
Towards a Practical Library for

Monadic Equational Reasoning in Coq

Ayumu Saito1 and Reynald A�eldt2[0000−0002−2327−953X]

1 Tokyo Institute of Technology, School of Computing,
Department of Mathematical and Computing Science

2 National Institute of Advanced Industrial Science and Technology (AIST)

Abstract. Functional programs with side e�ects represented by monads
are amenable to equational reasoning. This approach to program veri�ca-
tion has been experimented several times using proof assistants based on
dependent type theory. These experiments have been performed indepen-
dently but reveal similar technicalities such as how to build a hierarchy
of interfaces and how to deal with non-structural recursion. As an e�ort
towards the construction of a reusable framework for monadic equational
reasoning, we report on several practical improvements of Monae, a Coq
library for monadic equational reasoning. First, we reimplement the hi-
erarchy of e�ects of Monae using a generic tool to build hierarchies of
mathematical structures. This refactoring allows for easy extensions with
new monad constructs. Second, we discuss a well-known but recurring
technical di�culty due to the shallow embedding of monadic programs.
Concretely, it often happens that the return type of monadic functions
is not informative enough to complete formal proofs, in particular termi-
nation proofs. We explain library support to facilitate this kind of proof
using standard Coq tools. Third, we augment Monae with an improved
theory about nondeterministic permutations so that our technical con-
tributions allow for a complete formalization of quicksort derivations by
Mu and Chiang.

1 Introduction

Pure functional programs, being referentially transparent, are suitable for equa-
tional reasoning. To reason about programs with side e�ects, one can use mon-
ads and their rich algebraic properties. In monadic equational reasoning, e�ects
are de�ned by interfaces with a set of equations; these interfaces can be com-
bined and extended to represent the combination of several e�ects. A number of
programs using combined e�ects (state, nondeterminism, probability, etc.) have
been veri�ed this way (e.g., [14, 22�26]), and some of them have been formally
veri�ed with proof assistants such as Coq and Agda (e.g., [4, 24�26]).

The application to monadic equational reasoning of di�erent proof assistants
raises common issues. The construction of the hierarchy of monad interfaces
is such an issue. There exist several approaches such as canonical structures
(e.g., [4]) or type classes (e.g., [24]). The construction of a hierarchy of interfaces

2 A. Saito and R. A�eldt

nevertheless requires care because it is known that large hierarchies su�er scala-
bility issues due to the complexity of type inference (as discussed, e.g., in [12]). In
the context of monadic equational reasoning, shallow embedding is the privileged
way to represent monadic functions. This is the source of other issues, which are
well-known. For example, when needed, induction w.r.t. syntax requires the use
of re�ection (see, e.g., [4, Sect. 5.1]). Non-structural recursion is another issue
related to the use of a shallow embedding. General approaches and tools have
been developed to deal with non-structural recursion in proof assistants but they
are still cumbersome to use.

The Coq library Monae is an e�ort to provide a tool for formal veri�cation
of monadic equational reasoning. It already proved useful by uncovering errors
in pencil-and-paper proofs (e.g., [4, Sect. 4.4]), leading to new �xes for known
errors (e.g., [3]), and providing clari�cations for the construction of monads used
in probabilistic programs (e.g., [2, Sect. 6.3.1]).

Before explaining our contribution in this paper, let us illustrate concretely
the main ingredients of monadic equational reasoning in a proof assistant using
Monae.

Example of proof by monadic equational reasoning Let us assume that we are
given a type monad for monads, where Ret denotes unit and≫= denotes the bind
operator (≫ is de�ned by m ≫ k = m ≫= (fun _ ⇒ k)). We can use this type to
de�ne a generic function that repeats a computation mx (the computation skip

is Ret tt):

Fixpoint rep {M : monad} n (mx : M unit) :=

if n is n.+1 then mx ≫ rep n mx else skip.

Let us also assume that we are given a type stateMonad T for monads with a
state of type T equipped with the usual get and put operators. We can use this
type to de�ne a tick function (succn is the successor function of natural numbers
and ◦ is function composition):

Definition tick {M : stateMonad nat} : M unit := get ≫= (put ◦ succn).

Let us use monadic equational reasoning to prove �tick fusion� [25, Sect. 4.1] (in
a state monad; addn is the addition of natural numbers):

Lemma tick_fusion n : rep n tick = get ≫= (put ◦ addn n).

Despite the side e�ect, this proof can be carried out by equational reasoning
using standard monadic laws. Computations in any monad satisfy the following
laws:

bindA ∀ A B C (m : M A) (f : A → M B) (g : B → M C),

(m ≫= f) ≫= g = m ≫= (fun a ⇒ f a ≫= g)

bindretf ∀ A B (a : A) (f : A → M B), Ret a ≫= f = f a

bindmret ∀ A (m : M A), m ≫= Ret = m

Computations in a state monad moreover satisfy the following laws:

Towards a Practical Library for Monadic Equational Reasoning in Coq 3

Initial goal rep n tick= get≫= (put ◦ addn n)
base case rep 0 tick= get≫= (put ◦ addn 0)

get≫= put= get≫= (put ◦ addn 0) (by getputskip)

inductive case rep n.+1 tick= get≫= (put ◦ addn n.+1)
(get≫= (put ◦ succn))≫

}
(get≫= (put ◦ addn n))

= get≫= (put ◦ addn n.+1) (by inductive hyp.)

get≫= (fun x ⇒ (put ◦ succn) x≫
}

(get≫= (put ◦ addn n)))
= get≫= (put ◦ addn n.+1) (by bindA)

(put ◦ succn) m≫ (get≫= (put ◦ addn n)) = (put ◦ addn n.+1) m (by extensionality)
((put ◦ succn) m≫ get)≫= (put ◦ addn n) = (put ◦ addn n.+1) m (by bindA)
(put m.+1≫ Ret m.+1)≫= (put ◦ addn n) = (put ◦ addn n.+1) m (by putget)
put m.+1≫ (Ret m.+1≫= (put ◦ addn n)) = (put ◦ addn n.+1) m (by bindA)

put m.+1≫ (put ◦ addn n) m.+1 = (put ◦ addn n.+1) m (by bindretf)
put (n + m.+1) = (put ◦ addn n.+1) m (by putput)
put (n + m.+1) = put (n + m.+1) (by addSnnS)

Fig. 1. Intermediate goals displayed by Coq when executing the proof script for tick
fusion

putput ∀ s s', put s ≫ put s' = put s'

putget ∀ s, put s ≫ get = put s ≫ Ret s

getputskip get ≫= put = skip

getget ∀ A (k : T → T → M A),

get ≫= (fun s ⇒ get ≫= k s) = get ≫= fun s ⇒ k s s

The following proof script (written with the SSReflect dialect of the Coq proof
language [31]) shows that tick fusion can be proved by induction (using the elim

tactic) and a sequence of rewritings involving mostly monadic laws (see Fig. 1 for
the intermediate goals displayed by Coq or [25, Sect. 4.1] for a pencil-and-paper
proof):

Lemma tick_fusion n : rep n tick = get≫= (put ◦ addn n).
Proof.
elim: n ⇒ [|n ih]; first by rewrite /= =getputskip.
rewrite /= /tick ih bindA; bind_ext ⇒ m.
by rewrite =bindA putget bindA bindretf putput /= addSnnS.
Qed.

This example illustrates the main ingredients of a typical formalization of monadic
equational reasoning: monadic functions (such as rep and tick) are encoded as
functions in the language of the proof assistant (this is a shallow embedding), and
monadic equational reasoning involves several monads with inheritance relations
(here the state monad satis�es more laws than a generic monad).

Our contribution in this paper is to improve several practical aspects of
Monae [21]. More speci�cally, we address the following issues:

� In monadic equational reasoning, monadic e�ects are the result of the com-
bination of several interfaces. The formalization of these interfaces and their

4 A. Saito and R. A�eldt

combination in a coherent and reusable hierarchy requires advanced tech-
niques. Monae provides the largest hierarchy [4] we are aware of by using
the methodology of packed classes [12]. However, when this methodology is
implemented manually as in [4], it is verbose and the extension of the hier-
archy is error-prone. In this work, we reimplement and extend this hierarchy
using a more scalable and robust approach (Sect. 2).

� As we observe in the above example, monadic functions are written with the
language of the proof assistant. Though this shallow embedding is simple
and natural, in practice it is also the source of inconveniences when prov-
ing lemmas in general and when proving termination in particular. Indeed,
contrary to a standard functional programming language, a type-based proof
assistant requires termination proofs for every function involved. However, it
happens that in practice the tooling provided by proof assistants to deal with
non-structurally recursive functions is insu�cient in the context of monadic
equational reasoning. We explain how one can enrich the return type of
monadic functions using dependent types to deal with such proofs (Sect. 3);
we also propose dependently-typed assertions for that purpose (Sect. 4).

� Last, we demonstrate the usefulness of the two previous technical contribu-
tions by completing an existing formalization of quicksort by Mu and Chiang
(Sect. 5). The original motivation by Mu and Chiang [24] was to demonstrate
program derivation using the non-determinism monad and re�nement but
they left a few postulates unproved in their Agda formalization (see Ta-
ble 1). We explain how to provide the remaining formal proofs and, as a
by-product, we furthermore enrich Monae with, in particular, a theory of
nondeterministic permutations.

2 An extensible implementation of monad interfaces

We explain how we formalize a hierarchy of interfaces for monads used in monadic
equational reasoning. This hierarchy is a conservative extension and complete
reimplementation of previous work [2�4]. In previous work, the hierarchy in
question was hand-written and its extension was error-prone (see Sect. 6). To
allow for easy and �awless extensions, we use a generic tool called Hierarchy-
Builder [11] for the formalization of hierarchies of mathematical structures.
The �rst version of this tool handled hierarchies of structures whose carrier has
a type T : Type; it has recently3 been extended to allow carriers with a functional
type, and this section is an application of this new feature. As illustrations, we
will use Hierarchy-Builder to formalize the plus-array monad and revise a
prior formalization of monad transformers.

2.1 Hierarchy-Builder in a nutshell

Hierarchy-Builder extends Coq with commands to de�ne hierarchies of math-
ematical structures. It is designed so that hierarchies can evolve (for example

3
Hierarchy-Builder version 1.1.0 (2021-03-30).

Towards a Practical Library for Monadic Equational Reasoning in Coq 5

by splitting a structure into smaller structures) without breaking existing code.
These commands are compiled to packed classes [12] but the technical details
(Coq modules, records, coercions, implicit arguments, canonical structures in-
stances, notations, etc.) are hidden to the user. The main concept is the one of
factory. This is a record de�ned by the command HB.factory that packs a carrier,
operations, and properties. This record usually corresponds to the standard def-
inition of a mathematical structure. Mixins (de�ned by the command HB.mixin)
are factories used as the default de�nition for a mathematical structure. Struc-
tures (de�ned by the command HB.structure) are essentially sigma-types with
a carrier paired with one or more factories. A mixin usually extends a structure,
so it typically takes as parameters a carrier and other structures.

A builder is a function that shows that a factory is su�cient to build a mixin.
Factories (including mixins) can be instantiated (command HB.instance) with
concrete objects. Instances are built with .Build functions that are automatically
generated for each factory. To write a builder, one uses the command HB.builders

that opens a Coq section starting from a factory and ending with instances of
mixins.

In addition to commands to build hierarchies, Hierarchy-Builder also
checks their validity by detecting missing interfaces (see Sect. 6) or competing

inheritance paths [1].

2.2 Functors and natural transformations

Our hierarchy starts with the de�nition of functors on the category Set of
sets. The domain and codomain of functors are �xed to the type Type of Coq,
which can be interpreted as the universe of sets in set-theoretic semantics. Using
Hierarchy-Builder, we de�ne functors by the mixin isFunctor (line 1). The
carrier is a function F of type Type → Type (line 1) that represents the action on
objects and the operator actm (line 2) represents the action on morphisms.

1 HB.mixin Record isFunctor (F : Type → Type) := {
2 actm : ∀ A B, (A → B) → F A → F B ;
3 functor_id : FunctorLaws.id actm ; (* actm id = id *)

4 functor_o : FunctorLaws.comp actm }. (* actm (g o h) = actm g o actm h *)

5 #[short(type=functor)]
6 HB.structure Definition Functor := {F of isFunctor F}.

The operator actm satis�es the functor laws (lines 3 and 4; FunctorLaws.id

and FunctorLaws.comp are de�nitions whose meaning is indicated as comments).
Line 5 prepares a notation for the type of functors. The structure of functors
is de�ned at line 6 as the functions that satisfy the isFunctor mixin. Given a
functor F and a morphism f, we note F # f the action of F on f.

We can now create instances of the type functor. For example, we can equip
idfun, the standard identity function of Coq, with the structure of functor by
using the HB.instance command (line 5 below). It is essentially a matter of
proving that the functor laws are satis�ed (lines 3, 4):

1 Section functorid.

6 A. Saito and R. A�eldt

2 Let id_actm (A B : Type) (f : A → B) : idfun A → idfun B := f.
3 Let id_id : FunctorLaws.id id_actm. Proof. by []. Qed.
4 Let id_comp : FunctorLaws.comp id_actm. Proof. by []. Qed.
5 HB.instance Definition _ := isFunctor.Build idfun id_id id_comp.
6 End functorid.

As a consequence of this declaration, we can use the Hierarchy-Builder nota-
tion [the functor of idfun] to invoke the functor corresponding to idfun. Since
it is often used, we introduce the notation FId for this purpose. Similarly, we
provide an instance so that [the functor of F ◦ G] denotes the composition of
two functors F and G, where ◦ is the standard function composition of Coq.

We now de�ne natural transformations. Given two functors F and G, we for-
malize the components of natural transformations as a family of functions f, each
of type ∀ A, F A → G A (short notation: F // G) that satis�es the following
predicate:

Definition naturality (F G : functor) (f : F // G) :=

∀ A B (h : A → B), (G # h) ◦ f A = f B ◦ (F # h).

Natural transformations are de�ned by means of the mixin (line 1) and the
structure (line 4) below.

1 HB.mixin Record isNatural (F G : functor) (f : F // G) := {
2 natural : naturality F G f }.
3 #[short(type=nattrans)]
4 HB.structure Definition Nattrans (F G : functor) := {f of isNatural F G f}.
5 Notation "f =⇒ g" := (nattrans f g) : monae_scope.

Hereafter, we use the notation F =⇒ G (declared at line 5) of natural transfor-
mations from the functor F to the functor G.

2.3 Formalization of monads

We now formalize monads. A monad extends a functor with two natural trans-
formations: the unit ret (line 2 below) and the multiplication join (line 3). They
satisfy three laws (lines 7�9). Furthermore, we add to the mixin an identi�er for
the bind operator (line 4) and an equation that de�nes bind in term of unit and
multiplication (line 6). Note however that this does not mean that the creation
of a new instance of monads requires the (redundant) de�nition of the unit,
multiplication, and bind (this will be explained below).

1 HB.mixin Record isMonad (F : Type → Type) of Functor F := {
2 ret : FId =⇒ [the functor of F] ;
3 join : [the functor of F ◦ F] =⇒ [the functor of F] ;
4 bind : ∀ A B, F A → (A → F B) → F B ;
5 bindE : ∀ A B (f : A → F B) (m : F A),
6 bind A B m f = join B (([the functor of F] # f) m) ;
7 joinretM : JoinLaws.left_unit ret join ; (* join o ret (F A) = id *)

8 joinMret : JoinLaws.right_unit ret join ; (* join o F # ret A = id *)

9 joinA : JoinLaws.associativity join }. (* @join A o F # @join A =

Towards a Practical Library for Monadic Equational Reasoning in Coq 7

10 @join A o @join (F A) *)

11 #[short(type=monad)]
12 HB.structure Definition Monad := {F of isMonad F &}.

The fact that a monad extends a functor can be observed at line 1 with the
of keyword; also, when declaring the structure at line 12, the & mark indicates
inheritance w.r.t. all the mixins on which the structure depends on. Hereafter,
we use Ret as a notation for (@ret _ _) (the modi�er @ in Coq disables implicit
arguments) and≫= as a notation for bind.

The above de�nition of monads is not the privileged interface to de�ne new
instances of monads. We also provide factories with a smaller interface from
which the above mixin is recovered. For example, here is the factory to build
monads from the unit and the multiplication:

HB.factory Record isMonad_ret_join (F : Type → Type) of isFunctor F := {

ret : FId =⇒ [the functor of F] ;

join : [the functor of F ◦ F] =⇒ [the functor of F] ;

joinretM : JoinLaws.left_unit ret join ;

joinMret : JoinLaws.right_unit ret join ;

joinA : JoinLaws.associativity join }.

This corresponds to the textbook de�nition of a monad, since it does not require
the simultaneous de�nition of the unit, the multiplication, and bind. We use the
HB.builders command (Sect. 2.1) to show that this lighter de�nition is su�cient
to satisfy the isMonad interface.

Similarly, there is a factory to build monads from the unit and bind only:

HB.factory Record isMonad_ret_bind (F : Type → Type) of isFunctor F := {
ret : FId =⇒ [the functor of F] ;
bind : ∀ A B, F A → (A → F B) → F B ;
fmapE : ∀ A B (f : A → B) (m : F A),
([the functor of F] # f) m = bind A B m (ret B ◦ f) ;

bindretf : BindLaws.left_neutral bind ret ; (* ret ≫= f = f *)

bindmret : BindLaws.right_neutral bind ret ; (* m ≫= ret = m *)

bindA : BindLaws.associative bind }. (* (m ≫= f) ≫= g =

m ≫= (fun x ⇒ f x ≫= g) *)

This new de�nition of monad is an improvement compared to the original
formalization [4, Sect. 2.1] because there is now an explicit type of natural trans-
formations (for ret and join) and because Hierarchy-Builder guarantees
that monads instantiated by factories do correspond to the same type monad.
See [21, �le monad_model.v] for many instances of the monad structure handled by
the isMonad_ret_bind factory.

2.4 Extending the hierarchy with new monad interfaces

Like we extended the type of functor to the type of monad in the previous
section, we can extend the type of monad to the type of nondeterminism monad
(by extending the interface of monad with a nondeterministic choice operator
and more laws), the type of state monad, the type of exception monad, etc.

8 A. Saito and R. A�eldt

We actually ported all monads from our previous work [4] using Hierarchy-
Builder; doing this port helped us identify and �x at least one type inference
problem (see Sect. 6). In this section, we explain in particular the plus-array
monad which is a new addition that we will use in Sect. 5.4 to formalize in-place
quicksort.

The array monad The array monad extends a basic monad with a notion of
indexed array (see, e.g., [24, Sect. 5.1]). It provides two operators to read and
write indexed cells. Given an index i, aget i returns the value stored at i and
aput i v stores the value v at i. These operators satisfy the following laws (where
S is the type of the cells' contents):

aputput ∀ i v v', aput i v ≫ aput i v' = aput i v'

aputget ∀ i v A (k : S → M A),

aput i v ≫ aget i ≫= k = aput i v ≫ k v

agetputskip ∀ i, aget i ≫= aput i = skip

agetget ∀ i A (k : S → S → M A),

aget i ≫= (fun v ⇒ aget i ≫= k v) =

aget i ≫= fun v ⇒ k v v

agetC ∀ i j A (k : S → S → M A),

aget i ≫= (fun u ⇒ aget j ≫= (fun v ⇒ k u v)) =

aget j ≫= (fun v ⇒ aget i ≫= (fun u ⇒ k u v))

aputC ∀ i j u v, (i ̸= j) ∨ (u = v) →
aput i u ≫ aput j v = aput j v ≫ aput i u

aputgetC ∀ i j u A (k : S → M A), i ̸= j →
aput i u ≫ aget j ≫= k =

aget j ≫= (fun v ⇒ aput i u ≫ k v)

For example, aputput means that the result of storing the value v at index i

and then storing the value v' at index i is the same as the result of storing the
value v'. The law aputget means that it is not necessary to get a value after
having stored it provided this value is directly passed to the continuation. Other
laws can be interpreted similarly.

The extension of the array monad can be simply implemented by extending a
basic monad with the following mixin (note that the type of indices is an eqType,
i.e., a type with decidable equality, as required by the laws of the array monad):

HB.mixin Record isMonadArray (S : Type) (I : eqType) (M : Type → Type)
of Monad M := {

aget : I → M S ;
aput : I → S → M unit ;
aputput : ∀ i s s', aput i s≫ aput i s' = aput i s' ;
aputget : ∀ i s (A : Type) (k : S → M A), aput i s≫ aget i≫= k =

aput i s≫ k s ;
(* other laws omitted to save space,

see [21, �le hierarchy.v] for details *) }.
#[short(type=arrayMonad)]
HB.structure Definition MonadArray (S : Type) (I : eqType) :=
{ M of isMonadArray S I M & }.

Towards a Practical Library for Monadic Equational Reasoning in Coq 9

The plus monad We de�ne the plus monad following [26] and [24, Sect. 2]. It
extends a basic monad with two operators: failure and nondeterministic choice.
These operators satisfy three groups of laws: (1) failure and choice form a monoid,
(2) choice is idempotent and commutative, and (3) failure and choice interact
with bind according to the following laws (where [~] is a notation for nondeter-
ministic choice):

left_zero ∀ A B (f : A → M B), fail A ≫= f = fail B

right_zero ∀ A B (m : M A), m ≫ fail B = fail B

left_distributivity ∀ A B (m1 m2 : M A) (f : A → M B),

m1 [~] m2 ≫= f = (m1 ≫= f) [~] (m2 ≫= f)

right_distributivity ∀ A B (m : M A) (f1 f2 : A → M B),

m ≫= (fun x ⇒ f1 x [~] f2 x) =

(m ≫= f1) [~] (m ≫= f2)

We take advantage of monads already available in Monae [2] to implement
the plus monad with a minimal amount of code while staying conservative. In-
deed, we observe that the needed operators and most laws are already avail-
able in Monae. The monads failMonad and failR0Monad (which inherits from
failMonad and comes from [3], see Fig. 2) introduce the failure operator, and
the left_zero and right_zero laws. The monad altMonad introduces nondeter-
ministic choice and the left_distributivity law. The monad altCIMonad (which
extends altMonad) introduces commutativity and idempotence of nondeterminis-
tic choice. Finally, nondetMonad and nondetCIMonad (which is the combination of
altCIMonad and nondetMonad) are combinations of failMonad and altMonad; these
monads are coming from [4]. In other words, only the right-distributivity law is
missing.

Fig. 2. The hierarchy of monad interfaces discussed in this paper. It is part of a larger
hierarchy that can be found online [21].

10 A. Saito and R. A�eldt

We therefore implement the plusMonad by extending above monads with the
right-distributivity law as follows. First, we de�ne the intermediate prePlusMonad
by adding right-distributivity to the combination of nondetMonad and failR0Monad4.
Below, alt is the identi�er behind the notation [~].

HB.mixin Record isMonadPrePlus (M : Type → Type)
of MonadNondet M & MonadFailR0 M :=

{ alt_bindDr : BindLaws.right_distributive (@bind [the monad of M]) alt }.
#[short(type=prePlusMonad)]
HB.structure Definition MonadPrePlus := {M of isMonadPrePlus M & }.

Second, plusMonad is de�ned as the combination of nondetCIMonad and prePlusMonad:

#[short(type=plusMonad)]
HB.structure Definition MonadPlus := {M of MonadCINondet M & MonadPrePlus M}.

The plus-array monad Finally, we can combine the array and the plus monads
to obtain the plusArrayMonad [24, Sect. 5]:

#[short(type=plusArrayMonad)]
HB.structure Definition MonadPlusArray (S : Type) (I : eqType) :=
{ M of MonadPlus M & isMonadArray S I M}.

To instantiate the interface of the plus-array monad the basic idea is to de�ne
aget to be the function fun i a ⇒ [set (a i, a)] and aput to be the function
fun i s a ⇒ [set (tt, insert i s a)], where [set _] is a notation for single-
ton sets and insert i s a is fun j ⇒ if i == j then s else a j. One of course
needs to instantiate the interfaces of Fig. 2 (except MonadCINondet, MonadPlus,
and MonadPlusArray that are just joined interfaces). See [21, �le monad_model.v]
for details.

2.5 Monad transformers using Hierarchy-Builder

As another illustration of the ease to add monad constructs using Hierarchy-
Builder, we explain how we formalize monad transformers. This improves the
formalization of monad transformers from previous work [3, Sections 3.3�3.4]
with more readable formal de�nitions and more robust type inference.

Given two monads M and N, a monad morphism is a function M // N

that satis�es the laws of monad morphisms [7, Def. 19] [16, Def. 7]:

HB.mixin Record isMonadM (M N : monad) (e : M // N) := {

monadMret : MonadMLaws.ret e ; (* e ◦ Ret = Ret *)

monadMbind : MonadMLaws.bind e (* e (m ≫= f) = e m ≫= (e o f) *) }.

An important property of monad morphisms is that they are natural transfor-
mations, so that we de�ne the type of monad morphism using the interfaces of
monad morphisms and natural transformations (Sect. 2.2):

4 The existence of this intermediate interface is further justi�ed by its use in the
de�nition of the interface of the backtrackable state monad [14].

Towards a Practical Library for Monadic Equational Reasoning in Coq 11

#[short(type=monadM)]

HB.structure Definition MonadM (M N : monad) :=

{e of isMonadM M N e & isNatural M N e}.

However, since the laws of monad morphisms imply naturality, a monad mor-
phism can be de�ned directly by a factory with only the laws of monad mor-
phisms:

HB.factory Record isMonadM_ret_bind (M N : monad) (e : M // N) := {

monadMret : MonadMLaws.ret e ;

monadMbind : MonadMLaws.bind e }.

Like for monads in Sect. 2.3, we are again in the situation where the textbook
de�nition ought better be sought in factories.

A monad transformer t is a function from monad to monad such that for any
monad M there is a monad morphism from M to t M [7, Sect. 3.3] [16, Def. 9]:

HB.mixin Record isMonadT (t : monad → monad) := {

Lift : ∀ M, monadM M (t M) }.

#[short(type=monadT)]

HB.structure Definition MonadT := {t of isMonadT t}.

Going one step further, we de�ne functorial monad transformers [16, Def. 20].
A functorial monad transformer is a monad transformer t with an hmap operator
of type ∀ M N : monad, (M =⇒ N) → t M =⇒ t N (i.e., hmap preserves natural
transformations) with additional properties. First, hmap respects identities of
natural transformations (line 4) and (vertical) composition of natural transfor-
mations (line 6).

1 HB.mixin Record isFunctorial (t : monad → monad) := {
2 hmap : ∀ {M N : monad}, (M =⇒ N) → t M =⇒ t N ;
3 functorial_id : ∀ M : monad,
4 hmap [the _ =⇒ _ of NId M] = [the _ =⇒ _ of NId (t M)] ;
5 functorial_o : ∀ (M N P : monad) (t : M =⇒ N) (s : N =⇒ P),
6 hmap (s \v t) = hmap s \v hmap t }.
7 #[short(type=functorial)]
8 HB.structure Definition Functorial := {t of isFunctorial t}.

See [21, �le monad_lib.v] for the de�nitions of the identity natural transformation
NId and of vertical composition \v. Second, hmap preserves monad morphisms
(lines 2�5) and the Lift operator of the monad transformer is natural (line 7):

1 HB.mixin Record isFMT (t : monad → monad) of MonadT t & Functorial t := {
2 fmt_ret : ∀ M N (e : monadM M N),
3 MonadMLaws.ret (hmap [the functorial of t] e) ;
4 fmt_bind : ∀ M N (e : monadM M N),
5 MonadMLaws.bind (hmap [the functorial of t] e) ;
6 natural_hmap : ∀ (M N : monad) (n : M =⇒ N),
7 hmap [the functorial of t] n \v Lift [the monadT of t] M =
8 Lift [the monadT of t] N \v n }.
9 HB.structure Definition FMT := {t of isFMT t & }.

12 A. Saito and R. A�eldt

Using the above formal de�nitions, we have been able to produce several
instances of monad transformers (state, exception, environment, continuation,
etc.) and functorial monad transformers, and revise a formalization of Jaskelio�'s
modular monad transformers [16]; see [21, directory impredicative_set].

3 Di�culties with the termination of monadic functions

In the context of monadic equational reasoning, we observe that we often run into
di�culties when proving properties of monadic functions because their type is
not informative enough. This happens in particular when proving termination.
For example, in their derivations of quicksort, Mu and Chiang postulate the
termination of several functions using the Agda pragma {-# TERMINATING #-},
which is not safe in general [5]. Before discussing practical solutions in the next
section (Sect. 4), we provide in this section background information about the
standard Coq tooling to prove termination in Sect. 3.1 and explain concrete
examples of di�culties in Sect. 3.2.

3.1 Background: standard Coq tooling to prove termination

Functions de�ned in a proof assistant based on dependent types need to termi-
nate to preserve logical consistency.

The Equations command In Coq, the Equations command [29, 30] provides
support to prove the termination of functions whose recursion is not structural.
For example, functional quicksort can be written as follows (the type T can be
any ordered type [20]):

Equations? qsort (s : seq T) : seq T by wf (size s) lt :=

| [::] ⇒ [::]

| h :: t ⇒ qsort (partition h t).1 ++ h :: qsort (partition h t).2.

The function call partition h t returns a pair of lists (say, ys and zs) that
partitions the list t w.r.t. the pivot h (the notations .1 and .2 are for taking
the �rst and second projection of a pair). The annotation by wf (size s) lt

indicates that the relation between the sizes of lists is well-founded (lt is the
comparison for natural numbers). Once the Equations? declaration of qsort is
processed, Coq asks for a proof that the arguments are indeed decreasing, that
is, proofs of size ys < size s and size zs < size s. Under the hood, Coq uses
the accessibility predicate [8, Chapter 15].

At �rst sight, the approach using Equations is appealing: the syntax is min-
imal and, as a by-product, it automatically generates additional useful lemmas,
e.g., in the case of qsort, one equation for each branch (qsort_equation_{1,2})
and a lemma capturing the �xpoint equation (qsort_elim).

Towards a Practical Library for Monadic Equational Reasoning in Coq 13

The Program/Fix approach The Program/Fix approach is more primitive and
verbose than the Equations approach, but it is also more �exible and robust to
changes because it relies on less automation. It is a combination of the Program

command for dependent type programming [31, Chapter Program] and of the Fix
de�nition from the Coq.Init.Wf module for well-founded �xpoint of the standard
library. For the sake of explanation, let us show how to de�ne functional quicksort
using this approach.

First, one de�nes an intermediate function qsort' similar to the declaration
that one would write with the Equations command except that its recursive
calls are to a parameter function (f below). This parameter function takes as an
additional argument a proof that the measure (here the size of the input list)
is decreasing. These proofs appear as holes (_ syntax) to be �lled next by the
user5:

Program Definition qsort' (s : seq T)

(f : ∀ s', (size s' < size s) → seq T) : seq T :=

if s isn't h :: t then [::] else

let: (ys, zs) := partition h t in f ys _ ++ h :: f zs _.

Second, one de�nes the actual qsort function using Fix. This requires a (triv-
ial) proof that the order chosen for the measure is well-founded:

Definition qsort : seq T → seq T :=

Fix (@well_founded_size _) (fun _ ⇒ _) qsort'.

The Program/Fix approach does not generate any helper lemmas, it is es-
sentially the manual version of the Equations approach but it is more widely
applicable as we will see in Sect. 5.4.

3.2 Limitations of Coq standard tooling to prove termination

We now illustrate some limitations of Coq standard tooling with a monadic
function that computes permutations nondeterministically. The function perm

below (written in Agda) is not the most obvious de�nition for this task but it
is a good �t to specify quicksort and it is used as such by Mu and Chiang to
perform program derivation [24, Sect. 3].

split : {{_ : MonadPlus M}} → List A → M (List A × List A)

split [] = return ([] , [])

split (x :: xs) = split xs >>=

λ {(ys, zs) → return (x :: ys, zs) || return (ys, x :: zs)}

{-# TERMINATING #-}

perm : {{_ : MonadPlus M}} → List A → M (List A)

perm [] = return []

perm (x :: xs) = split xs >>=

λ { (ys , zs) → liftM2 (_++[x]++_) (perm ys) (perm zs) }

5 The Program command can be con�gured by the user so that Coq provides proofs
automatically.

14 A. Saito and R. A�eldt

The function split splits a list nondeterministically. The notation || corresponds
to nondeterministic choice (in Monae, this is the notation [~] that we already
saw in Sect. 2.4). The function perm uses split and liftM2, a generic monadic
function that lifts a function h : A -> B -> C to a monadic function of type
M A -> M B -> M C.

First, we observe that since split is structurally recursive, it can be encoded
directly in Coq as a Fixpoint (using the altMonad of Sect. 2.4) 6:

Fixpoint splits {M : altMonad} A (s : seq A) : M (seq A * seq A) :=

if s isn't x :: xs then Ret ([::], [::])

else splits xs ≫= (fun '(ys, zs) ⇒
Ret (x :: ys, zs) [~] Ret (ys, x :: zs)).

Applying the Equations approach to de�ne perm (we call it qperm in Coq for
the sake of clarity) does not fail immediately but the termination proof cannot
be completed. Here follows the de�nition of qperm:

Equations? qperm (s : seq A) : M (seq A) by wf (size s) lt :=

| [::] ⇒ Ret [::]

| x :: xs ⇒
splits xs ≫= (fun '(ys, zs) ⇒

liftM2 (M := M) (fun a b ⇒ a ++ x :: b) (qperm ys) (qperm zs)).

As expected, Coq asks the user to prove that the size of the list is decreasing.
The �rst generated subgoal is:

qperm: ∀ s : seq A, size s < (size xs).+1 → M (seq A)
x: A
xs: seq A

ys, zs: seq A

==
size ys < (size xs).+1

There is no way to prove this goal since there is no information about the list ys
(the same is true for zs). The same problem happens with the Program/Fix

approach.

4 Add dependent types to return types for formal proofs

The di�culty explained in the previous section is no surprise to the practitioner.
It is known that such formal proofs can be completed by enriching the return
type of functions with appropriate dependent types. However, in practice this
is bothersome enough so that one is tempted to resort to axioms/postulates
(e.g., [24]). In face of such a technical di�culty, we advocate the following prag-
matic approach: use a standard dependent type if available and instrumented
(Sect. 4.1), otherwise use a dependently-typed assertion (Sect. 4.2).

6 Since Coq already has a split tactic, we call the function splits.

Towards a Practical Library for Monadic Equational Reasoning in Coq 15

4.1 Add dependent types to called functions to prove termination

The �rst idea is to use standard dependent types to augment the return type of
functions so that the Equations approach succeeds.

Let us explain how to prove the termination of the qperm function of Sect. 3.2.
The splits function is de�ned such that its return type is M (seq A * seq A). We
add information about the size of the returned lists by providing another version
of splits whose return type is M ((size s).-bseq A * (size s).-bseq A), where
s is the input list and n.-bseq A is the type of lists of size less than or equal to n.
This type of �bounded-size lists� comes from the MathComp library [20].

Fixpoint splits_bseq {M : altMonad} A (s : seq A)

: M ((size s).-bseq A * (size s).-bseq A) :=

if s isn't x :: xs then Ret ([bseq of [::]], [bseq of [::]])

else splits_bseq xs ≫= (fun '(ys, zs) ⇒
Ret ([bseq of x :: ys], widen_bseq (leqnSn _) zs) [~]

Ret (widen_bseq (leqnSn _) ys, [bseq of x :: zs])).

The body of this de�nition is the same as the original one provided one ignores
the notations and lemmas about bounded-size lists. The notation [bseq of [::]]

is for an empty list seen as a bounded-size list. The lemma widen_bseq captures
the fact that a m.-bseq T list can be seen as a n.-bseq T list provided that m ≤ n:

Lemma widen_bseq T m n : m ≤ n → m.-bseq T → n.-bseq T.

Since leqnSn n is a proof of n ≤ n.+1, we understand that widen_bseq (leqnSn _)

turns a n.-bseq A list into a n.+1.-bseq A list. The notation [bseq of x :: ys]

is a MathComp idiom that triggers automation canonical structures to build a
n.+1.-bseq A list using the fact that ys is itself a n.-bseq A list.

Since there is a coercion from lists to bounded-size lists, we can de�ne qperm

like in Sect. 3.2 but using splits_bseq instead of splits:

Equations? qperm (s : seq A) : M (seq A) by wf (size s) lt :=

| [::] ⇒ Ret [::]

| x :: xs ⇒ splits_bseq xs ≫= (fun '(ys, zs) ⇒
liftM2 (M := M) (fun a b ⇒ a ++ x :: b) (qperm ys) (qperm zs)).

The proofs required by Coq now contain in their local context the additional
information that the lists ys and zs are of type (size xs).-bseq A, which allows
for completing the termination proof.

The nonderministic computation of permutations using nondeterministic se-
lection is another example of the use of bounded-size lists [14, Sect. 4.4] (see [21,
�le fail_lib.v]).

This use of bounded-size lists to prove termination is reminiscent of sized
types which have already been shown to be useful to guarantee the termination
of programs such as quicksort [6]. However, as of today, it appears that users
of proof assistants still need a support library to prove termination manually:
though Agda as long been providing sized types, they are not considered safe
anymore since Agda 2.6.2 and there are indications that sized types for Coq
might not be practical [9].

16 A. Saito and R. A�eldt

4.2 Add dependent types with a dependently-typed assertion

The approach explained in the previous section is satisfactory when the needed
type is already available and instrumented in some standard library. Otherwise,
one needs to de�ne a new, potentially ad hoc type, instrument it with lemmas,
possibly with a new notation, etc. Yet, we can reach a similar result without this
boilerplate using dependently-typed assertions.

For the fail monad M, it is customary to de�ne assertions as follows. A com-
putation guard b of type M unit fails or skips according to a boolean value b:

Definition guard {M : failMonad} b : M unit := if b then skip else fail.

An assertion assert p a is a computation of type M A that fails or returns a

according to whether p a is true or not (pred is the type of boolean predicates
in MathComp):

Definition assert {M : failMonad} A (p : pred A) a : M A :=

guard (p a) ≫ Ret a.

Similarly, we de�ne a dependently-typed assertion that fails or returns a value
together with a proof that the predicate is satis�ed:

Definition dassert {M : failMonad} A (p : pred A) a : M { a | p a } :=

if Bool.bool_dec (p a) true is left pa then Ret (exist _ _ pa)

else fail.

We illustrate the alternative approach of using dassert with a non-trivial
property of the qperm function: the fact that it preserves the size of its input
(this is a postulate in [24]). This statement uses the generic preserves predicate:

Definition preserves {M : monad} A B (f : A → M A) (g : A → B) :=

∀ x, (f x ≫= fun y ⇒ Ret (y, g y)) = (f x ≫= fun y ⇒ Ret (y, g x)).

Lemma qperm_preserves_size {M : prePlusMonad} A :

preserves (@qperm M A) size.

In the course of proving qperm_preserves_size (by strong induction of the
size of the input list), we run into the following subgoal:

s : seq A

ns : size s < n

m:=fun '(ys, zs) ⇒ liftM2 (fun a b ⇒ a ++ p :: b) (qperm ys) (qperm zs)

====================

splits s ≫= (fun x ⇒ m x ≫= (fun y ⇒ Ret (y, size y))) =

splits s ≫= (fun x ⇒ m x ≫= (fun y ⇒ Ret (y, (size s).+1)))

If we use the extensionality of bind to make progress (by applying the tactic
bind_ext ⇒ -[a b].), we add to the local context two lists a and b that corre-
spond to the output of splits:

s : seq A

ns : size s < n

m:=fun '(ys, zs) ⇒ liftM2 (fun a b ⇒ a ++ p :: b) (qperm ys) (qperm zs)

a, b : seq A

Towards a Practical Library for Monadic Equational Reasoning in Coq 17

====================

m (a, b) ≫= (fun y ⇒ Ret (y, size y)) =

m (a, b) ≫= (fun y ⇒ Ret (y, (size s).+1))

As in Sect. 3.2, we cannot make progress because there is no size information
about a and b. Instead of introducing a new variant of splits, we use dassert

and bind to augment the return type of splits with the information that the
concatenation of the returned lists is of the same size as the input (de�nition
dsplitsT below):

Definition dsplitsT A n :=

{x : seq A * seq A | size x.1 + size x.2 == n}.

Definition dsplits

{M : nondetMonad} A (s : seq A) : M (dsplitsT A (size s)) :=

splits s ≫= dassert [pred n | size n.1 + size n.2 == size s].

The equivalence between splits and dsplits can be captured by an application
of fmap (fmap f is a notation for _ # f, the functor is inferred automatically)
that projects the witness of the dependent type (sval returns the witness of a
dependent pair):

Lemma dsplitsE {M : prePlusMonad} A (s : seq A) :

splits s = fmap (fun x ⇒ ((sval x).1, (sval x).2)) (dsplits s) :> M _.

We can locally introduce dsplits using the lemma dsplitsE to complete our
proof of qperm_preserves_size. Once dassert is inserted in the code, we can use
the following lemma to lift the assertions to the local proof context:

Lemma bind_ext_dassert

{M : failMonad} A (p : pred A) a B (m1 m2 : _ → M B) :

(∀ x h, p x → m1 (exist _ x h) = m2 (exist _ x h)) →
dassert p a ≫= m1 = dassert p a ≫= m2.

This leads us to a local proof context where the sizes of the output lists are
related to the input list s with enough information to complete the proof:

s : seq A

ns : size s < n

m:=fun '(ys, zs) ⇒ liftM2 (fun a b ⇒ a ++ p :: b) (qperm ys) (qperm zs)

a, b : seq A

ab : size a + size b == size s

====================

m (a, b) ≫= (fun y ⇒ Ret (y, size y)) =

m (a, b) ≫= (fun y ⇒ Ret (y, (size s).+1))

See [21, �le example_iquicksort.v] for the complete script.

Although we use here a dependently-typed assertion to prove a lemma, we
will see in Sect. 5.4 an example of termination proof where dassert also comes
in handy. Nevertheless, dassert requires to work with a monad that provides at
least the failure operator.

18 A. Saito and R. A�eldt

5 A complete formalization of quicksort derivation

In this section, we apply the library support we explained so far to prove postu-
lates left by Mu and Chiang in their formalization of quicksort derivations [24].
Beforehand we need to complete our theory of computations of nondeterministic
permutations (Sect. 5.1). Then we will explain the key points of specifying and
proving functional quicksort (Sect. 5.3) and in-place quicksort (Sect. 5.4). These
proofs rely on the notion of re�nement (Sect. 5.2).

5.1 Formal properties of nondeterministic permutations

The speci�cations of quicksort by Mu and Chiang rely on the properties of
nondeterministic permutations as computed by qperm (Sect. 3.2). The shape of
this function makes proving its properties painful, intuitively because of two
non-structural recursive calls and the interplay with the properties of splits. As
a matter of fact, Mu and Chiang postulates many properties of qperm in their
Agda formalization, e.g., its idempotence (here stated using the Kleisli symbol):

Lemma qperm_idempotent {M : plusMonad} (E : eqType) :

qperm >=> qperm = qperm :> (seq E → M (seq E)).

The main idea to prove these postulates is to work with a simpler de�nition
of nondeterministic permutations, namely iperm, de�ned using nondeterministic
insertion:

Fixpoint insert {M : altMonad} A (a : A) (s : seq A) : M (seq A) :=

if s isn't h :: t then Ret [:: a] else

Ret (a :: h :: t) [~] fmap (cons h) (insert a t).

Fixpoint iperm {M : altMonad} A (s : seq A) : M (seq A) :=

if s isn't h :: t then Ret [::] else iperm t ≫= insert h.

Since insert and iperm each consist of one structural recursive call, their prop-
erties can be established by simple inductions, e.g., the idempotence of iperm:

Lemma iperm_idempotent {M : plusMonad} (E : eqType) :

iperm >=> iperm = iperm :> (seq E → M _).

The equivalence between iperm and qperm can be proved easily by �rst showing
that the recursive call to iperm can be given the same shape as qperm:

Lemma iperm_cons_splits (A : eqType) (s : seq A) u :

iperm (u :: s) = do a ← splits s; let '(ys, zs) := a in

liftM2 (fun x y ⇒ x ++ u :: y) (iperm ys) (iperm zs).

We can use this last fact to show that iperm and qperm are equivalent

Lemma iperm_qperm {M : plusMonad} (A : eqType) : @iperm M A = @qperm M A.

Thanks to iperm_qperm, all the properties of iperm can be transported to qperm,
providing formal proofs for several postulates from [24] (see Table 1).

Towards a Practical Library for Monadic Equational Reasoning in Coq 19

De�nition/lemma in [24] Coq equivalent in [21] or in this paper
�le Implementation.agda

ext postulate standard axiom of functional extensionality
�le Monad.agda

write-write-swap postulate not used
writeList-++ postulate writeList_cat (array_lib.v)
writeList-writeList-comm postulate writeListC (array_lib.v)
�le Nondet.agda

return⊑perm postulate refin_qperm_ret (fail_lib.v)
perm-idempotent postulate Sect. 5.1
perm-snoc postulate qperm_rcons (fail_lib.v)
sorted-cat3 postulate Sect. 5.3
perm-preserves-length postulate Sect. 4.2
perm-preserves-all postulate Sect. 5.3
perm TERMINATING Sect. 4.1
mpo-perm TERMINATING commutation of computations (Sect. 5.3)
partl/partl-spec TERMINATING partl (example_iqsort.v), solved by currying
partl'/partl'-spec TERMINATING qperm_partl (example_iqsort.v)
mpo-partl' TERMINATING commutation of computations (Sect. 5.3)
qsort/qsort-spec TERMINATING Sect. 3.1
�le IPartl.agda

ipartl/ipartl-spec TERMINATING Sect. 5.4, solved by currying
introduce-swap [24, eqn 11] postulate refin_writeList_rcons_aswap (array_lib.v)
introduce-read postulate not used
�le IQSort.agda

iqsort/iqsort-spec TERMINATING Sect. 4.2
introduce-read postulate writeListRet (array_lib.v)
introduce-swap [24, eqn 13] postulate refin_writeList_cons_aswap (array_lib.v)
Table 1. Admitted facts in [24] and their formalization in [21] (Lemmas xyz-spec

require the TERMINATING pragma as a consequence of the function xyz being postulated
as terminating.)

5.2 Program re�nement

The rest of this paper uses a notion of program re�nement introduced by Mu and
Chiang [24, Sect. 4]. This is about proving that two programs obey the following
relation:

Definition refin {M : altMonad} A (m1 m2 : M A) : Prop := m1 [~] m2 = m2.

Notation "m1 ⊆ m2" := (refin m1 m2).

As the notation symbol indicates, it represents a relationship akin to set inclu-
sion, which means that the result of m1 is included in that of m2. We say that m1
re�nes m2. The re�nement relation is lifted as a pointwise relation as follows:

Definition lrefin {M : altMonad} A B (f g : A → M B) := ∀ x, f x ⊆ g x.

Notation "f ⊆̇ g" := (lrefin f g).

20 A. Saito and R. A�eldt

5.3 A complete formalization of functional quicksort

We explain how we formalize quicksort as a function as Mu and Chiang did [24],
proving in Coq the few axioms they left in their Agda formalization.

What we actually prove is that the sort algorithm implemented by the qsort

function of Sect. 3.1 re�nes an algorithm that is obviously correct. The algorithm
in question is slowsort: a function that �lters only the sorted permutations of all
permutations derived by qperm, which is obviously correct as a sorting algorithm:

Definition slowsort {M : plusMonad} T : seq T → M (seq T) :=

qperm >=> assert sorted.

Using the re�nement relation, the speci�cation that qsort should meet can be
written as follows:

Lemma qsort_spec : Ret ◦ qsort ⊆̇ slowsort.

The axioms left by Mu and Chiang that we prove are either about termi-
nation or about equational reasoning. As for the former, we have explained the
termination of qperm and qsort in Sect. 4. As for the axioms about equational
reasoning, the main7 one is perm-preserves-all which is stated as follows (using
the Agda equivalent of the preserves predicate we saw in Sect. 4.2):

postulate

perm-preserves-all : {{_ : MonadPlus M}} {{_ : Ord A}}

→ (p : A → Bool) → perm preserves (all p)

This lemma says that all the permutations that result from perm preserve the
fact that all the elements satisfy p or not. In Coq, we proved the equivalent
(using guard) rewrite lemma guard_all_qperm:

Lemma guard_all_qperm

{M : plusMonad} T B (p : pred T) s (f : seq T → M B) :

qperm s ≫= (fun x ⇒ guard (all p s) ≫ f x) =

qperm s ≫= (fun x ⇒ guard (all p x) ≫ f x).

The proof of guard_all_qperm is not trivial: it is carried out by strong induc-
tion, requires the intermediate use of the dependently-typed version of splits
(Sect. 4.1), and more crucially because it relies on the fact that guard com-
mutes with computations in the plus monad. This latter fact is captured by the
following lemma:

Definition commute {M : monad} A B (m : M A) (n : M B) C

(f : A → B → M C) : Prop :=

m ≫= (fun x ⇒ n ≫= (fun y ⇒ f x y)) =

n ≫= (fun y ⇒ m ≫= (fun x ⇒ f x y)).

Lemma commute_plus_guard

{M : plusMonad} b B (n : M B) C (f : unit → B → M C) :

commute (guard b) n f.

7 There is another axiom sorted-cat3, but its proof is easy using lemmas fromMath-

Comp.

Towards a Practical Library for Monadic Equational Reasoning in Coq 21

Its proof uses induction on syntax as explained in [4, Sect. 5.1].
Our formalization is shorter than Mu and Chiang's. It is not really fair to

compare the total size of both formalizations in particular because the proof
style in Agda is verbose (all the intermediate goals are spelled out). Yet, with
SSReflect, we manage to keep each intermediate lemmas under the size of 15
lines. For example, the intermediate lemma slowsort'-spec in Agda is about 170
lines, while our proof in Coq is written in 15 lines (see partition_slowsort_spec

[21]), which arguably is more maintainable.

5.4 A complete formalization of in-place quicksort

We now explain how we formalize the derivation of in-place quicksort by Mu and
Chiang [24]. The �rst di�culty is to prove termination, which Mu and Chiang
postulate (see Table 1).

Let us �rst explain the original Agda implementation. The partition step is
performed by the function ipartl, which uses the array monad (Sect. 2.4):

{-# TERMINATING #-}

ipartl : {{_ : Ord A}} {{_ : MonadArr A M}} →
A → N → (N × N × N) → M (N × N)
ipartl p i (ny, nz, 0) = return (ny, nz)

ipartl p i (ny, nz, suc k) = read (i + ny + nz) >>= λ x →
if x ≤b p then swap (i + ny) (i + ny + nz) >> ipartl p i (ny + 1, nz, k)

else ipartl p i (ny, nz + 1, k)

where open Ord.Ord {{...}}

The call ipartl p i (ny, nz, nx) partitions the subarray ranging from index i

(included) to i + ny + nz + nx (excluded) and returns the sizes of the two par-
titions. For the sake of explanation, we can think of the contents of this subarray
as a list ys ++ zs ++ xs; ys and zs are the two partitions and xs is yet to be
partitioned; ny and nz are the sizes of ys and zs. At each iteration, the �rst
element of xs (i.e., the element at index i + ny + nz) is read and compared with
the pivot p. If it is smaller or equal, it is swapped with the element following ys

and partition proceeds with a ys enlarged by one element. (The swap function
uses the read/write operators of the array monad to swap two cells of the array.)
Otherwise, partition proceeds with a zs enlarged by one element.

The quicksort function iqsort takes an index and a size; it is a computation
of the unit type. The code selects a pivot (line 5), calls ipartl (line 6), swaps
two cells (line 7) and then recursively calls itself on the partitioned arrays:

1 {-# TERMINATING #-}

2 iqsort : {{_ : Ord A}} {{_ : MonadArr A M}} → N → N → M T

3 iqsort i 0 = return tt

4 iqsort i (suc n) =

5 read i >>= λ p →
6 ipartl p (i + 1) (0 , 0 , n) >>= λ { (ny , nz) →
7 swap i (i + ny) >>

8 iqsort i ny >> iqsort (i + ny + 1) nz }

22 A. Saito and R. A�eldt

We encode this de�nition in Coq and prove its termination as explained in
Sect. 4.2. First, observe that the termination of the function ipartl need not
be postulated: its curried form is accepted by Agda and Coq because the recur-
sion is structural. Let us de�ne iqsort in Coq using the Program/Fix approach
(Sect. 3.1). The direct de�nition fails for the same reasons as explained in Sect. 3:
it turns out that the termination proof requires more information about the re-
lation between the input and the output of ipartl than the mere fact that it is
a pair of natural numbers. We therefore introduce a dependently-typed version
of ipartl that extends its return type to a dependent pair of type dipartlT:

Definition dipartlT y z x :=

{n : nat * nat | (n.1 ≤ x + y + z) ∧ (n.2 ≤ x + y + z)}.

The parameters x, y, and z are the sizes of the lists input to ipartl; this depen-
dent type ensures that the sizes returned by the partition function are smaller
than the size of the array being processed. The dependently-typed version of
ipartl is obtained by means of dassert (Sect. 4.2)8:

Definition dipartl

{M : plusArrayMonad T Z_eqType} p i y z x : M (dipartlT y z x) :=

ipartl p i y z x ≫=
dassert [pred n | (n.1 ≤ x + y + z) ∧ (n.2 ≤ x + y + z)].

Using dipartl instead of ipartl allows us to complete the de�nition of iqsort
(the notation %:Z is for injecting natural numbers into integers):

Program Definition iqsort' {M : plusArrayMonad E Z_eqType} ni

(f : ∀ mj, mj.2 < ni.2 → M unit) : M unit :=

match ni.2 with

| 0 ⇒ Ret tt

| n.+1 ⇒ aget ni.1 ≫= (fun p ⇒
dipartl p (ni.1 + 1) 0 0 n ≫= (fun nynz ⇒
let ny := nynz.1 in let nz := nynz.2 in

aswap ni.1 (ni.1 + ny%:Z) ≫
f (ni.1, ny) _ ≫ f (ni.1 + ny%:Z + 1, nz) _))

end.

See [21, �le example_iquicksort.v] for the complete termination proof. Note that
our in-place quicksort is a computation in the plus-array monad which is the
only array monad that provides the failure operator in our hierarchy. Anyway,
the following re�nement proof requires the plus-array monad. We have not been
able to use the Equations approach here; it seems that the default setting does
not give us access to the proof that we introduced through dependent types.

The speci�cation of in-place quicksort uses the same slowsort function as for
functional quicksort (Sect. 5.3):

Lemma iqsort_slowsort {M : plusArrayMonad E Z_eqType} i xs :

writeList i xs ≫ iqsort (i, size xs) ⊆ slowsort xs ≫= writeList i.

8 The type Z_eqType is the type of integers equipped with decidable equality. This is
a slight generalization of the original de�nition that is using natural numbers.

Towards a Practical Library for Monadic Equational Reasoning in Coq 23

The function writeList i xs writes all the elements of the xs list to the array
starting from the index i. This is just a recursive application of the aput operator
we saw in Sect. 2.4:

Fixpoint writeList {M : arrayMonad T Z_eqType} i s : M unit :=

if s isn't x :: xs then Ret tt else aput i x ≫ writeList (i + 1) xs.

Most of the derivation of in-place quicksort is explained by Mu and Chiang in
their paper [24]. In fact, we did not need to look at the accompanying Agda
code except for the very last part which is lacking details [24, Sect. 5.3]. Our
understanding is that the key aspect of the derivation (and of the proof of
iqsort_slowsort) is to show that the function ipartl re�nes a simpler func-
tion partl that is a slight generalization of partition used in the de�nition of
functional quicksort (Sect. 3.1). In particular, this re�nement goes through an
intermediate function that fusions qperm (Sect. 4.1) with partl; this explains the
importance of the properties of idempotence of qperm whose proof we explained
in Sect. 5.1.

6 Related work

The hierarchy of interfaces we build in Sect. 2 is a reimplementation and an
extension of previous work [3,4]. The latter was built using packed classes written
manually. The use of Hierarchy-Builder is a signi�cant improvement: it is
less verbose and easier to extend as seen in Sections 2.4 and 2.5. It is also
more robust. Indeed, we discovered that previous work [3, Fig. 1] lacked an
intermediate interface, which required us to insert some type constraints for
type inference to succeed (see [15] for details). Hierarchy-Builder detects
such omissions automatically. Type classes provide an alternative approach for
the implementation of a hierarchy of monad interfaces and it has been used to
a lesser extent in some related work (e.g., [24]).

The examples used in this paper stem from the derivations of quicksort by
Mu and Chiang [24]. Together with their paper, the authors provide an accompa-
nying formalization in Agda. It contains axiomatized facts (see Table 1) that are
arguably orthogonal to the issue of quicksort derivation but that reveals issues
that need to be addressed to improve formal monadic equational reasoning in
practice. In this paper, we explained in particular how to complete their formal-
ization, which we actually rework from scratch, favoring equational reasoning
and the creation of reusable lemmas; in other words, our formalization is not a
port.

To complete Mu and Chiang's formalization, we needed in particular to for-
malize a thorough theory of nondeterministic permutations (see Sect. 5.1) It
turns out that this is a recurring topic of monadic equational reasoning. They
are written in di�erent ways depending on the target speci�cation: using non-
deterministic selection [14, Sect. 4.4], using nondeterministic selection and the
function unfoldM [22, Sect. 3.2], using nondeterministic insertion [23, Sect. 3],
or using liftM2 [24, Sect. 3]. The current version of Monae has now a formal-
ization of each.

24 A. Saito and R. A�eldt

Sakaguchi provides a formalization of the quicksort algorithm in Coq using
the array state monad [27, Sect. 6.2]. His formalization is primarily motivated
by the generation of e�cient executable code. This makes for an intricate def-
inition of quicksort (for example, all the arguments corresponding to indices
are bounded). Though his framework does not prevent program veri�cation [27,
Sect. 4], it seems di�cult to reuse it for monadic equational reasoning (the type
of monads is specialized to state/array and there is no hierarchy of monad in-
terfaces).

This paper is focusing on monadic equational reasoning but this is not the
only way to verify e�ectful programs using monads in Coq. For example, Jomaa
et al. have been using a Hoare monad to verify properties of memory isola-
tion [17]. They are therefore only dealing with the e�ects of state and excep-
tion. Maillard et al. have been developing a framework to verify programs with
e�ects using Dijkstra monads [19]. Their Dijkstra monads are based on speci�-
cation monads and are built using monad morphisms. Veri�cation of a monadic
computation amounts to type it in Coq with the appropriate Dijkstra monad.
Christiansen et al. have been verifying e�ectful Haskell programs in Coq [10]
and Letan et al. have been exploring veri�cation in Coq of impure computations
using a variant of the free monad [18].

The formalization of monads we explained in Sect. 2 is specialized to the
category Set of sets.Monae also features a formalization of (concrete) categories
that has been used to formalize the geometrically convex monad [2, Sect. 5]. Both
are connected in the sense that a monad over the category corresponding to the
type Type of Coq (seen as a Grothendieck universe) can be used to instantiate
the isMonad interface. Yet, as far as this paper is concerned, this generality is
not useful.

7 Conclusion

In this paper, we reported on practical advances about formalization of monadic
equational reasoning, illustrated by a complete formalization of functional quick-
sort and in-place quicksort. For that purpose, we improved an existing Coq
library called Monae. To ease the addition of new monad constructs, we reim-
plemented the hierarchy of interfaces of Monae using Hierarchy-Builder

and illustrated this extension with the plus-array monad and monad transform-
ers. We observed that the shallow embedding of monadic functions is a source
of a recurring technical issue making some proofs (in particular, termination
proofs) bothersome; we argued that appropriate library extensions using depen-
dent types are useful in practice to complement Coq's standard tooling. We
applied these techniques to the formal veri�cation of quicksort derivations by
Mu and Chiang that we were able to formalize without admitted facts.

As a result of the above experiment, we have substantially improved the
Monae library for formalization of monadic equational reasoning. As for future
work, we plan to further enrich the hierarchy of interfaces and to apply Monae

to other formalization experiments (e.g., [26, 28]). We also plan to investigate

Towards a Practical Library for Monadic Equational Reasoning in Coq 25

the use of Monae as a back-end for the formal veri�cation of Coq programs,
for example as generated automatically from OCaml [13].

Acknowledgements The authors would like to thank Cyril Cohen and Enrico Tassi for
their assistance withHierarchy-Builder, Kazuhiko Sakaguchi and Takafumi Saikawa
for their comments, the members of the Programming Research Group of the Depart-
ment of Mathematical and Computing Science at the Tokyo Institute of Technology
for their input, and the anonymous reviewers for many comments that improved this
paper. The second author acknowledges the support of the JSPS KAKENHI grants
18H03204 and 22H00520.

References

1. A�eldt, R., Cohen, C., Kerjean, M., Mahboubi, A., Rouhling, D., Sakaguchi, K.:
Competing inheritance paths in dependent type theory: A case study in func-
tional analysis. In: 10th International Joint Conference on Automated Reason-
ing (IJCAR 2020), Paris, France, July 1�4, 2020, Part II. Lecture Notes in Com-
puter Science, vol. 12167, pp. 3�20. Springer (2020). https://doi.org/10.1007/
978-3-030-51054-1_1

2. A�eldt, R., Garrigue, J., Nowak, D., Saikawa, T.: A trustful monad for axiomatic
reasoning with probability and nondeterminism. Journal of Functional Program-
ming 31, e17 (2021). https://doi.org/10.1017/S0956796821000137

3. A�eldt, R., Nowak, D.: Extending equational monadic reasoning with monad trans-
formers. In: 26th International Conference on Types for Proofs and Programs
(TYPES 2020). Leibniz International Proceedings in Informatics, vol. 188, pp.
2:1�2:21. Schloss Dagstuhl (Jun 2021). https://doi.org/10.4230/LIPIcs.TYPES.
2020.2, https://arxiv.org/abs/2011.03463

4. A�eldt, R., Nowak, D., Saikawa, T.: A hierarchy of monadic e�ects for program
veri�cation using equational reasoning. In: 13th International Conference on Math-
ematics of Program Construction (MPC 2019), Porto, Portugal, October 7�9, 2019.
Lecture Notes in Computer Science, vol. 11825, pp. 226�254. Springer (2019).
https://doi.org/10.1007/978-3-030-33636-3_9

5. Agda: Agda's documentation v2.6.2.1 (2021), available at https://agda.

readthedocs.io/en/v2.6.2.1/

6. Barthe, G., Grégoire, B., Riba, C.: Type-based termination with sized products. In:
22nd International Workshop on Computer Science Logic (CSL 2008), Bertinoro,
Italy, September 16�19, 2008. Lecture Notes in Computer Science, vol. 5213, pp.
493�507. Springer (2008). https://doi.org/10.1007/978-3-540-87531-4_35

7. Benton, N., Hughes, J., Moggi, E.: Monads and e�ects. In: Applied Semantics,
International Summer School (APPSEM 2000) Caminha, Portugal, September 9�
15, 2000, Advanced Lectures. Lecture Notes in Computer Science, vol. 2395, pp.
42�122. Springer (2000). https://doi.org/10.1007/3-540-45699-6_2

8. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program
Development�Coq'Art: The Calculus of Inductive Constructions. Texts
in Theoretical Computer Science. An EATCS Series, Springer (2004).
https://doi.org/10.1007/978-3-662-07964-5

9. Chan, J., Li, Y., Bowman, W.J.: Is sized typing for Coq practical? (2019), https:
//arxiv.org/abs/1912.05601

https://doi.org/10.1007/978-3-030-51054-1_1
https://doi.org/10.1007/978-3-030-51054-1_1
https://doi.org/10.1007/978-3-030-51054-1_1
https://doi.org/10.1007/978-3-030-51054-1_1
https://doi.org/10.1017/S0956796821000137
https://doi.org/10.1017/S0956796821000137
https://doi.org/10.4230/LIPIcs.TYPES.2020.2
https://doi.org/10.4230/LIPIcs.TYPES.2020.2
https://doi.org/10.4230/LIPIcs.TYPES.2020.2
https://doi.org/10.4230/LIPIcs.TYPES.2020.2
https://arxiv.org/abs/2011.03463
https://doi.org/10.1007/978-3-030-33636-3_9
https://doi.org/10.1007/978-3-030-33636-3_9
https://agda.readthedocs.io/en/v2.6.2.1/
https://agda.readthedocs.io/en/v2.6.2.1/
https://doi.org/10.1007/978-3-540-87531-4_35
https://doi.org/10.1007/978-3-540-87531-4_35
https://doi.org/10.1007/3-540-45699-6_2
https://doi.org/10.1007/3-540-45699-6_2
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://arxiv.org/abs/1912.05601
https://arxiv.org/abs/1912.05601

26 A. Saito and R. A�eldt

10. Christiansen, J., Dylus, S., Bunkenburg, N.: Verifying e�ectful Haskell programs
in Coq. In: 12th ACM SIGPLAN International Symposium on Haskell (Haskell
2019), Berlin, Germany, August 18-23, 2019. pp. 125�138. ACM (2019). https:
//doi.org/10.1145/3331545.3342592

11. Cohen, C., Sakaguchi, K., Tassi, E.: Hierarchy builder: Algebraic hierarchies made
easy in Coq with Elpi (system description). In: 5th International Conference on
Formal Structures for Computation and Deduction (FSCD 2020), June 29�July 6,
2020, Paris, France (Virtual Conference). LIPIcs, vol. 167, pp. 34:1�34:21. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/
LIPIcs.FSCD.2020.34

12. Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging mathematical
structures. In: 22nd International Conference on Theorem Proving in Higher Order
Logics (TPHOLs 2009), Munich, Germany, August 17�20, 2009. Lecture Notes in
Computer Science, vol. 5674, pp. 327�342. Springer (2009). https://doi.org/10.
1007/978-3-642-03359-9_23

13. Garrigue, J.: Proving the correctness of OCaml typing by translation into Coq. The
17th Theorem Proving and Provers meeting (TPP 2021) (Nov 2021), presentation

14. Gibbons, J., Hinze, R.: Just do it: simple monadic equational reasoning. In:
16th ACM SIGPLAN international conference on Functional Programming (ICFP
2011), Tokyo, Japan, September 19�21, 2011. pp. 2�14. ACM (2011). https:

//doi.org/10.1145/2034773.2034777

15. Hierarchy Builder: Hierarchy builder wiki�missingjoin. Available at https://

github.com/math-comp/hierarchy-builder/wiki/MissingJoin (2021)
16. Jaskelio�, M.: Modular monad transformers. In: Programming Languages and Sys-

tems, 18th European Symposium on Programming (ESOP 2009), York, UK, March
22�29, 2009. Lecture Notes in Computer Science, vol. 5502, pp. 64�79. Springer
(2009). https://doi.org/10.1007/978-3-642-00590-9_6

17. Jomaa, N., Nowak, D., Grimaud, G., Hym, S.: Formal proof of dynamic memory
isolation based on MMU. Sci. Comput. Program. 162, 76�92 (2018). https://doi.
org/10.1016/j.scico.2017.06.012

18. Letan, T., Régis-Gianas, Y.: FreeSpec: specifying, verifying, and executing impure
computations in Coq. In: 9th ACM SIGPLAN International Conference on Cer-
ti�ed Programs and Proofs (CPP 2020), New Orleans, LA, USA, January 20�21,
2020. pp. 32�46. ACM (2020). https://doi.org/10.1145/3372885.3373812

19. Maillard, K., Ahman, D., Atkey, R., Martínez, G., Hritcu, C., Rivas, E., Tanter,
É.: Dijkstra monads for all. Proc. ACM Program. Lang. 3(ICFP), 104:1�104:29
(2019). https://doi.org/10.1145/3341708

20. MathComp: The mathematical components repository. Available at
https://github.com/math-comp/math-comp (2022), version 1.14.0. See
ssreflect/order.v for ordered types. See https://github.com/math-comp/

math-comp/blob/251c8ec2490ff645a6afa45dd1ec238b9f71a554/mathcomp/

ssreflect/tuple.v#L460-L499 for the bseq type.
21. Monae: Monadic e�ects and equational reasoning in Coq. Available at https://

github.com/affeldt-aist/monae (2021), version 0.4.1
22. Mu, S.: Calculating a backtracking algorithm: An exercise in monadic program

derivation. Tech. rep., Academia Sinica (2019), TR-IIS-19-003
23. Mu, S.: Equational reasoning for non-determinism monad: A case study of Spark

aggregation. Tech. rep., Academia Sinica (2019), TR-IIS-19-002
24. Mu, S., Chiang, T.: Declarative pearl: Deriving monadic quicksort. In: 15th Inter-

national Symposium on Functional and Logic Programming (FLOPS 2020), Akita,

https://doi.org/10.1145/3331545.3342592
https://doi.org/10.1145/3331545.3342592
https://doi.org/10.1145/3331545.3342592
https://doi.org/10.1145/3331545.3342592
https://doi.org/10.4230/LIPIcs.FSCD.2020.34
https://doi.org/10.4230/LIPIcs.FSCD.2020.34
https://doi.org/10.4230/LIPIcs.FSCD.2020.34
https://doi.org/10.4230/LIPIcs.FSCD.2020.34
https://doi.org/10.1007/978-3-642-03359-9_23
https://doi.org/10.1007/978-3-642-03359-9_23
https://doi.org/10.1007/978-3-642-03359-9_23
https://doi.org/10.1007/978-3-642-03359-9_23
https://doi.org/10.1145/2034773.2034777
https://doi.org/10.1145/2034773.2034777
https://doi.org/10.1145/2034773.2034777
https://doi.org/10.1145/2034773.2034777
https://github.com/math-comp/hierarchy-builder/wiki/MissingJoin
https://github.com/math-comp/hierarchy-builder/wiki/MissingJoin
https://doi.org/10.1007/978-3-642-00590-9_6
https://doi.org/10.1007/978-3-642-00590-9_6
https://doi.org/10.1016/j.scico.2017.06.012
https://doi.org/10.1016/j.scico.2017.06.012
https://doi.org/10.1016/j.scico.2017.06.012
https://doi.org/10.1016/j.scico.2017.06.012
https://doi.org/10.1145/3372885.3373812
https://doi.org/10.1145/3372885.3373812
https://doi.org/10.1145/3341708
https://doi.org/10.1145/3341708
https://github.com/math-comp/math-comp
https://github.com/math-comp/math-comp/blob/251c8ec2490ff645a6afa45dd1ec238b9f71a554/mathcomp/ssreflect/tuple.v#L460-L499
https://github.com/math-comp/math-comp/blob/251c8ec2490ff645a6afa45dd1ec238b9f71a554/mathcomp/ssreflect/tuple.v#L460-L499
https://github.com/math-comp/math-comp/blob/251c8ec2490ff645a6afa45dd1ec238b9f71a554/mathcomp/ssreflect/tuple.v#L460-L499
https://github.com/affeldt-aist/monae
https://github.com/affeldt-aist/monae

Towards a Practical Library for Monadic Equational Reasoning in Coq 27

Japan, September 14�16, 2020. Lecture Notes in Computer Science, vol. 12073, pp.
124�138. Springer (2020). https://doi.org/10.1007/978-3-030-59025-3_8

25. Oliveira, B.C.D.S., Schrijvers, T., Cook, W.R.: MRI: Modular reasoning about
interference in incremental programming. Journal of Functional Programming 22,
797�852 (2012). https://doi.org/10.1017/S0956796812000354

26. Pauwels, K., Schrijvers, T., Mu, S.: Handling local state with global state. In: 13th
International Conference on Mathematics of Program Construction (MPC 2019),
Porto, Portugal, October 7�9, 2019. Lecture Notes in Computer Science, vol. 11825,
pp. 18�44. Springer (2019). https://doi.org/10.1007/978-3-030-33636-3_2

27. Sakaguchi, K.: Program extraction for mutable arrays. Sci. Comput. Program. 191,
102372 (2020). https://doi.org/10.1016/j.scico.2019.102372

28. Schrijvers, T., Piróg, M., Wu, N., Jaskelio�, M.: Monad transformers and modular
algebraic e�ects: what binds them together. In: 12th ACM SIGPLAN International
Symposium on Haskell (Haskell 2019), Berlin, Germany, August 18�23, 2019. pp.
98�113. ACM (2019). https://doi.org/10.1145/3331545.3342595

29. Sozeau, M.: Equations�a function de�nitions plugin. Available at https://

mattam82.github.io/Coq-Equations/ (2009), last stable release: 1.3 (2021)
30. Sozeau, M., Mangin, C.: Equations reloaded: high-level dependently-typed func-

tional programming and proving in coq. Proc. ACM Program. Lang. 3(ICFP),
86:1�86:29 (2019). https://doi.org/10.1145/3341690

31. The Coq Development Team: The Coq Proof Assistant Reference Manual. Inria
(2022), available at https://coq.inria.fr. Version 8.15.1

https://doi.org/10.1007/978-3-030-59025-3_8
https://doi.org/10.1007/978-3-030-59025-3_8
https://doi.org/10.1017/S0956796812000354
https://doi.org/10.1017/S0956796812000354
https://doi.org/10.1007/978-3-030-33636-3_2
https://doi.org/10.1007/978-3-030-33636-3_2
https://doi.org/10.1016/j.scico.2019.102372
https://doi.org/10.1016/j.scico.2019.102372
https://doi.org/10.1145/3331545.3342595
https://doi.org/10.1145/3331545.3342595
https://mattam82.github.io/Coq-Equations/
https://mattam82.github.io/Coq-Equations/
https://doi.org/10.1145/3341690
https://doi.org/10.1145/3341690
https://coq.inria.fr

	Towards a Practical Library for Monadic Equational Reasoning in Coq

