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ABSTRACT
This paper describes a run-time specialization system for the
Java language. One of the main difficulties of supporting the
full Java language resides in a sound yet effective manage-
ment of references to objects. This is because the specializa-
tion process may share references with the running applica-
tion that executes the residual code, and because side-effects
through those references by the specialization process could
easily break the semantics of the running application. To
cope with these difficulties, we elaborate requirements that
ensure sound run-time specialization. Based on them, we de-
sign and implement a run-time specialization system for the
Java language, which exhibits, for instance, approximately
20-25% speed-up factor for a ray-tracing application.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Code gen-
eration, Optimization, Run-time environments; F.3.2 [Logics
and Meanings of Programs]: Semantics of Programming
Languages—Partial evaluation; F.3.3 [Logics and Mean-
ings of Programs]: Studies of Program Constructs—Object-
oriented constructs

General Terms
Performance, Languages

Keywords
Specialization, Object-Oriented Paradigm, Partial Evalua-
tion, Program Transformation

1. INTRODUCTION
Program specialization (or partial evaluation) is a tech-

nique that transforms a given program (called subject pro-
gram) into an optimized program (called residual program)
by assuming that some of the parameters of the program are
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particular constants (called static parameters). The residual
program takes values of the remaining parameters (called dy-
namic parameters), and more efficiently computes the same
result than the subject program does.

Recent progress in specialization techniques called run-
time specialization makes specialization processes so efficient
that they can be used at run-time [5, 7, 8, 9, 10, 12, 13, 15,
14, 16]. They thus offer more opportunities to specialize
programs by using quasi-invariants that are only available
at run-time, such as user’s input and intermediate results of
computation.

On the other hand, it is not easy to effectively optimize
object-oriented programs by using existing specialization tech-
niques, including run-time specialization techniques. This is
because many object-oriented programs extensively use de-
structive updates and object identity (i.e., reference equal-
ity), which makes sound specialization difficult. As a result,
existing specialization systems are either conservative (e.g.,
those that only specialize individual objects [7, 21]) or un-
sound without careful annotations [5, 9, 10, 16].

This paper presents a run-time specialization technique
that soundly and effectively specializes object-oriented pro-
grams. For soundness, we define a set of requirements for
sound specialization that apply to the specialization process,
user processes and the residual code. Based on those require-
ments, our technique exploits the advantages of run-time
specialization in two ways: (1) it can specialize programs
with respect to objects constructed at run-time and (2) its
heap-reusing mechanism allows the specialization process to
construct objects so that the residual code can reuse them.

In addition to these advantages, the use of existing tech-
niques such as partially static data, escape analysis (or re-
gion inference), and method inlining, effectively specializes
object-oriented programs. In fact, our implementation, which
is for the Java Virtual Machine language, effectively op-
timizes realistic object-oriented applications including ray-
tracing rendering.

The rest of the paper is organized as follows. Sect. 2 dis-
cusses problems in run-time specialization of object-oriented
programs. Sect. 3 overviews our run-time specialization sys-
tem. Sect. 4 defines the requirements for sound specializa-
tion. Sect. 5 discusses issues on implementation. Sect. 6
shows how object-oriented programs can be specialized with
the proposed mechanisms. Sect. 7 presents performance
measurements of our implementation. We review related
work in Sect. 8 and Sect. 9 concludes with a discussion on
further research directions.
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2. PROBLEMS OF SPECIALIZING OBJECTS
This section presents a few examples in which naive spe-

cialization in terms of object manipulation could generate
wrong residual programs.

2.1 Object Creation
The first example shows the problems of over-specialization

of object creation. The following class defines a one-dimensional
point. The method make creates a point, modifies its state,
and then returns it:

1 class Point {
2 int x = 0;
3 void update (int a) { x = x + a; }
4 static Point make (int s, int d) {
5 Point p = new Point ();
6 p.update (s);
7 p.update (d);
8 p.update (s);
9 return p;

10 }
11 }

Assume that we specialize the make method with respect
to its first argument in an application that originally has the
following lines:

int u = Console.getInt ();
Point a = Point.make (u, 7);
Point b = Point.make (u, 11);
int v = a.x + b.x;
int w = a == b;

Since the object construction at line 5 does not depend
on dynamic arguments, a naive specializer may create the
object during specialization and consider it static1. Because
the receiver object and the argument are static, the special-
izer performs the method call at line 6. The method invo-
cation at line 7 makes the object dynamic and lines 7 to 9
are residualized. This entails in particular residualization of
accesses to the object p. With the aim of residualizing those
accesses, the specializer records the object in a global vari-
able p: we say that the reference to the object is lifted. In
the residual code, accesses to object p are realized through
the variable p:

static Point make_res (int d) {
p.update (d); /∗ p is the static point

constructed during specialization ∗/
p.update (42); // 42 is the value of s
return p;

}

2.1.1 Problems
Assume that u is indeed 42 and let us transform the above

application into the following one that uses the previously
specialized method:

Point _a = Point.make_res (7);
Point _b = Point.make_res (11);
int v = _a.x + _b.x;
int w = _a == _b;

Unexpectedly, results are different from those in the orig-
inal application. This is because the object creation is spe-
cialized and the residual code reuses the lifted object p.
Because p is uninitialized before the second invocation of

1We here assume simple binding-times for objects where an
object has a type either fully static or fully dynamic.

make res, the state of b becomes different from the state
of b in the original method. Also, since a and b share
the same object, the second invocation changes a’s state as
well. Consequently, the value of v becomes incorrect. In
addition, references a and b have the same values in the
residual code whereas a and b had different values in the
original method, hence the incorrect value of w. Here, naive
specialization fails to deliver objects in their expected states
and with their expected identities.

A conservative solution would make creation of object p

at line 5 dynamic, so as to residualize all the operations on
p. However, it fails to specialize the computation in the
invocation of update at line 6.

2.2 Field Accesses
The second example illustrates problems of over-specialization

of field accesses. The following program fragment creates a
point object, and calls update twice with the same param-
eter:

Point p = new Point();
p.update(s);
p.update(s);

Since the method calls have the same receiver object and
the same parameter, one could imagine that we can special-
ize the method with respect to the receiver object and the
parameter and transform the program fragment as follows,
where update gen is a method that specializes update with
respect to p and s:

Point p = new Point ();
update_res = update_gen (p, s);
update_res ();
update_res ();

The specializer update gen would perform all the static
operations, namely execution of f and assignment to x,
and return a residual method. (For readability, we present
the residual method as a first class function.) The residual
method, as a result, is an empty method.

2.2.1 Problems
The execution of the transformed program fragment re-

sults in an object p in a different state because it performs
the update operation only once, at specialization-time. This
suggests that the specializer process and the user program
that uses the specializer and the residual code should follow
some rules.

First, even if a method is called with the same object as
its parameter, it may not be regarded as static if the state
of the object changes. In the above case, the state of the
receiver object p should not be used for specialization, since
p’s field changes.

Next, the specializer should not perform side-effects visi-
ble to the user program. In the transformed program above,
update gen changes p’s state. As a result, the heap against
which the first invocation of update res is performed is dif-
ferent from the heap against which update is first executed
in the original program

Finally, even though it is not the case in our present ex-
ample, there may be arbitrary statements between the ex-
ecution of the specializer and the execution of the residual
code. Through such statements, the running application
may modify the static arguments used to produce the resid-
ual code, the latter being invalidated by those inconsisten-
cies. We elaborate those rules in Sect. 4.
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3. RUN-TIME SPECIALIZATION IN BCS
Before discussing correctness of specialization, this sec-

tion gives an overview of run-time specialization. Although
our system, called ByteCode Specialization (BCS), is im-
plemented for the Java Virtual Machine language (JVML),
most techniques are basically common to other run-time spe-
cialization systems. The details of the BCS system are ex-
plained by the second and the fourth authors [14].

As an example, we use a method in a ray tracer that
computes an intersection between a ray (from an observer
to a point on a screen) with a scene, which is a collection of
visual objects:

// set scene of objects and observer
for each point on the screen {
// set the ray to the point
Inter inter = ray.closestInter (observer, scene);
// compute the color

}

Since the position of the observer and the layout of the
objects in a scene is fixed for one picture, we can specialize
closestInter with respect to observer and scene.

A run-time specialization system consists of three stages,
namely off-line, specialization, and execution. Below, we
explain the notion of binding-time specification followed by
each of the three stages.

3.1 Binding-time Specification
The first step is to distinguish between static and dynamic

arguments. This is the role of the binding-time specification.
There are many ways to express binding-time specifications.
The simplest solution consists in treating all the objects of
a given class as either fully static or fully dynamic. Because
of the emphasis on the structure of data in object-oriented
languages, we opt for a more precise solution: we treat ob-
jects individually and allow them to be either fully dynamic
or partially static (the fields of a partially static object can
be either static or dynamic).

The underlying idea of our representation is that objects
can be represented as trees. To each argument of the subject
method, we associate one tree of binding-times: the tree
is rooted at the method’s argument, if the argument is an
object, each field of reference type becomes a node and each
field of primitive type becomes a leaf. Roots, nodes, and
leaves are individually assigned a binding-time (S for static
or D for dynamic) with the convention that subtrees rooted
at a dynamic node are fully dynamic. In the case of our
ray-tracing example, the subject method closestInter has
three arguments (ray, observer, scene) and this leads to
the following binding-time specification:

ray:D
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�
�
�
�
��

H
H
H

H
H

H
H

HH

origin:D

�
��

H
HH

x:D y:D z:D

vector:D

�
�
�

H
H
H

dx:D dy:D dz:D

index:D

observer:S

�
��

H
HH

x:S y:S z:S

scene:S

�
�
�
�
�
��

H
H
H
H

H
HH

objects:S

...

ambient light:S

...

point lights:S

...

We simplify the notation by adopting the additional con-
vention that subtrees rooted at a static reference are fully
static if not specified otherwise. Our binding-time specifica-
tion is written more concisely:

ray:D observer:S scene:S

The advantage of our representation is that all the heap
slots reachable from static arguments can be specified indi-
vidually. It should however be noted that techniques devel-
oped in this paper are also applicable to other binding-time
representations.

3.2 Off-line Stage
The off-line stage, given method definitions (closestInter

in this case) to be specialized and a binding-time specifica-
tion, generates a specializer. This stage

1. performs a binding-time analysis to identify dynamic
expressions and statements that can not be performed
at specialization-time, and then

2. generates a specializer (a method that returns resid-
ual code at run-time) by transforming the dynamic ex-
pressions and statements in the given definitions into
code-generating instructions.

3.3 Specialization Stage
The specialization stage takes place at run-time. When

the specializer closestInter gen is called with the values
of the static arguments (observer and scene), it returns a
residual method closestInter res, the specialized version
of the subject method closestInter2 .

3.4 Execution Stage
The execution stage is the execution of the residual code.

Here, the residual code closestInter res is called with the
value of the dynamic argument, namely ray.

Currently, we have to manually replace a call to the sub-
ject method (closestInter) with a call to the residual code
(closestInter res) in the application program. The appli-
cation program can generate more than one residual method
for different static parameters. In such a case, choosing an
appropriate residual method is the user’s responsibility.

In our example, we can modify the application program
to use the specializer as follows:

// set scene of objects and observer
closestInter_res = closestInter_gen (observer, scene);
for each point on the screen {
// set the ray to the point
Inter inter = closestInter_res (ray);
// compute the color

}

2Actually, BCS returns an instance of a class that imple-
ments the residual code.
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4. CORRECTNESS OF RUN-TIME SPECIAL-
IZATION FOR JVML

As a first step, we review a definition of correctness of spe-
cialization for functional languages with structural equality
(i.e., equality between two structured values does not de-
pend on their locations in memory but only on the equality
between corresponding fields):

Let f and fs be functions and s be a value. fs is a correct
result of specialization of f with respect to s if, for any value
d, f(s, d) = v implies fs(d) = v′ and v is structurally equal
to v′.

Unfortunately, the definition is not directly transposable
into run-time specialization for imperative languages, in-
cluding JVML. This is because the definition lacks the no-
tion of heap. For example, structural equality of results
does not capture all side-effects on the heap. Also, it can
not express the preservation of object identity by the pro-
gram transformation. Furthermore, there is no mention of
the fact that the specialization process interacts with the
heap of the running application.

Below, we first formalize the heap manipulated by the
Java Virtual Machine. Next, we discuss more precisely the
characteristics of specialization with respect to the heap of
the running application. We then state a key relation that
any correct run-time specialization for JVML must satisfy.
From the relation, we clarify the reasonable requirements in
terms of the heap state, the specializer, the residual code,
and the application process. We claim that adequacy of
run-time specialization with the correctness relation and the
additional soundness requirements constitutes a sound spec-
ification of the program transformation. Finally, we point
out one salient characteristic of our run-time specialization
for JVML that enables reuse of heap-allocated objects to
improve the efficiency of the specialization.

4.1 Notations for Heaps
A JVML value (a value for short) is either a primitive

value or a reference to an object. Two values are equal in
the sense of Java’s == operator: i.e., two references are
equal if they reference the same address. We represent lists
of JVML values by a vector-like notation: for instance, −→v .

An object belongs to a class and has fields of values. We
denote an object in class C with fields k0, k1, . . . as:

objectC{k0 = v0, k1 = v1, . . .},
where vi is the field value of ki.

A heap is a map from references to objects. By way
of example, we write a heap with an object objectA{k0 =
42, k1 = β} pointed to by the reference α and an object
objectB{l0 = α} pointed to by a reference β (both objects
point at each other) as:

{ α �→ objectA{k0 = 42, k1 = β},
β �→ objectB{l0 = α} }.

Given a heap H and a reference α, we can retrieve infor-
mation about the object pointed to by α by means of the
following three operators:

• class(objectC{. . .}) = C,

• fields(C) is a set of fields in class C, and

• objectC{. . . , k = v, . . .}.k = v.

Our execution model is single threaded. We represent
method execution as follows: given method arguments −→v
and a heap K, mK(−→v ) = 〈v, K′〉 represents the execution
of the method m with actual arguments −→v in the heap K
that returns the value v and modifies the heap such that it
becomes K′.

Two values on different heaps can be equivalent if not
equal. This is expressed by the following definition:

Definition 1 (Equivalence Relation over Heaps) :
Let H and H ′ be heaps and φ be a surjection from references
to references. RH,H′,φ is the smallest binary relation such
that:

– for all values of primitive type v, (v, v) ∈ RH,H′,φ, and

– for all values of reference type α, (α, φ(α)) ∈ RH,H′,φ iff
class(H(α)) = class(H ′(φ(α))) and
∀k ∈ fields(class(H(α))).

(H(α).k,H ′(φ(α)).k) ∈ RH,H′,φ. 2

Intuitively, when v and v′ are object references, (v, v′) ∈
RH,H′,φ means that object graphs reachable from v in H
and from v′ in H ′ have the same shape and values, ignoring
the allocated addresses of objects.

4.2 Heap-Based Specialization
One of the important characteristics of run-time special-

ization is that the specializer and the residual code use the
same heap. This is a crucial difference from compile-time
specialization, in which the specializer and the residual code
never share the heap. For this reason, we formalize the spe-
cialization process as a heap transformation:

〈m,−→s , H〉 spec−−→ 〈m res , H ′〉,
where m is the subject method, −→s are the static arguments,
H is the heap at specialization-time, m res is the residual
code, and H ′ is the heap after the specialization.

4.3 Correctness of Run-time Specialization
In this section, we state the correctness relation that any

run-time specializer for an imperative language such as JVML
must satisfy. Intuitively, this relation expresses the fact that
both the subject method and the residual code, whenever
run against the same arguments, yield the same result.

By “arguments,” we mean not only method parameters
but also reachable objects. More precisely, “same argu-
ments” signifies that (1) parameters are equal, (2) heaps
against which methods are executed are equivalent, and (3)
static objects in those heaps are allocated at the same ad-
dresses. Equivalence of heaps accounts for structural equal-
ity of reachable objects. The fact that static objects must
be allocated at the same addresses is a consequence of ref-
erence lifting. Indeed, static references can be lifted during
specialization and residualized in such a way that execution
of the residual code may access (static) objects without any
need for a (static) reference to be passed to it. So static
objects cannot be placed elsewhere without compromising
correctness, even if structural equivalence is preserved.

We call static heap of a specialization that part of the
heap at specialization-time that consists of objects pointed
to by static references. The fact that static objects are not
moved around is expressed by the following definition:
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Definition 2 (Static Heap Preservation) :
Let m and m res be methods, H and H ′ be heaps, and −→s
be a list of values such that 〈m,−→s , H〉 spec−−→ 〈m res , H ′〉.

Let K be a heap. K preserves the static heap of the spe-
cialization iff ∀v ∈ −→s .(v, v) ∈ RH,K,id , where id is the iden-
tity function. 2

By “same result,” we mean that (1) the return values are
equal primitive values or equivalent objects and that (2) the
resulting heaps (i.e., the set of live objects after the execu-
tion) are equivalent. Note that we take the latter into ac-
count as a part of the results of the method execution. This
is because JVML methods can modify the state of objects
that may not be reachable from the return value.

The following definition expresses the correctness relation
that any run-time specialization for JVML must satisfy:

Definition 3 (Correct Specialization) :
Let m and m res be methods, H and H ′ be heaps, and −→s
be a list of values such that 〈m,−→s , H〉 spec−−→ 〈m res , H ′〉.

m res is a correct result of run-time specialization of m
with respect to −→s and H iff:

– for any list of values
−→
d ,

– for any heap K that preserves the static heap of the
specialization, and

– for any list
−→
l of references live after the execution of

m res,

if mK(
−→
sd) = 〈v, J〉, then m resK(

−→
d ) = 〈v′, J ′〉 and there

exists a surjection φ from references to references such that

(v, v′) ∈ RJ,J′,φ and ∀w ∈ −→
l .(w, w) ∈ RJ,J′,φ. 2

4.4 Soundness Requirements
In this section, we discuss soundness requirements to en-

sure correct run-time specialization.
The specializer, the residual code and the application that

uses the specializer and the residual code share the same
heap. As a consequence, run-time specialization can be
easily misused, as we observe in the example of Sect. 2.2:
the specializer and the running application may modify the
static heap in such a way that the residual code may be in-
validated, and the specializer may modify the static heap in
such a way that the heap of the running application may be
made inconsistent.

In practice, there are several ways to deal with those prob-
lems. Some solutions are simple but lead to poor specializa-
tion (for instance, one can prohibit side-effects during spe-
cialization). Better specialization may be achieved thanks to
more involved techniques (for instance, all side-effects may
be allowed as long as a mechanism for recovering a consistent
heap after the specialization is provided).

Below, we expose the solutions we adopt for BCS. They
are elaborated enough to enable production of efficient code
as shown in Sect. 4.5, yet simple enough to be easily imple-
mented as shown in Sect. 5.

Our first soundness requirement is to prohibit modifica-
tion of the static heap by the running application. In prac-
tice, we request the application programmer to use the resid-
ual code without modifying the objects reachable from static
parameters.

Our second soundness requirement is to prohibit poten-
tially offending side-effects during specialization. Not all

side-effects are potentially offending: only those whose ef-
fect is visible from the outside of the specialization process
need to be forbidden. In other words, we request that the
specialization process preserves the heap of the running ap-
plication:

Definition 4 (Heap Preserving Specialization) :
Let m and m res be methods, H and H ′ be heaps, and −→s
be a list of values such that 〈m,−→s , H〉 spec−−→ 〈m res, H ′〉.

Let
−→
l be a list of live references after this specialization.

The specialization preserves the heap of the running appli-

cation iff ∀v ∈ −→
l , (v, v) ∈ RH,H′,id . 2

As long as this condition is satisfied, specialization processes
can statically perform side-effects to possibly yield more ef-
ficient residual code (see Sect. 5.3).

Those two soundness requirements ensure in particular
that the heap against which the residual code is executed
always preserves the static heap (Definition 2). As a result,
the residual code can directly access to any objects reachable
from static parameters at its run-time.

4.5 Specialization Store Reuse
We observe in the example of Sect. 2.1 that we can pro-

duce more efficient residual code by performing dynamic
allocation of some objects at specialization-time and reuse
them in the residual code. However, we also show that naive
reuse of such objects may also break the semantics of the
running application because of the loss of objects’ identity
and state. The issue is subtle since problems can only be
identified when the residual code is used several times.

Regarding in particular the preservation of object identity,
one expects that the residual code always returns the same
reference only if the subject method does so:

Property 1 (Unique Identity Generation) :
Let m and m res be methods, H and H ′ be heaps, and −→s
be a list of values such that 〈m,−→s , H〉 spec−−→ 〈m res, H ′〉.

Specialization satisfies the ‘unique identity generation’ prop-
erty iff, for any application P , for any two executions of m:

mK1(
−−→
s d1) = 〈v1, K

′
1〉 and mK2(

−−→
s d2) = 〈v2, K

′
2〉,

if we substitute m for m res:

m resK1(
−→
d1) = 〈vres

1 , K′res
1 〉 and m resK2(

−→
d2) = 〈vres

2 , K′res
2 〉,

then for any lists
−→
l1 and

−→
l2 of references live after, respec-

tively, the first and the second execution of m res , there ex-
ists two surjections φ1 and φ2 from references to references
such that:

(v1, v
res
1 ) ∈ RK′

1,K′res
1 ,φ1 and ∀w ∈ −→

l1 .(w, w) ∈ RK′
1,K′res

1 ,φ1 ,

and

(v2, v
res
2 ) ∈ RK′

2,K′res
2 ,φ2 and ∀w ∈ −→

l2 .(w, w) ∈ RK′
2,K′res

2 ,φ2 ,

and

∀x ∈ {v1}∪−→l1 .∀y ∈ {v2}∪−→l2 . if φ1(x) = φ2(y) then x = y. 2

One approach to guarantee that this property is satisfied
is the conservative, systematic residualization of the con-
struction of dynamically allocated objects. It is however
not obvious how to preserve this correctness property while
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enabling reuse of heap-allocated objects as pointed out in
Sect. 2.1.

The correctness definitions and the soundness require-
ments however allow for an adequate optimization: special-
ization store reuse. Concretely, BCS distinguishes opera-
tions that create and/or modify objects in terms of the vis-
ibility of the objects from the computation that follows the
subject method invocation:

• for operations for may-visible objects (i.e., objects that
may be visible from the rest of the computation), BCS
performs and residualizes those operations during spe-
cialization, and

• for operations for never-visible objects, BCS only per-
forms those operations during specialization; the resid-
ual code merely reuses the object created during spe-
cialization.

This is an optimization because it avoids, whenever safely
possible, residualization of object creation and performs more
field assignments during specialization (see Sect. 5.4). It
should be observed that sharing of objects among differ-
ent instances of the same residual code may compromise
correctness of multi-threaded programs. Although simple
provisions can be made to bypass this problem, we stick to
single threaded programs for the sake of simplicity.

5. IMPLEMENTATION ISSUES
This section focuses on implementation techniques that

guarantee correctness of run-time specialization. The tech-
nical intricacies of the implementation for JVML are pre-
sented in the first author’s paper [1]. The program transfor-
mation in itself is an extension of previous work by the sec-
ond and last authors [14]. Below, we first elaborate the no-
tions introduced in the previous section, such as side-effects
visible from the outside and visible objects from the rest of
the computation, from the viewpoint of implementation.

5.1 Preliminary Analyses
Objects manipulated during the execution of a method m

can be divided into two categories:

• a local object to the execution of m is an object that
is created during the execution of m, and

• a non-local object to the execution of m is an object
that existed prior to the execution of m.

Local objects can further be distinguished by whether or
not they are escaping from the execution of m, and non-local
objects can be further distinguished by whether or not they
are side-effected by a visible side-effect during the execution
of m:

• a visible side-effect is a destructive update of a field
of a non-local object occurring during the execution of
m, and

• a local object escapes when a reference to the object
become reachable from the return value of the execu-
tion of m, or from a reference live after the execution
of m.

This leads to the following classification of JVML objects:

JVML objects

�
�
�
�
�
�

H
H
H
H
H
H

local

�
��

H
HH

escaping non-escaping

non-local

�
�
��

H
H

HH

side-effected non-side effected

We suppose that we are given preliminary compile-time
analyses that annotate the instructions of the subject method
m:

• all the assignments that may have visible side-effects
in some execution of m are annotated with SE (con-
versely, unannotated assignments never cause visible
side-effects in any execution), and

• all the new instructions that may create an escaping
object in some execution of m are annotated with ESC

(conversely, unannotated new instructions never create
an escaping object in any execution).

We now see how this information is used to guarantee
correctness and soundness of run-time specialization in BCS.

5.2 Notations for Specializers and Residual
Codes

Although run-time specialization in BCS is done at the
bytecode level, we hereafter discuss specializers and residual
code in a pseudo-language resembling Java. We informally
present specializers with the following code-generating in-
structions:

• GEN stat, where stat is a Java statement or a label,
emits its argument into the residual code,

• LIFT expr, where expr is a Java expression, evalu-
ates its argument and emits a constant expression that
yields the evaluated value of expr, and

• INL m gen (a0, a1, . . . ), where m gen is a specializer
and ai its arguments, inlines the code resulting from
the specialization m gen (a0, a1, . . . ) and possibly
returns a (static or dynamic) value.

5.3 Heap Preserving Specialization
In order to preserve static heaps during specialization, as

required in Definition 4, we prohibit visible side-effecting
assignments by adding binding-time analysis typing rules to
make those assignments dynamic.

Consider the example of Sect. 2.2, with annotations of
visible side-effects:

class Point {
int x = 0;
void update (int a) { x =SE x + a; }

}
We specialize the update method with respect to the en-

closing point3 and the argument a. The destructive update
of the coordinate is a visible side-effect, it is therefore made
dynamic by the binding-time analysis. The right-hand side
of the assignment is a function call whose arguments are
static, it is therefore evaluated during specialization.

We show in Fig. 1 the specializer and the residual code
when the coordinate of the enclosing point is 0 and the ar-
gument a is 42.
3We regard the receiver object of a method invocation as a
parameter.
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update_gen (Point p, int a) {
GEN p.x = LIFT (x + a);

}

void update_res () {
p.x = 42;

}
Figure 1: Specializer and residual code for update

5.4 Unique Identity Generation
To preserve the identity of objects, as specified by Prop-

erty 1, we enforce residualization of the construction of es-
caping objects.

Consider the example of Sect. 2.1, with appropriate es-
caping information:

class Point {
int x = 0;
void update (int a) { x = x + a; }
static Point make (int s, int d) {
Point p = newESC Point ();
p.update (s);
p.update (d);
p.update (s);
return p;

}
}

We specialize make with respect to the argument s. Dur-
ing specialization, the construction of the escaping object is
both residualized and performed and the created object is
considered static. The next three method calls are all in-
lined. In the case of the first one, the receiver object and
the argument are static; the side-effect is both residualized
and performed because it is visible and the modified object
is escaping. In the case of the next method call, the side-
effect is residualized because the argument is dynamic. As
a result, the state of the receiver object becomes dynamic
and the last side-effect must also be residualized.

The specializer and the residual code resulting from s be-
ing given the value 42 are shown in Fig. 2.

make_gen (int s) {
Point p = new Point ();
GEN Point _p = new Point ();
INL (update_gen_0 (p, s));
INL (update_gen_1 (p, d ););
INL (update_gen_1 (p, s));
GEN return _p;

}

static Point make_res (int d) {
Point _p = new Point ();
_p.x = 42;
_p.x = 42 + d;
_p.x = _p.x + 42;
return _p;

}
Figure 2: Specializer and residual code for make

Contrary to the naive specialization of the same sample
code in Sect. 2.1, the ‘unique identity generation’ property is
here satisfied. Additionally, we observe that the specializer
safely performs some side-effects and yields more efficient
residual code, since one update is evaluated away. In the

next section, we discuss more evidence that BCS performs
better specialization for object-oriented programs.

6. OBJECT-ORIENTED OPTIMIZATIONS
Ubiquitous object creation and virtual dispatching are

typical overheads of object-oriented programs. The follow-
ing examples illustrate how BCS targets those inefficiencies.

6.1 Object Construction Elimination
To relieve the residual code from useless dynamic allo-

cations, specialization can evaluate away creation of non-
escaping objects.

The class below represents complex numbers and the eval
method performs simple arithmetic operations:

class Complex {
float real, imag;
Complex times (Complex d) {
Complex mul = newESC Complex ();
mul.real = real ∗ d.real − imag ∗ d.imag;
mul.imag = real ∗ d.imag + imag ∗ d.real;
return mul;

}
Complex plus (Complex s) {
Complex add = new Complex ();
add.real = real + s.real;
add.imag = imag + s.imag;
return add;

}
static Complex eval (Complex s, Complex d) {

return s.plus(s).times(d);
}

}
We specialize eval with respect to the argument s, whose

value is objectComplex{real = 2, imag = 3}. The correspond-
ing specializer eval gen is shown in Fig. 3.

1 times_gen (Complex t) {
2 Complex mul = new Complex ();
3 GEN Complex mul = new Complex ();
4 GEN mul.real =
5 LIFT(t.real)∗_d.real − LIFT(t.imag)∗_d.imag;
6 GEN mul.imag =
7 LIFT(t.real)∗_d.imag + LIFT(t.imag)∗_d.real;
8 return mul;
9 }

10 plus_gen (Complex s, Complex s) {
11 Complex add = new Complex ();
12 add.real = s.real + s.real;
13 add.imag = s.imag + s.imag;
14 return add;
15 }
16 eval_gen (Complex s) {
17 GEN return INL times_gen (INL plus_gen (s, s), d);
18 }

Figure 3: Specializer for eval

At the beginning of specialization, the method plus gen

is called. Line 11 creates a static object that we call α here-
after. Lines 12 and 13 initialize the fields of α which rep-
resents the complex value 4 + 6i when it is returned. Note
that no residual code is generated during the execution of
the method plus gen. The method times gen is then called.
Line 2 creates a static object that we call β. Object creation
is also residualized because it is originally annotated with
ESC. Accesses to the real and imag fields of α in the state-
ments at lines 4 and 6 are performed at specialization-time
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but the rest of the arithmetic operations must be residual-
ized. Because the creation site of β is annotated with ESC,
field assignments are both performed and residualized. The
resulting residual code is shown in Fig. 4.

static Complex eval_res (Complex _d) {
Complex mul = new Complex ();
mul.real = 4 ∗ _d.real − 6 ∗ _d.imag;
mul.imag = 4 ∗ _d.imag + 6 ∗ _d.real;
return mul;

}
Figure 4: Residual code for eval

The results of the escape analysis are used to avoid resid-
ualizing creation of the non-escaping object that originally
occurred inside the plus method. Whereas the execution
of the subject method creates one non-escaping local object
as an intermediate result of the computation, we have been
able, by using the results of the escape analysis, to remove
any need for it in the residual code.

6.2 Specialization Store Reuse
The following example, which is taken from a study on

compile-time partial evaluation of imperative languages [2],
demonstrates specialization of the construction of a data
structure.

The method below dynamically allocates a list, initializes
it, and then looks up a key element:

public int search (int n, int data, int key) {
// make a list
List list = new List ();
list.key = 0;
list.data = data++;
List ptr = list;
for (int i = 1; i < n; i++) {
ptr.next = new List ();
ptr = ptr.next;
ptr.key = i;
ptr.data = data++;

}
// look up the key element
for (ptr = list; ptr.key != key; ptr = ptr.next)
;

return ptr.data;
}

Let us assume that n and key are static. The correspond-
ing specializer is shown in Fig. 5. Line 2 creates an object,
which we call α0 hereafter. Line 3 sets key field of α0 to 0,
while line 4 is residualized because data is dynamic. The
loop from line 6 to line 11 is static. All the constructions
at line 7 and all the assignments at lines 8 and 9 are done
during specialization, resulting in a series of partially ini-
tialized objects α1, α2, . . . , αn−1. The loop statement from
line 12 to 13 is also static, resulting on ptr being eventu-
ally initialized to αkey. Eventually, the return statement is
residualized, the ptr variable lifted, and field access residu-
alized because of the contents of data being dynamic. The
corresponding residual code is shown in Fig. 6.

During specialization, all the object creations are per-
formed and remembered. When executed, the residual code
does not create any object on its own but instead reuses
those objects. Since execution of the residual code modifies
the state of the objects, one may fear that multiple execu-
tions of the residual code may create inconsistencies. This

1 search_gen (int n, int key) {
2 List list = new List ();
3 list.key = 0;
4 GEN list.data = data++;
5 List ptr = list;
6 for (int i = 1; i < n; i++) {
7 ptr.next = new List ();
8 ptr = ptr.next;
9 ptr.key = i;

10 GEN ptr.data = data++;
11 }
12 for (ptr = list; ptr.key != key; ptr = ptr.next)
13 ;
14 GEN return ptr.data;
15 }

Figure 5: Specializer for search

public int search_res (int data) {
α0 .data = data++;
α1 .data = data++;
α2 .data = data++;
...
αn−1 .data = data++;
return αkey.data;

}
Figure 6: Residual code for search

actually does not occur because specialization has residual-
ized all the assignments that initialize them (here, the data

fields’ increments).
This reuse of already allocated objects is actually remi-

niscent of an optimization technique used in object-oriented
languages with automatic memory management which con-
sists in recycling memory slots to avoid ubiquitous object
creation.

6.3 Virtual Dispatching
Like optimization based on compile-time class-hierarchy

analysis, run-time specialization in BCS can eliminate vir-
tual dispatches. It is however more efficient because (1) the
specializer knows the run-time class of static objects and
(2) optimizations provided by specialization (such as loop
unrolling) disambiguate method calls.

We show below the source code of the subject method
closestInter from the ray tracer discussed in Sect. 3:

1 class Ray {
2 public Inter closestInter (Point observer, Scene scene) {
3 float smallest = Float.MAX_VALUE;
4 Inter closest_inter = null;
5 Inter tmp = null;
6 for (int i = 0; i < scene.objects.length;) {
7 tmp = scene.objects[i].intersect (observer, this);
8 i++;
9 if (tmp != null) {

10 if (tmp.k < smallest) {
11 smallest = tmp.k;
12 closest_inter = tmp;
13 }
14 }
15 }
16 return closest_inter;
17 }
18 }

The scene to be displayed is composed of objects that are
gathered together in the array scene.objects that appears
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at line 7. The elements of scene.objects have for declared
class an abstract class whose subclasses implement the dif-
ferent kinds of objects that may appear in the scene (Plane,
Sphere, . . . ). Since each subclass has its own implemen-
tation of the intersect method, it is only when execution
reaches line 7 that we discover where it pursues. Residual-
ization of the method call is a systematic solution to this
ambiguity but it fails to produce optimized residual code in
general. Indeed, if the receiver object is static, knowledge
of its run-time class during specialization enables residual-
ization of dedicated residual code. BCS performs this opti-
mization.

We show below the specializer and the residual code of
the specialization of method closestInter with respect to
the scene and observer arguments. Specialization of the
closestInter method entails specialization of all the in-
volved implementations of intersect. In the specializer
(Fig. 7), intersect gen is a wrapper that is in charge of
calling the adequate specializer (depending on whether the
receiver object is a plane, a sphere, . . . ). The residual code
resulting from the specialization of intersect methods is
inlined in the residual code (not displayed here for the sake
of clarity) (Fig. 8).

closestInter_gen (Observer observer, Scene scene) {
float smallest = Float.MAX_VALUE;
Inter closest_inter = null;
Inter tmp = null;
GEN float _smallest = LIFT (smallest);
GEN Inter _closest_inter;
GEN Inter _tmp;
for (int i = 0; i < scene.objects.length;) {
GEN _tmp = INL

(intersect_gen (scene.objects[i], observer));
i++;
GEN if (_tmp.k < _smallest) goto L(i)
GEN _smallest = _tmp.k;
GEN _closest_inter = _tmp;
GEN L(i):

}
GEN return _closest_inter;

}
Figure 7: Specializer for closestInter

Inter closestInter_res (Ray ray) {
float _smallest = Float.MAX_VALUE;
Inter _closest_inter;
Inter _tmp;
_tmp = /∗ inlined code that computes the

intersection with the first object ∗/;
if (_tmp.k < _smallest) goto L0

_smallest = _tmp.k;
_closest_inter = _tmp;
L0 :
_tmp = /∗ inlined code that computes the

intersection with the second object ∗/;
if (_tmp.k < _smallest) goto L1

_smallest = _tmp.k;
_closest_inter = _tmp;
L1 :
// ...
return _closest_inter;

}
Figure 8: Residual code for closestInter

7. PERFORMANCE MEASUREMENTS
We have implemented the system described above by ex-

tending the second and the last author’s system [14]. We
have chosen three Java applications that are written in an
object-oriented style to measure performance.

We compare for each application the execution time of
a bottleneck, generic method with the execution of its cor-
responding specialized version, generated by BCS. We also
measure the overhead of Just-in-time compilation in each
case. Concretely, we run the same methods with the same
arguments 1,000,000 times and took the average execution
time at each 10,000 runs slice. To estimate the execution
time of an iteration and of the Just-in-time overhead, we
do a linear approximation by linear regression in the least
square sense of the second half of the data, i.e., after the
Just-in-time overhead.

The experiments are carried in three different environ-
ments: (1) virtual machine: Sun JDK 1.3.1 Hotspot Client;
architecture: UltraSparc II at 400MHz (Sun Ultra Enter-
prise 4500, 14 processors); operating system: Solaris 2.8,
(2) virtual machine: Sun JDK 1.3.1 Hotspot Client; archi-
tecture: Pentium III at 700MHz (IBM Netfinity 7100, 4
processors); operating system: Linux 2.4.6. (3) virtual ma-
chine: IBM JDK 1.3.0 Classic (JIT enabled); architecture:
Pentium III at 700MHz (IBM Netfinity 7100, 4 processors);
operating system: Linux 2.4.6.

Our first example is an implementation proposed by Schultz
[18] of the power function written using the Strategy design
pattern. The function is specialized with respect to its expo-
nent of value 19, the multiplication operator and its neutral;
the raised base value is dynamic (results in Table 1).

env. unspec. (µs) spec. (µs) speed-up
(1) method 1.99 1.37 1.46

JIT 40,039 181,237
(2) method 0.54 0.42 1.30

JIT 12,849 27,392
(3) method 0.32 0.07 4.35

JIT 48,921 54,081
Table 1: Power Function

Our second example is an application that displays Man-
delbrot sets [14]. The formula to be displayed is input in-
teractively and is evaluated by an interpreter written in an
object-oriented way. We specialize the evaluation method
of that interpreter with respect to the expression z ∗ z + c
(results in Table 2).

env. unspec. (µs) spec. (µs) speed-up
(1) method 2.08 1.93 1.07

JIT 151,695 103,046
(2) method 1.14 1.20 0.95

JIT 30,553 34,650
(3) method 1.49 1.42 1.05

JIT 109,252 123,235
Table 2: Mandelbrot Sets

Our third example is a ray tracer implemented in Java
by using a standard text book on the model of experiments
for another (compile-time) specialization system [3]. This
is the same experiment as the one described in Sect. 3: the
method closestInter is here specialized with respect to
an observer at a fixed position and a scene of ten objects
(results in Table 3).
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env. unspec. (µs) spec. (µs) speed-up
(1) method 10.18 8.65 1.18

JIT 196,055 200,485
(2) method 6.40 5.12 1.25

JIT 115,241 104,031
(3) method 9.87 7.84 1.26

JIT 208,341 557,194
Table 3: Ray Tracer

We have done the power function experiment for the pur-
pose of comparison with the JSpec compile-time specializer
for Java [18]. Results obtained with IBM’s virtual machine
under the Intel architecture are actually comparable while
results with Sun’s Hotspot virtual machine are below our
expectations.

The optimization that run-time specialization in BCS pro-
vides in the case of the Mandelbrot sets drawer essentially
amounts to devirtualization of method calls. The displayed
formula is in fact very simple and does not involve many
virtual dispatches. As a consequence, performance gains
are not substantial.

Run-time specialization in BCS also features traditional
optimizations such as constant propagation, expression un-
folding, and loop unrolling. The ray-tracing experiment ben-
efits from both devirtualization and traditional optimiza-
tions, and this leads to better speed-up. Yet, similar ex-
periments with other specialization systems (compile-time
specialization [3] and run-time specialization [7]) reach even
better speed-up. We believe that this is due (1) to less
aggressive compilation optimizations in Just-in-time com-
pilers compared to traditional compilers, (2) to the lack of
optimizations in BCS during the off-line stage, and (3) to
the fact that some optimizations performed by Just-in-time
compilers and specialization are redundant.

The combined use of dynamic compilation (in the form of
JIT compilation) and run-time specialization (that often en-
tails code growth) complicates performance measurements.
Indeed, JIT compilation already has an overhead and one
must be careful that specialization does not make it much
worse. Although figures are reassuring, their interpretation
is difficult because we are not provided with reliable de-
scriptions of the behavior of JIT compilation. Ideally, JIT
compilation and run-time specialization should be studied
in a common framework to gain more confidence about the
concurrent action of optimizations and overheads.

Above experiments do not benefit from object construc-
tion elimination and specialization store reuse. This is be-
cause the current implementation appeals to the Reflection
API of the Java platform and object traversals to residual-
ize initialization of escaping objects. Those techniques lack
efficiency in themselves. They impose a consequent special-
ization overhead and limit the range of real-size examples
that we can investigate. We are now in the process of de-
signing a more efficient approach whose implementation will
let us show stronger evidence of performance gains.

8. RELATED WORK
C-Mix [2] is a compile-time specializer for the C language.

It deals with pointers and structures, which are in essence
much like Java references and objects. There are other sim-
ilarities. For instance, replacement of dynamic allocation
with static allocation by C-Mix can be compared to our

specialization store reuse optimization. However, run-time
specialization in BCS benefits from the fact that references
are liftable and is simpler in many respects.

Tempo [5] provides both compile-time and run-time spe-
cialization for the C language. Formal presentation of the
run-time specialization facility does not handle dynamic al-
location nor structures and run-time specializers are fairly
different since they simply copy precompiled templates to
memory, thus preventing run-time optimizations. Yet, the
amortization cost is very small.

Lea and Dean et al. first discussed specialization of object-
oriented languages but focused on virtual dispatching [6],
[11], not on partial evaluation techniques.

JSpec [19] is a compile-time specializer for the Java lan-
guage. The specialization is off-line and uses Tempo as a
compile-time specializer for C and translators between the
Java and the C languages. Objects are supported through
specialization classes [21]. The formalization by Schultz [17]
does not handle mutable objects nor dynamic allocation and
focuses instead on interactions between objects.

Fujinami [7] proposes a run-time specializer for the C++
language. Specialization is done on objects’ methods with
respect to the fields of the enclosing object and the resid-
ual code can be used until invalidation of the contents of
these fields. The specializer produced at compile-time goes
through an optimization layer, whereas our implementation
relies exclusively on the optimizations provided by Just-in-
time compilers.

Thiemann proposes a region-based binding-time analysis
[20]. It uses effects to determine binding-times and it makes
possible to specialize dynamic allocation and accesses to
data structures.

Asai integrates partial evaluation into a language inter-
preter [4] and discusses specialization based on the heap
state at the time of specialization. Our work can be seen
as a similar program transformation for non-interactive use.
An important difference is that we do not assume side-effect
free subject methods.

9. CONCLUSION AND FUTURE WORK
In this paper, we presented a run-time specialization sys-

tem for the Java language that soundly and effectively spe-
cializes programs with references and objects.

Our contributions include a definition of sound run-time
specialization in presence of heap-allocated objects. Regard-
ing side-effects and dynamic allocation, we propose non-
conservative solutions, with in particular a mechanism for
reusing objects created during specialization. We also ex-
plain how we implement our specialization strategy and show
how it achieves production of efficient residual code for object-
oriented programs. Our implementation for Java is an ex-
tension of previous work by the second and last authors [14]
and our experiments show, for instance, approximately 20-
25% speed-up factor for a ray-tracing application.

Now that we have explained in details our specialization
strategy, we are interested in the accompanying semantics,
with the aim of effectively proving correctness, including in
particular correctness of the specialization store reuse op-
timization. We also think that alternative approaches for
sound run-time specialization, concerning for instance visi-
ble side-effects during specialization, deserve investigation.
In order to complete our implementation, we plan to use
third parties compile-time analyses to annotate the sub-
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ject program with information about side-effects and escap-
ing. A properly enhanced implementation will let us study
larger examples in order to attest the relevance of our de-
sign choices. Ultimately, we would like to support the whole
JVML language. In this perspective, pertinent solutions to
handle exceptions, subroutines and others will be supported.
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