
日本ソフトウェア科学会第 35 回大会 (2018 年度) 講演論文集

Experimenting with Monadic Equational

Reasoning in Coq

Reynald Affeldt David Nowak

In order to prove properties of low-level programs in a proof-assistant, it is common to proceed by refining

an abstract model into a deep encoding of the program. Here, we lay the groundwork for exploring the

alternative approach consisting in reasoning directly on a shallow encoding of the program to be verified.

For that purpose, we mechanize in the Coq proof-assistant an approach by Gibbons and Hinze for monadic

equational reasoning. The main idea of our mechanization is to formalize monads and their algebraic laws

like it is done for mathematical structures so as to take advantage of Coq’s rewriting capabilities. This

leads to a mechanization with little overhead that adds the possibility for rigorous model instantiations. In

this paper, we explain the key ideas of our mechanization, discuss in particular the probability monad, and

give a denotational semantics to a small imperative programming language with a combination of the state

and trace monads. The latter application leads us to extend monadic equational reasoning with equations

linking a state monad with a trace monad.

1 Introduction

1. 1 Motivation

Our ultimate goal is to use the Coq proof-

assistant to reason about low-level languages (e.g.,

produce formal proofs of functional correctness of

programs). For that purpose, the approach that is

usually taken is to proceed via a deep embedding

of the target language. This requires substantial

instrumentations of syntax and semantics, result-

ing in technical lemmas that are difficult to use,

which in turn call for meta-programming (using

Ltac in Coq). The alternative approach consist-

ing of using a shallow embedding bears the promise

of a more direct access to the proof-assistant na-

Coq における Monadic 等式推論の実験
This is an unrefereed paper. Copyrights belong to

the Author(s).

アフェルト・レナルド,産業技術総合研究所, National Insti-

tute of Advanced Industrial Science and Technology.

ノヴァック・ダヴィッド, フランス国立科学研究センター・
リール大学, CNRS/University of Lille.

tive tactics and it indeed experimentally met some

success (e.g., [16] [18]). Most of the time, this

approach relies on a combination of monads and

Hoare logic (e.g., [17]). There is however another

approach based on monads to reason about pro-

grams: monadic equational rewriting, an approach

best explained by Gibbons and Hinze [12]. We be-

lieve that it is worth exploring because the rewrit-

ing tactics of Coq have been polished over the years

and are now powerful enough to gear huge formal

developments; for example, proofs in the Mathe-

matical Components library (MathComp) essen-

tially rely on rewriting [15].

As a preliminary step towards the verification

of low-level programs, in this paper, we mecha-

nize monadic equational rewriting. Our goal is to

make sure that we can produce formal proofs based

on monadic equational reasoning that are at least

as pleasant as pencil-and-paper proofs. For that

purpose, we mechanize in Coq the paper by Gib-

bons and Hinze [12], as well as related work [11] [22].

This provides us with a solid mechanization of al-

gebraic effects such as failures, exceptions, non-

determinism, states, probabilities (and more), that

are key to formalize the semantics of low-level lan-

guages.

It should be noted that the formalization of

monadic equational reasoning is already interest-

ing in itself. Its correctness can be tricky (for ex-

ample, the early [12] needed to be patched in [1]) so

that mechanized tools are certainly welcome. There

is also an interest in formal frameworks to reason

about Haskell-like programs in Coq (e.g., [7]) so

that a proper mechanization of monadic equational

reasoning could actually be readily useful.

1. 2 Contributions

We formalize the theory of algebraic effects

from [12] (see Sections 3 and 4) and even extend

it by providing formal models (see Sect. 5).

We mechanize numerous examples: all the ex-

amples from [12], most examples from [11] (which

overlaps and complements [12]), and also some

examples from related work [22]. The result is

very satisfactory. The formal proofs closely match

their pencil-and-paper counterparts (discrepancies

are minor, see Sect. 7. 2). Proofs can actually

be made even shorter thanks to the terseness of

Coq’s tactic language and its automation capabil-

ities (Sect. 2 provides a simple example, see the

code [5] for more).

Last, we extend our mechanization with other

monads and present an application that provides a

shallow encoding of a semantics using monads (see

Sect. 6).

1. 3 Formalization Approach

Our successful mechanization owes much to the

level of details provided by the authors using

monadic equational reasoning in their papers. It

is also the result of appropriate technical choices:

• We use Coq canonical structures [20]. We

use them in particular to formalize the hier-

archy of algebraic effects (see Sect. 3) using

packed classes [10], a methodology used in the

MathComp library to formalize the hierar-

chy of mathematical structures. We also use

canonical structures to formalize probabilities

(see Sect. 5).

• We use the SSReflect tactics and li-

braries [14]. SSReflect tactics emphasize

proof by rewriting, making it easier to mimic

monadic equational reasoning. The SSRe-

flect library for lists is closer to the Haskell

library than Coq’s standard library: it al-

ready provides Haskell-like notations (e.g., no-

tation for comprehension) and more functions

(e.g., allpairs, a.k.a. cp in Haskell). Also, we

benefit from other SSReflect/MathComp-

compatible libraries to formalize the model of

the probability monad (the theory of finitely

supported distributions comes from [4]).

• We benefit from the real numbers of the

Coq standard library: they provide tactics

to deal automatically with reals despite their

axiomatic encoding. In particular the tac-

tics field, fourier, and nstaz are important

in practice to compute probabilities.

2 A Simple Example of Monadic Equa-

tional Reasoning in Coq

We start with a simple example of monadic equa-

tional reasoning taken from [12]. It establishes the

equivalence between a functional implementation

of the product of integers (product below) with a

monadic version (fastproduct). In [12], the proof is

carried out by a series of rewritings that we have

reproduced (faithfully) in Fig. 1 (on the left). Let

us comment on the equivalent Coq mechanization

that is displayed on the right of Fig. 1.

We first define the product of natural numbers

Original proof (Sect. 5.1 of [12]) Coq proof (lhs of the goal, tactics inbetween)

fastprod xs fastproduct s

=J definition of fastprod K =J rewrite /fastproduct K
catch (work xs) (return 0) Catch (work s) (Ret 0)

=J specification of work K =J rewrite /work K
catch (if 0 ∈ xs then fail Catch (if 0 \in s then Fail

else return (product xs)) (return 0) else Ret (product s)) (Ret 0)

=J lift out the conditional K =J rewrite lift_if if_ext K
if 0 ∈ xs then catch fail (return 0) ((if 0 \in s then Catch Fail (Ret 0)

else catch (return (product xs)) (return 0) else Catch (Ret (product s)) (Ret 0))

=J laws of catch, fail, and return K =J rewrite catchfailm catchret K
if 0 ∈ xs then return 0 else return (product xs) (if 0 \in s then Ret 0 else Ret (product s))

=J arithmetic: 0 ∈ xs ⇒ product xs = 0 K =J case: ifPn => // /product0 K
if 0 ∈ xs then return (product xs) (Lemma product0 s : O \in s -> product s = O.)

else return (product xs) Ret 0

=J redundant conditional K =J move <- K
return (product xs) Ret (product s)

Figure 1 Comparison between a proof from [12] and its Coq formalization

as follows:
Definition product (s : seq nat) :=

foldr muln 1 s.

A “faster” product can be implemented using the

failure monad (with operator Fail) and the excep-

tion monad (with operator Catch):
Definition work

{M : failMonad} (s : seq nat) : M nat :=

if O \in s then Fail else Ret (product s).

Definition fastproduct

{M : exceptMonad} s : M nat :=

Catch (work s) (Ret O : M _).

The formalization of the failure monad is explained

in the next section (Sect. 3). The exception monad

inherits†1 from the failure monad to which it adds

in particular the following properties:
Variables (M : exceptMonad).

Lemma catchfailm : forall A,

left_id Fail (@Catch M A).

Lemma catchret : forall A x,

left_zero (Ret x : M _) (@Catch M A).

The formal proof that fastproduct is pure, i.e.,

†1 Inheritance is also explained in the next section

(Sect. 3).

that it never throws an unhandled exception, can

be compared to its pencil-and-paper counterpart in

Fig. 1. One can observe that both proofs are essen-

tially the same, though in practice the Coq proof

script will be streamlined in two lines of code (of

less than 80 characters):
Lemma fastproductE s : fastproduct s = Ret (product s).

Proof.

rewrite /fastproduct /work lift_if if_ext catchfailm.

by rewrite catchret; case: ifPn => // /product0 <-.

Qed.

The fact that we achieve the same conciseness as

the pencil-and-paper proof on this example is not

because it is short. In fact, the same can be said

of all the examples in [12], even the longer and

more complicated Monty Hall problem and tree-

relabeling example (see [5]).

The formal proof above relies on a formalization

of monads organized as a hierarchy in such a way

that properties of a monad at a lower level (say,

monad) can be enjoyed by monads at higher levels

(such as exceptMonad). How to achieve this is the

purpose of the next section.

3 Formalization of Algebraic Effects in

Coq

The heart of our mechanization is a formalization

of a hierarchy of monads and their algebraic laws.

It is implemented using packed classes [10]. In this

section, we explain the formalization using an ex-

ample: the combination of the failure monad and

the choice monad into the non-determinism monad.

The next section (Sect. 4) provides an overview of

the complete hierarchy.

3. 1 The Type of Monad and its Extension

as a Packed Class

The class of monads is formalized as a dependent

record (class_of, in the module†2 Monad) with two

constructors (ret and bind) satisfying the monad

laws. The type of monads monad (a notation for

Monad.t) is a pair of a Type -> Type function that

satisfies the class_of interface:
(* Module Monad *)

Record class_of (m : Type -> Type) : Type :=

Class {

ret : forall A, A -> m A ;

bind : forall A B, m A -> (A -> m B) -> m B ;

_ : Laws.left_neutral bind ret ;

_ : Laws.right_neutral bind ret ;

_ : Laws.associative bind }.

Record t : Type := Pack {

m : Type -> Type ; class : class_of m }.

Notation monad := t.

Coercion m : monad >-> Funclass.

The purpose of the coercion from the type monad is

to let one write M A when M has the type monad, M

being then understood as the projection m M.

The failure monad is formalized by providing a

mixin with a fail operator and the property that

the latter is a left-zero of sequential composition.

The class of failure monads are monads that more-

over satisfy the corresponding mixin (see class_of

below). The type of failure monads is a dependent

†2 We use modules just for the name-space.

record with a function of type Type -> Type and a

proof that this function belongs to the class of fail-

ure monads:
(* Module MonadFail *)

Record mixin_of (M : monad) : Type := Mixin {

fail : forall A, M A ;

_ : Laws.left_zero (@Bind M) fail }.

Record class_of (m : Type -> Type) := Class {

base : Monad.class_of m ;

mixin : mixin_of (Monad.Pack base) }.

Structure t := Pack {

m : Type -> Type ; class : class_of m }.

Notation failMonad := t.

Coercion baseType : failMonad >-> monad.

Canonical baseType.

Failure monads are furthermore coerced to monads

and made canonical.

It is cumbersome to use the fail operator of the

mixin directly. For this reason, it is redefined (as

op_fail) so that its type features record projections

w.r.t. the monad. This is actually under this form

that we will use the fail operator (through the no-

tation Fail):
(* in Module MonadFail *)

Definition op_fail (M : t) : forall A, m M A :=

let: Pack _ (Class _ (Mixin x _)) := M

return forall A, m M A in x.

Arguments op_fail {M A} : simpl never.

Notation Fail := op_fail.

Likewise, the property that Fail is a left-zero of

Bind is better wrapped as an additional lemma:
(* outside of Module MonadFail *)

Variable (M : failMonad).

Lemma bindfailm :

Laws.left_zero (@Bind _) (@Fail M).

3. 2 Combination of Effects: Failure and

Choice into Non-determinism

Similarly to the failure monad, let us define

the choice monad. It extends the type monad

with the operator alt (pencil-and-paper notation:

· � ·) which is associative and such that Bind left-

distributes over it:
(* Module MonadAlt *)

Record mixin_of (M : monad) : Type := Mixin {

alt : forall A, M A -> M A -> M A ;

_ : forall A, associative (@alt A) ;

_ : Laws.bind_left_distributive (@Bind M) alt }.

Record class_of (m : Type -> Type) : Type :=

Class {

base : Monad.class_of m ;

mixin : mixin_of (Monad.Pack base) }.

Structure t := Pack {

m : Type -> Type ; class : class_of m }.

Definition op_alt M := (* omitted *) .

Notation Alt := op_alt.

Notation altMonad := t.

Let [~i] be an infix Coq notation for the non-

deterministic choice:
Notation "x '[~i]' y" := (Alt x y).

The non-determinism monad is a combination of

a failure monad with a choice monad. This is done

by first specifying the additional properties of the

non-deterministic choice (the fact that Fail is a unit

of choice) as a new mixin (see mixin_of just below)

and then declaring a class that combines this mixin

with the class of failure monads and choice monads

(class_of below):
(* Module MonadNondet *)

Record mixin_of (M : failMonad)

(a : forall A, M A -> M A -> M A) : Type :=

Mixin {

_ : Laws.left_id (@Fail M) a ;

_ : Laws.right_id (@Fail M) a

}.

Record class_of (m : Type -> Type) : Type :=

Class {

base : MonadFail.class_of m ;

mixin : MonadAlt.mixin_of

(Monad.Pack (MonadFail.base base)) ;

ext : @mixin_of (MonadFail.Pack base)

(@MonadAlt.alt _ mixin)

}.

Structure t : Type := Pack {

m : Type -> Type ; class : class_of m }.

Notation nondetMonad := t.

We provide canonical structures so that monads of

type nondetMonad can be seen as monads of type

failMonad or altMonad:
(* in Module Nondet *)

Definition baseType (M : t) :=

MonadFail.Pack (base (class M)).

Coercion baseType : nondetMonad >-> failMonad.

Canonical baseType.

Definition alt_of_nondet (M : nondetMonad) :=

MonadAlt.Pack (MonadAlt.Class

(mixin (class M))).

Canonical alt_of_nondet.

As a consequence of the use of packed classes, it

becomes possible for monads to enjoy the notations

and properties of the monads from which they de-

rive. For instance, in the example just below, it be-

comes possible with a monad of type nondetMonad to

use in combination (1) the Fail definition and the

[~i] notation, and (2) the properties of failMonad

with a monad of type nondetMonad:
Lemma test_canonical (M : nondetMonad)

A (a : M A) (b : A -> M A) :

a [~i] (Fail >>= b) = a [~i] Fail.

Proof.

by rewrite bindfailm.

Qed.

Looking (with, say, Set Printing All) at the proof

term reveals that Coq has introduced calls to

MonadNondet.baseType and alt_of_nondet appropri-

ately. This shows that packed classes achieve at

the same time both notation overloading and in-

heritance, thus providing the main ingredients to

the formalization of monadic equational reasoning.

4 The Hierarchy of Monads

The hierarchy of monads and their algebraic laws

that we formalize is essentially the one from [12],

with minor adjustments dictated by [11] and [1].

The result is displayed in Fig. 2.

We have already explained monad, failMonad,

altMonad, and nondetMonad in Sect. 3. 2, and

exceptMonad in Sect. 2. The combination of effects

to form other monads is achieved similarly to the

non-determinism monad: we use one existing class

as the base, extend it with an existing mixin, and

possibly add properties as a new mixin.

Prose explanations about each monad can be

found in the literature. Here follows a short reading

guide. See the code [5] for details.

• altMonad is the choice monad already seen in

Sect. 3. 2. The examples of [12] relying on

non-deterministic choice use this monad. How-

ever, the combination of non-determinism and

Figure 2 Hierarchy of monads formalized. This includes the monads from Gibbons et

al. [12] [11] [1]. See Table 1 for an overview of the algebraic laws.

probability in altProbMonad requires idempo-

tence and commutativity [11]. Idempotence

and commutativity are also required in related

work [22]. We have therefore inserted the

monad altCIMonad in the hierarchy.

• We saw exceptMonad in the example of Sect. 2.

It is explained in Sect. 5 of [12].

• The state monad stateMonad and the state

monad with non-determinism nondetStateMonad

are explained in Sect. 6 of [12]. We come back

to stateMonad in Sect. 6. 1.

• The probability monad probDrMonad was origi-

nally explained in Sect. 8 of [12]. The main

difference with [12] is that we extract from

the probability monad probDrMonad the monad

probMonad as an intermediate step. probDrMonad

extends probMonad with right distributivity of

bind (· ≫= ·) over probabilistic choice (·◁ ·▷ ·).
The reason is that this latter property is not

compatible with distributivity of probabilistic

choice over non-deterministic choice (·� ·) and
therefore needs to be put aside so as to be able

to form altProbMonad by combining probMonad

and altMonad (the issue is explained in [1]). We

come back to probMonad in Sect. 5.

• exceptProbMonad combines probability and ex-

ception and comes from Sect. 7.1 of [11].

• freshMonad and failFreshMonad are explained

in Sect. 9.1 of [12]. freshMonad provides an op-

erator to generate fresh labels.

• traceMonad and stateTraceMonad are the topic

of Sect. 6. 1.

Our formalization [5] includes all the examples

from [12], as well as examples from [11] and [22].

This includes in particular the eight queens puz-

zle from [12], several variants of the Monty Hall

problem from [12] and [11] (to illustrate the various

probability monads), and the tree-relabeling ex-

ample from [12] that originally motivated monadic

equational reasoning.

5 Formalization of the Probability

Monad and its Model

In the previous sections, we explained how we for-

malized a hierarchy of monads that mostly comes

from [12]. In this section, we provide more details

about the formalization of the probability monad.

The formalization of the probability monad is in-

teresting because it shows that using Coq makes it

possible to complete the work by Gibbons et al. by

showing how to provide rigorous models. In Sect. 4

of [11], the model of the probability monad is in-

formally explained in terms of the datatype Dist of

probability-weighted lists that does not take into

account permutations, zero-weighted/repeated ele-

ments, etc. However (as hinted at by Gibbons et

Interface Operators Axioms

monad Ret bindretf (left neutral)

Bind/>>=/>> bindmret (right neutral)

bindA (associativity)

failMonad Fail bindfailm (fail left-zero of bind)

altMonad Alt/[~i] alt_bindDl (bind left-distributes over alt)

altA (associativity)

altCIMonad altmm (idempotence)

altC (commutativity)

nondetMonad altmfail (fail right-id of alt)

altfailm (fail left-id of alt)

exceptMonad Catch catchfailm (fail left-id of catch)

catchmfail (fail right-id of catch)

catchA (associativity)

catchret (ret left-zero of catch)

stateMonad Get putget, getputskip, putput, getget (see Sect. 6. 1. 1)

Put

nondetStateMonad bindmfail (fail right-zero of bind)

alt_bindDr (bind right-distributes over choice)

freshMonad Fresh

failFreshMonad distinct failfresh_bindmail (fail right-zero of bind)

assert (distinct M) \o Symbols = Symbols

probMonad Choice choicemm (idempotence)

choice0, choice1 (identity laws)

choiceA (quasi associativity)

choiceC (skewed commutativity)

prob_bindDl (bind left-distributivites over choice)

probDrMonad prob_bindDr (bind right-distributes over choice)

altProbMonad choiceDr (prob. choice right-distributes over nondet. choice)

exceptProbMonad catchDl (catch left-distributes over choice)

traceMonad Mark

stateTraceMonad Run runret, runbind, runget, runput, runmark (see Sect. 6. 1. 3)
Table 1 Summary of monad operators and their algebraic laws (mostly coming from [12])

al.), it takes a bit more effort to provide an initial

model.

5. 1 The Probability Monad

The first step towards a formal model of the prob-

ability monad is to provide a type Prob.t of proba-

bilities (reals between 0 and 1):
Module Prob.

Record t := mk {

p :> R ;

H : (0 <= p <= 1)%R }.

Definition H' (p : t) := H p.

Arguments H' : simpl never.

Notation "[Pr 'of' q]" := (@mk q (@H' _)).

The significance of this definition and this nota-

tion is that it makes it possible to succinctly write:

[Pr of 0] for the 0 probability, [Pr of / 2] for the

1
2
probability, [Pr of INR m / INR (m + n)] for the

probability m
m+n

, etc. This is under the condi-

tion that we equip Coq with appropriate canonical

structures. For example, here follows the registra-

tion of the proof 0 ≤ 0 ≤ 1 that makes it possible

to write [Pr of 0]:
Lemma OO1 : (R0 <= R0 <= R1)%R.

Canonical prob0 := Prob.mk OO1.

The above datatype and notation lead us to the

following mixin (the one of probMonad from Fig. 2):
Record mixin_of (M : monad) : Type := Mixin {

choice : forall (p : Prob.t) A, M A -> M A -> M A

where "mx <| p |> my" := (choice p mx my) ;

_ : forall A (mx my : M A),

mx <| [Pr of 0] |> my = my ;

_ : forall A (mx my : M A),

mx <| [Pr of 1] |> my = mx ;

_ : forall A p (mx my : M A),

mx <| p |> my = my <| [Pr of p.~] |> mx ;

_ : forall A p, idempotent (@choice p A) ;

_ : forall A (p q r s : Prob.t) (mx my mz : M A),

(p = r * s :> R /\ s.~ = p.~ * q.~)%R ->

mx <| p |> (my <| q |> mz) =

(mx <| r |> my) <| s |> mz ;

_ : forall p, Laws.bind_left_distributive

(@Bind M) (choice p) }.

p.~ is a notation for the real p̄ = 1− p, which hap-

pens to be a probability when p is (and can thus

be handled by the probability notation [Pr of ...]

thanks to an appropriate canonical structure dec-

laration).

5. 2 A Model Using Probability Distribu-

tions

Providing a formal model for the monad seen in

the previous section (Sect. 5. 1) amounts to instan-

tiate its interface with concrete objects.

5. 2. 1 Probability Distributions

In [2] [3] [4], we introduced a formalization of

probability distributions over a finite type (A below

has type finType) based on the following definition:
Record dist := mkDist {

pmf :> A -> R+ ;

pmf1 : \rsum_(a in A) pmf a = 1%R}.

The first field is a probability mass function with

non-negative outputs coupled with a proof that the

outputs sum to 1.

5. 2. 2 Formal Model of Monads

Providing a formal model of monads amounts to

provide concrete implementation for Ret and the

bind operator†3. For instance, the bind operator

can be defined using distributions as follows:
(* Module DistBind *)

Variables (A B : finType)

(p : dist A) (g : A -> dist B).

Definition f b := \rsum_(a in A) p a * (g a) b.

Definition d : dist B := ...

This operator can further be proved to satisfy the

monad laws, for example, associativity:
Lemma DistBindA A B C (m : dist A)

†3 The type of monad in Sect. 3. 1 used Type -> Type.

In this section, we need to specialize it to

finType -> Type.

(f : A -> dist B) (g : B -> dist C) :

DistBind.d (DistBind.d m f) g =

DistBind.d m (fun x => DistBind.d (f x) g).

Completing the model with Ret and its properties

is not difficult.

5. 2. 3 Formal Model of the Probability

Monad

Last, we need to provide an implementation for

the interface of the probability monad seen in

Sect. 5. 1. For instance, the probabilistic choice op-

erator corresponds to the construction of a new dis-

tribution d from two distributions d1 and d2 biased

by a probability p:
(* Module ConvexDist *)

Variables (A : finType) (d1 d2 : dist A) (p : R).

Definition f a := (p * d1 a + p.~ * d2 a)%R.

Definition d : dist A := ...

This implementation of probabilistic choice can fur-

ther be proved to have the expected properties, for

example, skewed commutativity:
Lemma quasi_commute (d1 d2 : dist A) p

(Hp : 0 <= p <= 1) (Hp' : 0 <= p.~ <= 1) :

d d1 d2 Hp = d d2 d1 Hp'.

We see here that using Prob.t (instead of, say,

the mere type for reals R) is crucial to provide a

model.

6 An Application to Program Seman-

tics

In this section, we extend the approach of

monadic equational reasoning to the formalization

of program semantics. For that purpose, we add

a trace monad to the hierarchy of [12] (see Fig. 2).

Below, we explain how we compose it with the state

monad. The purpose of the trace monad is to be

able to express properties over the trace of a pro-

gram. For example, if the trace includes nonces, we

might want to prove that they are all distinct.

6. 1 The State-Trace Monad

The state-trace monad is the result of combining

a state monad with a trace monad. We start by

recalling the interface of the state monad.

6. 1. 1 The State Monad

The state monad denotes computations that

transform a state (of type S below). It comes with

a Get function to yield a copy of the state and a

Put function to overwrite it. These functions are

constrained by four axioms whose usage is demon-

strated by Gibbons and Hinze with the eight queens

puzzle ([11], Coq formalization in [5]):
Record mixin_of (M : monad) (S : Type) : Type :=

Mixin {

get : M S ;

put : S -> M unit ;

_ : forall s s', put s >> put s' = put s' ;

_ : forall s, put s >> get = put s >> Ret s ;

_ : get >>= put = skip ;

_ : forall k : S -> S -> M S,

get >>= (fun s => get >>= k s) =

get >>= fun s => k s s }.

6. 1. 2 The Trace Monad

Our trace monad just extends monads with a

Mark operator to record events:
Record mixin_of T (m : Type -> Type) : Type :=

Mixin { mark : T -> m unit }.

Its semantics becomes apparent in the run interface

of the next section (Sect. 6. 1. 3).

6. 1. 3 The Run Interface

The run interface extends the state monad simul-

taneously with a Run operator and a Mark operator.

The meaning of the Run operator is captured by

several axioms that give a meaning to each oper-

ator involved in the monad. Here follows the run

interface; the Mark operator is abstracted as op:
Record mixin_of T S (M : stateMonad S)

(op : T -> M unit) : Type := Mixin {

run : forall A,

M A -> S * seq T -> A * (S * seq T) ;

_ : forall A (a : A) s, run (Ret a) s = (a, s) ;

_ : forall A B (m : M A) (f : A -> M B) s,

run (Do{ a <- m ; f a}) s =

let: (a', s') := run m s in run (f a') s' ;

_ : forall s l, run Get (s, l) = (s, (s, l)) ;

_ : forall s l s',

run (Put s') (s, l) = (tt, (s', l)) ;

_ : forall t s l,

run (op t) (s, l) = (tt, (s, l ++ [:: t]))

}.

6. 2 Semantics of an Imperative Language

Here we are considering a small imperative lan-

guage with a global state and a primitive to emit an

event. In practice, emitting an event might consist

in printing a message.

6. 2. 1 Operational and denotational se-

mantics

We define the higher-order abstract syntax [23]

of the language as follows:
Inductive program : Type -> Type :=

| p_ret : forall {A}, A -> program A

| p_bind : forall {A B},

program A -> (A -> program B) -> program B

| p_cond : forall {A},

bool -> program A -> program A -> program A

| p_get : program S

| p_put : S -> program unit

| p_mark : T -> program unit.

We give it a small-step semantics specified with

continuation in the style of Compcert [6]. We dis-

tinguish two kinds of continuations: stop for stop-

ping, and seq (Notation: ·;·) for sequencing:
Inductive continuation : Type :=

| stop : forall (A : Type), A -> continuation

| seq : forall (A : Type),

program A -> (A -> continuation) ->

continuation.

We can then define the step ternary relation that

relates a state to the next one and optionally an

event:
Definition state : Type := S * continuation.

Inductive step :

state -> option T -> state -> Prop :=

| s_ret : forall s A a (k : A -> _),

step (s, p_ret a ; k) None (s, k a)

| s_bind : forall s A B p f (k : B -> _),

step (s, p_bind p f ; k) None

(s, p ; fun a : A => f a ; k)

| s_cond_true : forall s A p1 p2 (k : A -> _),

step (s, p_cond true p1 p2 ; k) None

(s, p1 ; k)

| s_cond_false : forall s A p1 p2 (k : A -> _),

step (s, p_cond false p1 p2 ; k) None

(s, p2 ; k)

| s_get : forall s k,

step (s, p_get ; k) None (s, k s)

| s_put : forall s s' k,

step (s, p_put s' ; k) None (s', k tt)

| s_mark : forall s t k,

step (s, p_mark t ; k) (Some t) (s, k tt).

Its reflexive and transitive closure step_star of type

state -> list T -> state -> Prop is defined as one

expects. We prove that step is deterministic and

that step_star is confluent and deterministic.

In order to give our language a denotational se-

mantics, we instantiate the class stateTraceMonad in

the obvious manner. We first provide the definition

of the base monad:
Let m : Type -> Type :=

fun A => S * list T -> A * (S * list T).

Program Definition MONAD : monad := Monad.Pack

(@Monad.Class m

(fun A a => fun s => (a, s)) (* ret *)

(fun A B m f => fun s =>

let (a, s') := m s in f a s') (* bind *)

_ _ _).

Second, we provide an implementation of the mark

function for the trace monad:
Program Definition TRACE :=

@MonadTrace.Mixin T MONAD

(fun log s => (tt, (s.1, s.2 ++ [log]))).

Next, we provide an implementation of the state

monad:
Program Definition STATE := @MonadState.Class

S m (Monad.class MONAD)

(@MonadState.Mixin S MONAD

(* get *) (fun s => (s.1, s))

(* put *) (fun s' s => (tt, (s', s.2)))

_ _ _ _).

Last, we bundle the above monads together with

an implementation of the run interface:
Program Definition STATETRACE :=

@MonadStateTrace.Pack T S m

(@MonadStateTrace.Class T S m STATE TRACE

(@MonadStateTrace.Mixin T S

(MonadState.Pack STATE)

_ (* mark *)

(fun A (m : MONAD A) (s : S * list T) => m s)

(* run *) _ _ _ _ _)).

It is important to note here that the primitives

get and put can only read and update the global

state (of type S) but not the list of emitted events

(of type list T). Only the primitive mark has ac-

cess to the list of emitted events but it can nei-

ther read nor overwrite it: it can only add a new

event log to the list. This is necessary to prove the

correctness and completeness of the small-step se-

mantics with respect to the denotational semantics

denotation {A : Type} (p : program A) : M A (see

File smallstep monad.v of [5]).

6. 2. 2 The need for a small piece of deep

embedding

More precisely, correctness and completeness (of

the denotational semantics denotation w.r.t. the

operational semantics step_star) require that we

prove the two following lemmas on emitted events:
Lemma denotation_prefix_preserved

A (p : program A) : forall s s' l1 l a,

Run (denotation p) (s, l1) = (a, (s', l)) ->

exists l2, l = l1 ++ l2.

Lemma denotation_prefix_independent

A (p : program A) s l1 l2 :

Run (denotation p) (s, l1 ++ l2) =

let res := Run (denotation p) (s, l2) in

(res.1, (res.2.1, l1 ++ res.2.2)).

They respectively state that: once an event is emit-

ted it cannot be deleted; and the remaining exe-

cution of a program does not depend on the pre-

viouly emitted events. Those are natural proper-

ties that ought to be true for any monadic code,

and not only the monadic code that results from

the denotation of a program p. But this is not

the case with our above instantiation of the class

stateTraceMonad. Indeed, the class specifies those

primitives that should be implemented but do not

prevent one to add other primitives that might

break the above properties of emitted events. This

is why we restrict those properties to monadic code

(denotation p) resulting from the denotation of a

program p, thus allowing us to prove them by in-

duction on the syntax. One way to overcome this

limitation would be to include the syntactic re-

striction into the instatiation. That is to say that

the previous definition of the monad functor m as

fun A => S * list T -> A * (S * list T) would be

extended with a program p and a proof that its de-

notation is equal to the function. That is to say it

would become:

fun A => {

f : S * list T -> A * (S * list T) &

{ p : program A | denotation p = f }}

7 Some Technical Aspects of the For-

malization

7. 1 Rewriting Under Function Abstrac-

tions

In pencil-and-paper proofs of monadic equational

reasoning, whether a rewrite occurs under a lambda

or not does not make any difference, but Coq does

not natively allow for rewrites in the body of func-

tions. Following [21], we provide a bit of automa-

tion (the tactics Open and rewrite_ below) for that

purpose. Let us consider for illustration a function

that non-deterministically builds a subsequence of

a list (Sect. 3.1 of [11]):
Context {M : altMonad} {A : Type}.

Fixpoint subs (s : seq A) : M (seq A) :=

if s isn't h :: t then Ret [::] else

let t' := subs t in fmap (cons h) t' [~i] t'.

We want to prove the following lemma:
Lemma subs_cat (xs ys : seq A) :

subs (xs ++ ys) = Do{us <- subs xs;

Do{vs <- subs ys; Ret (us ++ vs)}}.

The proof eventually leads to the following subgoal:
====================

subs ((x :: xs) ++ ys) =

Do{ x0 <- subs xs; Do{ us <- Ret (x :: x0);

Do{ vs <- subs ys; Ret (us ++ vs)}}}

[~i] Do{ us <- subs xs; Do{ vs <- subs ys;

Ret (us ++ vs)}}

We want to turn the branch
Do{ x0 <- subs xs; Do{ us <- Ret (x :: x0);

Do{ vs <- subs ys; Ret (us ++ vs)}}}

into
Do{ x0 <- subs xs;

Do{ vs <- subs ys; Ret (x :: x0 ++ vs)}}

Since the target Ret is below Do{ x0 <- ...; ...},

rewrite bindretf fails. Instead, we “open” the

continuation with Open (X in subs xs >>= X) to get

the goal
====================

Do{ us <- Ret (x :: x0); Do{ vs <- subs ys;

Ret (us ++ vs)}} = ?g x0

on which rewrite bindretf now succeeds:
====================

Do{ vs <- subs ys; Ret ((x :: x0) ++ vs)} =

?g x0

Yet, Ret is still out of reach of rewrite. We could

open again the continuation but we use a “rewrite

under” tactic rewrite_ cat_cons to get:
====================

Do{ x1 <- subs ys; Ret (x :: x0 ++ x1)} = ?g x0

Now we can close the goal by reflexivity and we

are done. In practice, there is little need for Open

and most situations can be handled directly with-

out revealing the evar using rewrite_. We chose to

explain Open here because it shows how rewrite_ is

implemented.

7. 2 Minor Discrepancies between Coq

and Haskell

The differences between Coq and Haskell are

folklore. Coq functions must terminate, so that

we sometimes need an extra effort (but only stan-

dard techniques) to convince Coq that a function

is really terminating. See for example the func-

tion perms that non-deterministically build a per-

mutation of a list (it is not structurally terminat-

ing) [12] [5]. Also, Coq functions need to be total

and some Haskell functions cannot be formalized as

such (e.g., foldr1).

8 Related Work

8. 1 About Monadic Equational Reason-

ing

Although enabling equational reasoning for rea-

soning about monadic programs seems to be a nat-

ural idea, there does not seem to be much re-

lated work. Gibbons et al. seem to be the first to

synthesize monadic equational reasoning as an ap-

proach [12] [11] [1]. This viewpoint is also adopted

by other authors (e.g., [22] and [25]—the latter is

about equational reasoning for probabilistic pro-

gramming).

8. 2 Formalization of Monads in Coq

Monads are widely used for modelling program-

ming languages with effects. For instance, [9] con-

tains a formalization in Coq of several monads and

monad transformers, each one associated with a so-

called feature theorem. When monads are com-

bined, those feature theorems can then be easily

combined to prove type soundness. In comparison,

the work we formalize here contains more monads

but focus on equational reasoning on concrete pro-

grams instead of meta-theory on programming lan-

guages.

Monads have been used in Coq to verify low-

level systems [17] [18] or for their modular verifica-

tion [19] based on free monads. We share the same

original motivation: enable formal reasoning about

low-level programs using monads.

There are more formalizations of monads in other

proof-assistants. To pick one example that can be

easily compared to our mechanization, one can find

a formalization of the Monty Hall problem in Is-

abelle [8] but using a different theory called pGCL

and due to McIver and Morgan.

8. 3 About shallow and deep embedding

Shallow and deep embedding have been widely

compared in functional programming, e.g., in [13],

and combinations of shallow and deep embedding

have been proposed, e.g., in [26].

8. 4 About Formalization Techniques

We use packed classes [10] to formalize the hier-

archy of algebraic effects. It would be possible to

use other techniques. In fact, the first version of our

formalization was using a combination of telescopes

and canonical structures; it did not suffer prob-

lems but packed classes are more disciplined. Coq’s

type classes have been reported to replace canoni-

cal structures in many situations, but we have not

tested them here.

This problem of rewriting under function ab-

straction (discussed in Sect. 7. 1) is not specific to

monadic equational reasoning. For example, it also

occurs when dealing with the big operators of the

MathComp library, a situation for which [21] pro-

vides an automated solution.

9 Conclusions and future work

We have fully formalized in the Coq proof as-

sistant the monadic equational reasoning as advo-

cated by Gibbons et al. Our approach is successful

in the sense that our Coq proofs match surpris-

ingly well their paper-and-pencil proofs. We have

shown the applicability of the approach by instan-

tiating the probability monad and formalizing the

denotational semantics of an imperative language

with the state-trace monad. The latter application

has led us to extend the work by Gibbons et al.

on the state monad. This has also allowed us to

expose a limitation of the approach. Indeed, equa-

tions can specify what should do some primitives,

but cannot prevent the existence of other primitives

following different rules. We have thus proposed a

solution in Sect. 6. 2. 2 that consists in combining

the shallow embedding with a limited amount of

deep embedding.

A natural direction for future work would be the

formalization of [24] as it would also be the con-

tinuation of our formalization of the trace monad

in Sect. 6. 1. 2. The formalization of more monadic

equational reasoning examples [22] to improve the

user experience is also underway.

Acknowledgements

We acknowledge the support of the JSPS-CNRS

bilateral program “FoRmal tools for IoT sEcurity”

(PRC2199) and thank all the participants of this

project for fruitful discussions, as well as Cyril Co-

hen and Shinya Katsumata for comments about the

formalization of monads.

References

[1] Abou-Saleh, F., Cheung, K.-H., and Gibbons,

J.: Reasoning about Probability and Nondetermin-

ism, POPL workshop on Probabilistic Programming

Semantics, January 2016.

[2] Affeldt, R. and Hagiwara, M.: Formalization of

Shannon’s Theorems in SSReflect-Coq, 3rd Confer-

ence on Interactive Theorem Proving (ITP 2012),

Princeton, New Jersey, USA, August 13–15, 2012,

Lecture Notes in Computer Science, Vol. 7406,

Springer, Aug 2012, pp. 233–249.

[3] Affeldt, R., Hagiwara, M., and Sénizergues, J.:

Formalization of Shannon’s Theorems, Journal of

Automated Reasoning, Vol. 53, No. 1(2014), pp. 63–

103.

[4] Affeldt, R., Hagiwara, M., Senizergues, J., Gar-

rigue, J., Sakaguchi, K., Asai, T., Saikawa, T.,

and Obata, N.: A Coq formalization of informa-

tion theory and linear error-correcting codes, https:

//github.com/affeldt-aist/infotheo, 2018.

[5] Affeldt, R. and Nowak, D.: A Coq formalization

of monadic equational reasoning, https://github.

com/affeldt-aist/monae, 2018.

[6] Appel, A. W. and Blazy, S.: Separation logic for

small-step Cminor, Theorem Proving in Higher Or-

der Logics, 20th Int. Conf. TPHOLs 2007, Lecture

Notes in Computer Science, Vol. 4732, Springer,

2007, pp. 5–21.

[7] Breitner, J., Spector-Zabusky, A., Li, Y.,

Rizkallah, C., Wiegley, J., and Weirich, S.: Ready,

Set, Verify! Applying hs-to-coq to real-world

Haskell code (Experience Report), ICFP 2018,

2018. To appear.

[8] Cock, D.: Verifying probabilistic correctness in

Isabelle with pGCL, 7th Systems Software Verifica-

tion, Sydney, Australia, Nov 2012, pp. 1–10.

[9] Delaware, B., Keuchel, S., Schrijvers, T., and

d. S. Oliveira, B. C.: Modular monadic meta-

theory, ACM SIGPLAN International Conference

on Functional Programming, ICFP’13, Boston,

MA, USA - September 25 - 27, 2013, 2013, pp. 319–

330.

[10] Garillot, F., Gonthier, G., Mahboubi, A., and

Rideau, L.: Packaging Mathematical Structures,

Theorem Proving in Higher Order Logics, 22nd

International Conference, TPHOLs 2009, Mu-

nich, Germany, August 17-20, 2009. Proceedings,

Berghofer, S., Nipkow, T., Urban, C., and Wen-

zel, M.(eds.), Lecture Notes in Computer Science,

Vol. 5674, Springer, 2009, pp. 327–342.

[11] Gibbons, J.: Unifying Theories of Programming

with Monads, Unifying Theories of Programming,

4th International Symposium, UTP 2012, Paris,

France, August 27-28, 2012, Revised Selected Pa-

pers, Wolff, B., Gaudel, M., and Feliachi, A.(eds.),

Lecture Notes in Computer Science, Vol. 7681,

Springer, 2012, pp. 23–67.

[12] Gibbons, J. and Hinze, R.: Just do it: sim-

ple monadic equational reasoning, Proceeding of

the 16th ACM SIGPLAN international conference

on Functional Programming, ICFP 2011, Tokyo,

Japan, September 19-21, 2011, Chakravarty, M.

M. T., Hu, Z., and Danvy, O.(eds.), ACM, 2011,

pp. 2–14.

[13] Gibbons, J. andWu, N.: Folding domain-specific

languages: deep and shallow embeddings (func-

tional Pearl), Proceedings of the 19th ACM SIG-

PLAN international conference on Functional pro-

gramming, Gothenburg, Sweden, September 1-3,

2014, Jeuring, J. and Chakravarty, M. M. T.(eds.),

ACM, 2014, pp. 339–347.

[14] Gonthier, G., Mahboubi, A., and Tassi, E.: A

Small Scale Reflection Extension for the Coq sys-

tem, Technical report, INRIA, 2008. Version 17

(Nov 2016).

[15] Gonthier, G. and Tassi, E.: A Language of

Patterns for Subterm Selection, Interactive Theo-

rem Proving - Third International Conference, ITP

2012, Princeton, NJ, USA, August 13-15, 2012.

Proceedings, Beringer, L. and Felty, A. P.(eds.),

Lecture Notes in Computer Science, Vol. 7406,

Springer, 2012, pp. 361–376.

[16] Greenaway, D.: Automated Proof-Producing Ab-

straction of C Code, PhD Thesis, University of New

South Wales, Sydney, Australia, Jan 2015.

[17] Jomaa, N., Nowak, D., Grimaud, G., and Hym,

S.: Formal proof of dynamic memory isolation

based on MMU, Science of Computer Program-

ming, Vol. 162(2018), pp. 76–92.

[18] Jomaa, N., Torrini, P., Nowak, D., Grimaud, G.,

and Hym, S.: Proof-Oriented Design of a Separation

Kernel with Minimal Trusted Computing Base, 18th

International Workshop on Automated Verification

of Critical Systems (AVOCS 2018), Jul 2018, Ox-

ford, United Kingdom. Electronic Communications

of the EASST Open Access Journal, 2018.

[19] Letan, T., Régis-Gianas, Y., Chifflier, P., and

Hiet, G.: Modular Verification of Programs with Ef-

fects and Effet Handlers in Coq, 22nd international

symposium on formal methods (FM 2018), Oxford,

United Kingdom, Jul 2018.

[20] Mahboubi, A. and Tassi, E.: Canonical Struc-

tures for the Working Coq User, 4th International

Conference on Interactive Theorem Proving (ITP

2013), Rennes, France, July 22–26, 2013, Lecture

Notes in Computer Science, Vol. 7998, Springer,

2013, pp. 19–34.

[21] Martin-Dorel, E.: ssr-under-tac, https://

github.com/erikmd/ssr-under-tac, 2016.

[22] Mu, S.-C.: Functional Pearls, Reasoning and

Derivation of Monadic Programs, A Case Study of

Non-determinism and State, Jul 2017. Submitted

for publication. Available at http://flolac.iis.

sinica.edu.tw/flolac18/files/test.pdf (last ac-

cess: 2018/07/29).

[23] Pfenning, F. and Elliott, C.: Higher-Order

Abstract Syntax, Proceedings of the ACM SIG-

PLAN’88 Conference on Programming Language

Design and Implementation (PLDI), Atlanta,

Georgia, USA, June 22-24, 1988, Wexelblat,

R. L.(ed.), ACM, 1988, pp. 199–208.

[24] Piróg, M. and Gibbons, J.: Tracing monadic

computations and representing effects, Proceedings

Fourth Workshop on Mathematically Structured

Functional Programming, MSFP@ETAPS 2012,

Tallinn, Estonia, 25 March 2012., Chapman, J. and

Levy, P. B.(eds.), EPTCS, Vol. 76, 2012, pp. 90–

111.

[25] Shan, C.-C.: Equational reasoning for proba-

bilistic programming, POPL 2018 TutorialFest, Jan

2018.

[26] Svenningsson, J. and Axelsson, E.: Combin-

ing deep and shallow embedding of domain-specific

languages, Computer Languages, Systems & Struc-

tures, Vol. 44(2015), pp. 143–165.

