Proving in Higher Order
Logics (TPHOLs 2008), Montréal, Québec, Canada, August, 18–21,
2008, pages 278–293. Springer, 2008.

[21] The Coq Development Team. The Coq Proof Assistant Reference
Manual, version 8.3, 2010.

[22] The OpenSSL Project. OpenSSL: Cryptography and SSL/TLS
Toolkit. http://www.openssl.org.

[23] P. Wadler. Comprehending monads. In Proceedings of the 1990 ACM
conference on LISP and functional programming, LFP ’90, pages 61–
78, New York, NY, USA, 1990. ACM.

[24] P. Wadler. A Prettier Printer. In The Fun of Programming. A sympo-
sium in honour of Professor Richard Bird’s 60th birthday. Examina-
tion Schools, Oxford, 24-25 March 2003., 1997. Original paper April
1997, revised March 1998.

