
Towards Formal Verification of Memory Properties using Separation Logic∗

Nicolas Marti † Reynald Affeldt ‡ Akinori Yonezawa †‡

†Department of Computer Science, ‡Research Center for Information Security (RCIS),
University of Tokyo National Institute of Advanced Industrial Science and Technology (AIST)

Abstract

With the recent dissemination of embedded systems, it
has become important to verifiy low-level software such
as specialized operating systems. However, such verifica-
tions are notoriously made difficult by complex memory
management operations such as pointer arithmetic. As
a first step towards the implementation of a verification
tool, we show how one can formally verify an important
property of memory management for the Topsy operating
system, an existing operating system for active-network
cards. Our approach consists in verifying individually
each function involved in memory management using a
formal encoding of separation logic in the Coq proof as-
sistant. At the time of this writing, we are still in the
process of verifying memory management for Topsy, but
we already found issues in the implementation.

1 Introduction

With the recent dissemination of embedded systems, it
has become important to verify low-level software such
as specialized operating systems. However, such verifica-
tions are notoriously made difficult by complex memory
management operations such as pointer arithmetic. The
fact is that software developers lack tools for such ver-
ifications, as opposed to, say, successful applications of
model-checking in the hardware industry.

Our goal is to provide a verification tool for low-level
software. We have already laid down the foundations of
such a tool by implementing in the Coq proof assistant the
separation logic [1] (a Hoare logic-like language for verifi-
cation of C-like programming languages). Despite the te-
diousness of proof assistant-based verification, we believe
that the Coq proof assistant provides an effective way to
verify low-level software, as exemplified, among other ex-
periments, by the recent verification of the Java Card Sys-
tem at the Common Criteria EAL7 level (Trusted Logic,

∗This work has been presented at the 22nd Workshop
of the Japan Society for Software Science and Technology:
http://www.nue.riec.tohoku.ac.jp/jssst2005/.

press release of November 18, 2003).

In this paper, we use separation logic to specify an im-
portant property of memory management for the Topsy
operating system [2], an existing operating system for
active-network cards. The property in question is mem-
ory isolation, which holds when user-level tasks cannot
access kernel-level memory. Arguably, memory isolation
is important because it sustained many security proper-
ties of operating systems. As usual in verification, we
found it difficult to formalize this property, and this is
certainly the main contribution of this paper to show a
possible formalization approach, starting from the origi-
nal source-code to encoding into a proof assistant.

The rest of this paper is organized as follows. In Sect. 2,
we recall the basics of x86 memory models and define
memory isolation for these processors. In Sect. 3, we
give an overview of the source code of Topsy and ex-
plain our approach to verify memory isolation. In Sect. 4,
we formally specify the functions involved in the memory
or thread management, focusing on the management of
privilege levels. In Sect. 5, we illustrate how we can me-
chanically verify above specifications using the Coq proof
assistant. In Sect. 6, we conclude, and review related and
future work.

2 Memory Isolation for x86 Processors

Intuitively, memory isolation is the property that user-
level threads cannot access kernel-level memory. Al-
though the distinction between user-level and kernel-level
threads is common in operating systems, the way they
access memory always relies on the underlying hardware
mechanisms provided by the processor.

Programs for x86 processors access memory in terms of
segments, i.e., fixed-size arrays of memory. This segment-
based access to memory is enforced by the use of segment
registers (so-called cs, ss, ds, es, fs, gs registers) that are
used to access physical memory through the use of logical
addresses. Logical addresses consist of a segment and an
offset, and are translated to physical addresses by the

1

hardware based on a conversion table loaded in physical
memory and called the global descriptor table (GDT) and
pointed to by a special-purpose register called gdtr1.

x86 processors also distinguish between privilege levels,
i.e., a flag that indicates whether or not the processor
may accomplish some operations. The current privilege
level of the code is stored in the cs register and is 0 for
kernel-level threads and 3 for user-level threads. Also,
each segment descriptor stored in the GDT contains a flag
called descriptor level privilege that indicates the privilege
of the segment.

The memory isolation property for x86 processors can
be defined precisely as follows: An operating system
based on a x86 segmentation memory model ensures the
memory isolation property if all the kernel related mem-
ory areas are only covered by kernel privilege segments,
and if all user tasks always run in user level privilege.

3 Memory Isolation for Topsy

In this section, we first give an overview of the imple-
mentation of Topsy (version 2) and then we explain our
approach to verify memory isolation.

3.1 Topsy Implementation Overview

The implementation of Topsy is standard enough to
be readable by a programmer with little experience. In
the following, we comment on the contents of files related
to memory and thread management (around 2,000 lines,
one half being assembly code). The whole source code
of Topsy (around 18,000 lines, available online [3]) is de-
picted in Fig. 1.

Figure 1: Topsy Source Code

1More exactly, the GDT is partially mapped to special-purpose
registers (a.k.a. segment selectors) to speed-up the translation pro-
cess.

3.1.1 Memory Model

Topsy implements two multi-threaded tasks for the ker-
nel and the user. Accordingly, Topsy splits the memory
into kernel-privilege and user-privilege segments by divid-
ing the whole memory into four parts (each part being fur-
ther divided into two segments). There are three kernel-
privilege parts, that respectively contain (1) the GDT and
other kernel data structures, (2) the kernel code, data and
stack, and (3) a map to input/output ports; there is one
user-privilege part that contains the user code, data and
stack.

The memory model described above is set by
the boot loader. The latter builds the GDT be-
fore switching the processor into segmented mode
(files creatgdt.inc and pm swtch.inc in directory
Boot/ia32/LowCore/CoreLoad). The user-privilege seg-
ment is set during kernel initialization (files MMHal.c and
mmHalAsm.S in directory Memory/ia32).

3.1.2 Thread Manager

Thread management amounts to thread cre-
ation/destruction and context switching. In Topsy,
these operations are implemented by the thread manager
module (directory Threads).

Upon thread creation, the kernel allocates a thread de-
scriptor, a data structure containing in particular the
privilege of the thread. This data structure is built in
the function threadBuild that initializes among others
the privilege of the thread context (files TMThread.c and
ia32/TMHal.c). Context switching is implemented by two
functions to restore and save the thread context. The allo-
cation of the processor to a thread is done by restoring the
image of the processor state (function restoreContext

in file ia32/TMHalAsm.S). When the thread has to re-
lease the processor, the kernel saves the thread context
into the thread descriptor (function INTHandler in file
ia32/TMHal.c).

3.1.3 Memory Manager

The kernel initialization and the thread man-
ager both rely on an internal memory alloca-
tion/deallocation mechanism called the heap manager
(file Memory/MMHeapMemory.c).

The heap manager exploits a portion of memory called
the heap that is reserved by the kernel. The function
hmInit initializes the heap. The function hmAlloc is im-
plemented by creating blocks of memory in the heap.
The function hmFree implements deallocation by replac-
ing “allocated” blocks in the heap with “free” blocks.

2

3.2 Memory Isolation for Topsy

In this section, we explain and discuss how we verify
memory isolation for Topsy.

Our approach is to specify for each function involved in
the memory or thread management of Topsy its intended
behavior regarding privilege handling. The extraction
from source code of involved functions and the specifi-
cation of their intended behaviors is based on a careful
reading of the implementation we saw above. For the
sake of explanation, let us represent graphically the con-
trol flow in the kernel (Fig. 2). Following this control
flow, we informally specify the intended behavior of each
phase relevant to memory isolation:

• Boot loader and kernel initialization After ker-
nel initialization, the GDT implements the memory
model of Topsy and the processor is in segmented
mode.

• Heap manager Under the hypothesis of a correct
initialization of the heap, newly allocated blocks do
not override previously allocated blocks, and only
free blocks are marked as such.

• Thread manager Thread descriptors for user
threads are initialized with user privilege, and con-
text switching preserves this privilege.

In the next section, we refine these informal specifications
to formal ones.

Figure 2: Topsy Control Flow

Arguably, our approach of specifying a selected part of
the source code is questionable because it is always pos-
sible that some rogue function breaks memory isolation
in an apparently unrelated part of the operating system.
However, we think that our approach is still relevant for
several reasons. The first reason is that, as knowledgeable

programmers, we certainly did specify the most important
functions. The second reason is that code sharing limits
the possibility for errors. For example, one can imagine
that the message passing facilities for communication be-
tween threads may break memory isolation by mistakenly
overriding thread privileges in the heap. However, since
both the message passing facilities and the thread man-
ager rely on the same heap manager, this is unlikely to
happen as long as the allocation function allocates only
fresh blocks, as we did specify above. Last but not least,
the alternative approach of modeling, specifying, and ver-
ifying the whole source code is too complex for today’s
verification tools.

4 Formal Specification with Separation

Logic

In this section, we formally specify memory isolation
for Topsy by refining the informal requirements of the
previous section.

4.1 The Specification Language

As stated in the introduction, we use separation logic
for specification purposes. Separation logic is a language
of Hoare triples {P}prg{Q} where prg is an imperative
program and P, Q are logical formulas. The intended se-
mantics is that, in any state that satisfies formula P , the
execution of program prg leads to a state satisfying for-
mula Q. In order to build sound triples, there is a collec-
tion of syntax-directed inference rules.

The novelty of separation logic is to enable specification
of memory operations allowed in imperative programs
with advanced pointer usage. Let us briefly skim through
some typical formulas of separation logic. The most basic
formulas are the empty formula (noted Emp) that holds
only for the empty heap (noted emp) and the mapsto for-
mula (noted l 7→ e, where l is an address and e a value)
that holds for the singleton heap that associated the ad-
dress l with the value e. The most important formula is
the separating conjunction (noted ∗). Its purpose is to
enable local reasoning by isolating parts of the heap be-
tween each other. More precisely, P ∗ Q holds for a heap
h iff there is a partition h1, h2 of h such that P holds for
h1 and Q holds for h2. For example, l1 7→ e1 ∗ l2 7→ e2

never holds when l1 = l2.

4.2 Specification of the Heap Manager

The heap manager of Topsy implements alloca-
tion/deallocation primitives using a list-like data struc-
ture, hereafter called the heap-list to avoid confusion with

3

the heap of separation logic2. Each element of a heap-list
is a block that consists of a two-fields header and an ar-
ray of memory. The header consists of the type of the
block (free or allocated) and a pointer to the next block;
the array of memory lies in between. The trailing header
points to null and is not followed by any array of mem-
ory. Observe that the size of arrays of memory can be
computed using the values of pointers.

Before specifying the heap manager, let us define a
predicate to characterize the heap-list data structure.
First, we define a simpler predicate to characterize arrays
of memory rooted at some address l and of length sz:

Array l sz
def
= (sz=0 ∧ emp) ∨

(sz > 0 ∧ (∃e.(l 7→ e)) ∗ (Array (l + 1) (sz − 1)))

Using the Array predicate, we can now define the Heap-list

predicate:

Heap-list x
def
= ∃st.(x 7→ st, nil) ∨

∃next.(next 6= nil) ∧ (x 7→ free, next) ∗
(Array (x + 2) (next − x − 2)) ∗ (Heap-list next) ∨

∃next.(next 6= nil) ∧ (x 7→ allocated, next) ∗
(Array (x + 2) (next − x − 2)) ∗ (Heap-list next)

The first clause captures “empty” lists (that contain only
the trailing header). The second (resp. third) clause cap-
tures lists starting with a free (resp. allocated) block.

4.2.1 Initialization

In this section, we specify the function that initializes
the heap-list (see Sect. 3.1.3).

Let us assume that the heap of the heap manager starts
at address hm base and has size hm size. The initializa-
tion function hmInit turns this area into a heap-list con-
sisting of only one big free block. Let Heap-free be the
predicate that holds for heap-lists consisting only of free
blocks. Using this predicate, the specification of hmInit

becomes:

{Array hm base hm size}
hmInit (hm base, hm size);

{Heap-free hm base}

The formal definition of the Heap-free is similar to the
definition of the predicate Heap-list:

Heap-free x
def
= ∃st.(x 7→ st, nil) ∨

∃next.(next 6= nil) ∧ (x 7→ free, next) ∗
(Array(x + 2)(next − x − 2)) ∗ (Heap-free next)

2Readers familiar with separation logic will observe that we do
not use the standard allocation/deallocation primitives.

4.2.2 Allocation/Deallocation

In this section, we specify the allocation/deallocation
functions of the heap manager (see Sect. 3.1.3).

The allocation function hmAlloc is implemented by
searching for a large-enough free block in the heap-list.
If such a block can be found, it is split into an allocated
block (whose address is returned) and a free block (avail-
able for further allocations).

The specification of the allocation function consists in
checking that newly allocated blocks do not use already
allocated addresses. Our idea is to define a predicate that
characterizes heap-lists and isolate any previously allo-
cated block: (Heap-alloc{l,k,. . .} hm base) is the same as
(Heap-list hm base) without the arrays of memory start-
ing at addresses l,k,. . . Using this predicate, we can spec-
ify that any allocated block (starting at address x and
of size sizex) do not overlap with newly allocated block
(starting at address y —provided the function does not
fail— and of size sizey):�

Heap-alloc{x−2}hm base ∗ Array x sizex ∧ y=0 �
hmAlloc(sizey, y);���� ���

(∃size.size ≥ sizey ∧
Heap-alloc{x−2,y−2} hm base ∗
Array x sizex ∗ Array y size ∧ y 6=0) ∨

(Heap-alloc{x−2} hm base ∗ Array x sizex ∧ y=0)

� ���
���

The formal definition of the Heap-alloc predicate follows:

Heap-allocL l
def
= ∃st.(l 7→ st, nil) ∨

∃next.(next 6= nil) ∧ (l 7→ free, next) ∗
Array(l+2)(next− l−2) ∗ Heap-allocL next ∨

∃next.(next 6= nil) ∧ (l 7→ allocated, next) ∗
(l /∈L→Array(l+2)(next− l−2))∗Heap-allocLnext ∨

∃next.(next 6= nil) ∧ (l 7→ allocated, next) ∗
(l∈L→Emp) ∗ Heap-allocL next

The specification of the deallocation function hmFree

(omitted here by lack of space) makes use of the same
predicates for the pre/post-conditions.

4.3 Specification of the Thread Manager

4.3.1 Initialization

In this section, we specify the function that initializes
the thread descriptors (see Sect. 3.1.2). Recall that we
want to ensure that thread descriptors initialized on be-
half of the user space are properly set.

The initialization of thread descriptors is performed by
the function threadBuild which takes two parameters:
the privilege of the thread (parameter space, that can
be either KERNEL or USER) and the location of the

4

thread descriptor to be initialized (parameter x, of type
threadPtr). The following specification states that the
creation of user-space thread initializes the fields corre-
sponding to the registers in the thread descriptor to user-
privilege (& represents the binary-and operator):

{(space=USER)∧ (Array x (sizeof threadPtr))}
threadBuild (space, x);

{(∃ cs. x.contextPtr.tf cs 7→ cs ∧ cs&3 = 3)∗· · ·� ��� �
for the fields cs,ds,ss,es,fs,gs

∗True}

4.3.2 Context Switch

In this section, we specify the functions that save and
restore the processor context during context switch (see
Sect. 3.1.2).

The processor context consists of the value of its
registers-set. There is a data structure to store these
values in thread descriptors. The context-switch func-
tions make the translation between these data structures
and the processor context. In order to ensure mem-
ory isolation, we need to verify that (1) after restoring
a user-privilege thread descriptor, the processor runs in
user privilege, and (2) after saving a user-privilege pro-
cessor context, the corresponding thread descriptor has
user-privilege.

Before specifying context switch, we introduce nota-
tions to accommodate assembly code. The idea is to
translate assembly code to the imperative language of sep-
aration logic. More precisely, we identify a set of variables
to match registers (for example, the variable CR0 rep-
resents the CR0 register), and we model memory-based
operations using pointer-based operations (for example,
load operations become dereferences). The only difficulty
are stack-based operations. In contrast, branching oper-
ations are easily translated because the assembly code in
question does not exhibit complicated control flow.

We now formally specify the restore function (the save
function is similar). The restore function consists of as-
sembly code starting after the label restoreContext; it
receives the data structure containing the processor con-
text through the esp register. The specification below
ensures that restoring a user-privilege processor context
data structure does lead to a user-privilege processor con-
text: �

(esp 7→ . . . , cs, . . .) ∧ (cs&3 = 3 ∧ ...)� ��� �
for the fields cs, ds, ss, es, fs, gs �

restoreContext: . . .
{ cs&3 = 3 ∧ ...� ��� �
for the registers cs,ds,ss,es,fs,gs

}

4.4 Specification of the Boot Loader

In this section, we formally specify that the boot loader
sets a GDT implementing the intended memory model
(see Sect. 3.1.1).

The specification of the GDT amounts to an arithmetic
characterization of Topsy memory model. Initially, there
is an image of the GDT in the boot loader data begin-
ning at GDT00. First, the boot loader copies the image
of the GDT to its final location. Then, it fills the gdtr
register with the address of the GDT (called gdtr base)
and its size (equal to 5). Finally, it switches the processor
into segmented mode by setting the first bit of the control
register CR0. Let Valid-Segment-Descriptor be a predicate
that characterizes valid segment descriptors. The specifi-
cation of the boot loader becomes:�� � Array GDT00 (5∗8) ∗ Array 1000 (5∗8) ∧

(∀x. 0 ≤ x < 5 →
Valid-Segment-Descriptor(GDT00+x∗8))

� �
�

Create GDT: . . .
PM Switch: . . .�

CR0&1 = 1 ∧ (∀x. 0 ≤ x < 5 →
Valid-Segment-Descriptor(gdt base+x∗8)) �

The definition of the Valid-Segment-Descriptor follows. In-
tuitively, (Valid-Segment-Descriptor x) holds when x is the
starting address of a segment descriptor that is either in
kernel mode or the corresponding segment is inside the
user working area:

Valid-Segment-Descriptor x
def
=

∃y0, . . . , y7. x 7→ y0, . . . , y7 ∗ True ∧
((y5 ÷ 32)&3=0 ∨ (y2+28∗y3+216∗y4+224∗y7)≥214)

5 Formal Verification with Coq

In this section, we illustrate how above specifications
can be verified formally using the Coq proof assistant.
For this purpose, we have implemented a version of sepa-
ration logic in Coq that we use to translate as faithfully as
possible the original source code of Topsy. At the time of
this writing, we have already translated and verified some
parts of the specifications presented in the previous sec-
tion and already found some issues. The corresponding
Coq scripts (around 7,000 lines of scripts) are available
online [4].

By way of example, let us show how we verify the ini-
tialization of the heap manager described in Sect. 4.2.1.
First, we translate the source code of the hmInit function
into Coq, see Fig. 3. Second, we formalize the pre/post-
conditions. This requires the encoding in Coq of the pred-
icates Array and Heap-free:

5

Fixpoint Array (x:loc) (sz:nat) : assert :=
match sz with

O => Emp
| S n => (fun s => fun h => ∃y,

((int_e (loc2val x)) |-> (int_e y)) s h) **
(Array (S x) n)

end.

Inductive Heap_free: expr->store.s->heap.h->Prop :=
heap_nil: ∀e s h status next, eval next s = 0 ->
(e|-->status::next::nil) s h -> Heap_free e s h

| heap_cons: ∀e s h next h1 h2 x y, y 6= 0 ->
disjoint h1 h2 ∧ equal h (union h1 h2) ->
eval e s = loc2val x -> eval next s = loc2val y ->
(e|-->Free::next::nil ** Array(x+2)(y-x-2) s h1 ->
Heap_free next s h2 -> Heap_free e s h.

Using above predicates and the Coq translation of the
hmInit function, we can input the corresponding Hoare
triple in Coq and check whether it holds:

Lemma hmInit_verif: ∀adr size, adr>0 -> size>4 ->
{ Array adr size }
(hmInit adr size)
{ Heap_free (nat_e adr) }.

Actually, it happens that the above lemma does not hold
because the original hmInit builds the trailing header out-
side of the heap. Indeed, the addition in line 8 of source
code in Fig. 3 generates an out of range address. This
problem is not an error in the sense that it does not lead
to any abnormal behavior, but it certainly undermines
reusability of functions.

Modulo this correction, the proof is straightforward
because the code amounts to structure assignments. In
practice, we appeal to a weakest-precondition generator
whose output can be solved using basic properties of sep-
arating connectives (namely, monotony and adjunction:
the logical view of destructive update).

6 Conclusion

In this paper, we presented an approach to formal ver-
ification of memory properties of low-level software using
separation logic. More precisely, we specified and partly
verified the property of memory isolation for the Topsy
operating system. Our approach was to extract from the
source code the functions involved in thread and mem-
ory management (around 300 lines of code mixing C and
assembly) in order to specify them individually. In ad-
dition, we illustrated mechanical verification in the Coq
proof assistant, exhibiting an issue we found in the im-
plementation.

Related Work The delta-core project [5] aims at verify-
ing a micro-kernel written in a C-like language. Verifica-
tion of properties of system calls have been specified and

verified in the PowerEpsilon proof assistant after source
code translation. The main difference with our work is
that we focus on properties of memory management.

The VFiasco project [6] aims at verifying memory prop-
erties of a micro-kernel. The approach is to automatically
translate a subset of the C++ language into the PVS
proof assistant where a model of x86 processors has been
implemented. The translation process seems to be the
current challenge this project is facing.

The implementation of separation logic we did in the
Coq proof assistant is similar to work by Weber in Isabelle
[7]. The main difference is technical: we use an abstract
data type implemented by means of modules for the heap
whereas Weber uses partial functions.

Future Work Specifications written with lists are diffi-
cult to work with. In order to facilitate verification, we
are currently implementing lemmas to prove properties of
linked lists. In contrast, portions of code that only deal
with assignments and branching instructions should be
handled automatically. For that purpose, we plan to in-
terface our Coq implementation of separation logic with
existing work an automation of verification of separation
logic [8].

References

[1] John C. Reynolds. Separation Logic: A Logic for
Shared Mutable Data Structures. In 17th IEEE Sym-
posium on Logic in Computer Science (LICS 2002),
p. 55–74. Invited lecture.

[2] Lukas Ruf, Claudio Jeker, Boris Lutz, and Bernhard
Plattner. Topsy v3: A NodeOS For Network Proces-
sors. In 2nd International Workshop on Active Net-
work Technologies and Applications (ANTA 2003).

[3] Browsable Topsy Source Tree. http://www.tik.ee.
ethz.ch/~topsy/Source.

[4] Formal Verification of Memory Isolation for Topsy.
http://web.yl.is.s.u-tokyo.ac.jp/~affeldt/

seplog. Coq scripts. Work in progress.

[5] Ming-Yuan Zhu, Lei Luo, and Guang-Zhe Xiong.
A Provably Correct Operating System: delta-Core.
Operating Systems Review, 35(1):17–33, January
2001.

[6] Michael Hohmuth and Hendrik Tews. The VFiasco
Approach for a Verified Operating System. In 2nd
ECOOP Workshop on Program Languages and Op-
erating Systems (ECOOP-PLOS 2005).

6

1 #define NULL (void*) 0
2 #define KERNELHEAPSIZE (64*1024)
3

4 Error hmInit(Address addr)
5 {
6 start = (HmEntry)addr;
7 start->next = (HmEntry) ((unsigned long)addr +
8 KERNELHEAPSIZE + sizeof(HmEntryDesc));
9 start->status = HM_FREED;

10

11 end = start->next;
12 end->next = NULL;
13 end->status = HM_ALLOCATED;
14

15 hmLock = &hmLockDesc;
16 lockInit(hmLock);
17

18 return HM_INITOK;
19 }

1 Definition null := (int_e 0%Z).
2 Axiom size : nat.
3

4 Definition hmInit (adr:loc) :=
5 (
6 hmStart <- (nat_e adr);
7 hmStart -.> next *<- (nat_e adr) +e
8 (nat_e size) +e (int_e 2);
9 hmStart -.> status *<- Free;

10

11 hmEnd <-* hmStart -.> next;
12 hmEnd -.> next *<- null;
13 hmEnd -.> status *<- Allocated
14

15 (* locking operations elapsed *)
16).

Figure 3: hmInit source code (original C code on the left, Coq translation on the right)

[7] Tjark Weber. Towards Mechanized Program Verifi-
cation with Separation Logic. In 13th Conference on
Computer Science Logic (CSL 2004), volume 3210 of
LNCS, p. 250–264. Springer.

[8] Josh Berdine, Cristiano Calcagno, and Peter W.
O’Hearn. Symbolic Execution with Separation
Logic. June 2005. Draft. http://www.dcs.qmul.ac.
uk/~berdine/drafts/execution.pdf.

7

