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Abstract

Thanks to recent advances, modern proof assistants now enable verification of realistic sequential programs.
However, regarding the concurrency paradigm, previous work essentially focused on formalization of abstract
systems, such as pure concurrent calculi, which are too minimal to be realistic. In this paper, we propose a
library that enables verification of realistic concurrent programs in the Coq proof assistant. Our approach is
based on an extension of the π-calculus whose encoding enables such programs to be modeled conveniently.
This encoding is coupled with a specification language akin to spatial logics, including in particular a
notion of fairness, which is important to write satisfactory specifications for realistic concurrent programs.
In order to facilitate formal proof, we propose a collection of lemmas that can be reused in the context of
different verifications. Among these lemmas, the most effective for simplifying the proof task take advantage
of confluence properties. In order to evaluate feasibility of verification of concurrent programs using this
library, we perform verification for a non-trivial application.
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1 Introduction

Concurrent programs are ubiquitous: multi-threaded programs in network servers,
distributed programs for database applications, etc. In order to guarantee their
correctness and security properties, it is important to verify them formally. The
main difficulty in formally verifying concurrent programs is the size of their state
space. The latter can be very large (because of non-determinism) and even infinite
(for non-terminating applications, such as reactive systems).

Proof assistants and model checkers can be regarded as complementary tools for
formal verification. Model checkers are fully automated but can only handle finite
state space systems (without appropriate abstraction techniques). Proof assistants
are interactive but they can handle infinite state space systems directly, using in-
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ductive reasoning. In this paper, we are concerned with formal verification based
on proof assistants.

Proof assistants have been successfully applied to formal verification of sequential
programs. There are realistic use-cases (e.g., [2,5,27]) and tools that enable practical
verification of imperative programs (e.g., [14]).

Regarding concurrency, previous work using proof assistants has focused on ab-
stract concurrent systems rather than on realistic concurrent programs. There are
many formalizations of pure concurrent calculi (e.g., [13,17,18,28,29]) and experi-
ments with the combined use of proof assistants and model checkers for minimal
concurrent languages (e.g., [22,32]). This work demonstrates the usefulness of proof
assistant-based formal verification for concurrent programs. However, the formal-
ized calculi and languages are cumbersome to verify realistic concurrent programs
because of the lack of datatypes. Moreover, in view of the large proof develop-
ments in previous work, it is questionable whether such verifications can be done in
practice. For these reasons, we think that formal verification of realistic concurrent
programs has not yet been addressed satisfactorily.

In this paper, we introduce a library that enables verification of realistic con-
current programs using a general-purpose proof assistant, namely Coq [30]. This
library consists of:

• A modeling language with attractive features for verification of realistic con-
current programs. This modeling language is based on the π-calculus [24] (a
foundational language for the study of concurrent systems) but is different from
encodings developed in previous work in that it allows Coq datatypes and control
structures to be used. Consequently, it makes it easy to model realistic concurrent
programs and to run these models using existing virtual machines and compilers.

• A specification language for realistic concurrent programs. In particular, it pro-
vides a notion of fairness that is necessary to write satisfactory specifications for
realistic concurrent programs.

• A collection of lemmas in order to facilitate formal proof. The most effective lem-
mas are based on confluence properties. They allow for smaller formal proofs by
reducing the state space that needs to be explored for the purpose of verification.

To evaluate the feasibility of verification of concurrent programs using our library,
we have performed formal verification of an existing mail server.

In the rest of this paper, we explain the three parts of the library in turn (the
modeling language, the specification language and the collection of lemmas) and
then report on the case study. We use the syntax of Coq (version 8).

2 Modeling Language

In this section, we introduce (a Coq encoding of) a simple concurrent language that
can be used to model a wide range of realistic concurrent programs. Simplicity and
generality are inherited from the π-calculus, on which this modeling language is
based. Because of its minimality, the (pure) π-calculus is not well-suited to model-
ing of realistic concurrent programs. The main reason is that datatypes and control
structures (conditionals and functions) need to be encoded by means of the concur-
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rent primitives. Our modeling language addresses this shortcoming by extending
the π-calculus with datatypes and functions, similarly to the Pict programming
language [26]. We call our modeling language applπ, which stands for “applied
π-calculus” 3 . In Sect. 2.1 and Sect. 2.2 we discuss the encoding of the syntax and
the operational semantics of applπ, respectively.

2.1 Syntax Encoding

The syntax of applπ consists of channels and processes. Intuitively, processes per-
form computations and exchange values with other processes through channels.

Channels are encoded by means of the functional type chan. Any type in Set
can be used as a datatype for communicated values, and channels themselves can
be communicated: Axiom chan : Set -> Set.

Processes are encoded by means of the inductive type proc. Each constructor
of proc corresponds to a concurrent primitive of the π-calculus 4 :

Inductive proc : Type :=
zeroP: proc

| inP : forall A, chan A -> (A -> proc) -> proc
| rinP : forall A, chan A -> (A -> proc) -> proc
| outP : forall A, chan A -> A -> proc -> proc
| parP : proc -> proc -> proc
| nuP : forall A, (chan A -> proc) -> proc.

Intuitively, zeroP represents the inert process. inP c (fun x:A => P) represents an
input process: it waits for some value v of type A along the channel c and then
behaves as process ((fun x:A => P) v). outP c v P represents an output process:
it sends the value v along the channel c and then behaves as process P. parP P Q
represents the parallel composition of the processes P and Q. rinP c (fun x:A => P)
represents replicated input: it waits for some value v of type A along the channel
c and then behaves as process parP (rinP c (fun x:A => P)) ((fun x:A => P) v).
The process nuP (fun x:chan A => P) represents channel creation: it creates a new
channel c’ and then behaves as the process ((fun x:chan A => P) c’). Processes
are in the Type universe so that they cannot be sent as data.

This encoding allows the Coq language to be used as the functional core of applπ.
This effect is achieved by higher-order abstract syntax (HOAS), an encoding tech-
nique used to ease the management of binders. Concretely, process continuations
for input and channel creation primitives are taken to be Coq functions. Thus, one
can use the Coq language to write applπ processes. Though convenient, this feature
allows for “exotic terms” [12], i.e., terms that do not correspond to any process of
the π-calculus. For example, the following process is such an exotic term (c has
type chan nat):

inP c (fun n => match n with O => zeroP | S _ => parP zeroP zeroP end)

3 We introduce this abbreviation to avoid confusion with Abadi and Fournet’s applied π-calculus [1] which
is an extension of the π-calculus to study security protocols.
4 The concurrent primitives of applπ are more precisely a subset of those of the π-calculus: replication
is restricted to input processes and there is no external choice. These restrictions have little impact on
expressiveness, as discussed in [26].
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We do not consider this to be an issue in this paper because we are concerned with
modeling of concurrent programs rather than on adequacy of the encoding. Yet,
since we are dealing with a language larger than the π-language, we have to be
careful when axiomatizing not to take the properties of the latter for granted.

Our encoding can be said to be a deep embedding because we define the syntax as
an inductive type that we use in the next section to define the operational semantics.
However, the ability to integrate Coq functions gives it also the flavor of a shallow
embedding. See [6] and [23] for definitions.

The use of dependent types guarantees that channels are used consistently ac-
cording to their type. For example, inP c (fun x:A => P) is rejected by Coq if c
has not type chan A. Without dependent types, we would have to introduce a sum
type for values and insert explicit tagging/untagging to perform data emission and
reception, what would make modeling in applπ cumbersome. The combined use of
HOAS and dependent types makes our encoding different from previous work on
encoding of the π-calculus in Coq.

The following definitions are used in the rest of the paper. They represent output
and input processes without continuations:

Definition OutAtom (A:Set) (c:chan A) (v:A) := outP c v zeroP.
Definition InAtom (A:Set) (c:chan A) := inP c (fun x => zeroP).

Before discussing the formal operational semantics, we illustrate the practical
advantages of applπ as a modeling language.

2.1.1 Modeling Realistic Concurrent Programs
By way of example, we show below how to model a simple client/server program.

The process below represents a simple server. It waits on the channel i for a
request, here a pair of a natural number and a channel. It computes the successor
of the received natural number and sends it back using the received channel:

Definition server (i:chan (nat * (chan nat))) : proc :=
rinP i (fun ar => let a := fst ar in let r := snd ar in
OutAtom r (plus a 1)).

Observe that it is easy to write realistic programs because our encoding provides us
with the Coq language and the Coq standard library (here: let construct; plus,
fst, snd functions).

The process below represents a client for the above server. It sends a request
and waits for the answer of the server along a channel it has created. Eventually, it
displays the server response along the channel o:

Definition client (i:chan (nat * (chan nat))) (o:chan nat) : proc :=
nuPl (fun r => parP (OutAtom i (O,r)) (inP r (fun x => OutAtom o x))).

The parallel composition (parP (server i) (client i o)) models a simple client-
server program. We discuss further modeling issues in Sect. 5.
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2.1.2 Executing applπ Models
It is possible to run applπ models with little modification by using the extraction
facility of Coq. For instance, the server above can be turned into OCaml code:

Coq < Recursive Extraction server.
...
(* various OCaml data structures and functions, including
a datatype for concurrent primitives and the plus function *)
...
let server i =
RinP ((Obj.magic i), (fun ar ->
outAtom (snd (Obj.magic ar)) (plus (fst (Obj.magic ar)) (S O))))

To run that program using existing virtual machines or compilers, it is sufficient to
replace the type constructors for concurrent primitives by OCaml functions with the
appropriate semantics. For a sample OCaml module with such functions, see [3].
This facility can be used to run applπ models as programs on their own. More
radically, one can use applπ not as a modeling language but as a programming
language, the Coq interface providing static type checking (a la polyadic π-calculus,
thanks to our use of dependent types) and OCaml providing an efficient execution
environment for formally verified programs.

2.2 Operational Semantics Encoding

The operational semantics of applπ is a relation between processes, which defines
what it means for a process to execute actions such as data emission/reception
and channel creation. Similarly to the syntax, the operational semantics is bor-
rowed from the π-calculus. More precisely, it is a non-standard labeled transition
semantics. Before explaining the encoding, we justify the need for a non-standard
semantics.

Our use of HOAS makes it difficult to encode the standard semantics of the π-
calculus. The difficulty comes from the fact that ν-bound channels and conditionals
are handled at the meta-level in our syntax encoding (respectively by Coq variables
and Coq case analysis). For illustration, let us consider the following applπ process:

nuP (fun x => parP (inP x (fun _ => OutAtom x v)) (OutAtom x v))

Using a standard semantics, we would expect it to reduce by communication along
channel x to the process nuP (fun x => OutAtom x v). It is difficult to write in Coq
a rule to perform such reductions because the processes that are reduced are inside
a meta-level λ-abstraction. Honsell et al. [18] solve this problem in their HOAS
encoding of the (pure) π-calculus by introducing “freshness” predicates. For exam-
ple, their encoding of the standard rule for channel creation requires an additional
predicate to check occurrence of a channel in a process (predicate notin in the rule
fRES in [18]). However, this solution is not directly applicable to applπ because
conditionals are represented by Coq case analysis (whereas they are represented by
type constructors in [18]).

Our solution is to distinguish between channels already created and channels
to be created. For this purpose, instead of considering sole processes, we consider
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states, i.e., pairs of a process with the list of the channels created so far. In a
state, channels already created appear in the list and the channels to be created
appear as ν-bound channel in the process. (In comparison, both kinds of channels
are represented by ν-bound channels in standard semantics.) We note L#P the state
composed of the list L and the process P, nilC the empty list, and & the addition
of an element to a list. The applπ process above is rewritten into the state:

nilC#nuP (fun x => parP (inP x (fun _ => OutAtom x v)) (OutAtom x v))

Using our non-standard semantics, it first creates a new channel x’ to replace x:

x’&nilC # parP (inP x’ (fun _ => OutAtom x’ v)) (OutAtom x’ v)

and then reduces by communication along channel x’:

x’&nilC # OutAtom x’ v

Concretely, the operational semantics is encoded by means of two inductive
predicates Trans and Redwith. Trans P l Q means that process P reduces to pro-
cess Q by performing the elementary action l (of type TrLabel, representing either
data emission, data reception, channel creation or communication). The formal
definition of the Trans predicate is similar to standard labeled transition semantics
except for the rule for channel creation:

Inductive Trans : proc -> TrLabel -> proc -> Prop :=
...
| tr_new : forall A (C:chan A -> proc) (c:chan A),
Trans (nuP C) (NewL c) (C c).

Redwith S l S’ means that state S reduces to state S’ by performing a commu-
nication or a channel creation (action of type RedLabel). In particular, it captures
what it means for a channel to be new (or “fresh”): simply that it does not appear
in the list of channels created so far.

Inductive Redwith : state -> RedLabel -> state -> Prop :=
...
| red_new : forall L P Q A (c:chan A),
Trans P (NewL c) Q -> fresh c L -> Redwith (L # P) (New c) (c&L # Q).

In the following, when Redwith S l S’ is true for some l, we write Red S S’. We
also write Reds for the reflexive, transitive closure of Red.

3 Specification Language

Specification of concurrent programs deals with questions such as reachability of
desirable states. There are several specification languages (or logics) designed for
that purpose, such as spatial logics [7] or Dam’s π-µ-calculus [11]. The specification
language provided in our library is based on Cardelli and Gordon’s spatial logic [7],
because we found it expressive enough for our purpose.

Concerning temporal formulas, an important issue developed in our specification
language is formalization of strong fairness. Intuitively, strong fairness is a system
property enjoyed by execution environments in which communications that can
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execute infinitely often are eventually scheduled for execution. It is an important
assumption without which we cannot write satisfactory specifications for realistic
concurrent programs. For example, let us consider the following program:

parP (parP (OutAtom d v) (inP d (fun _ => OutAtom e v)))
(parP (OutAtom c v) (rinP c (fun _ => OutAtom c v)))

A property that one might want to check is that the process OutAtom e v is even-
tually revealed. However, without the fairness assumption, this property does not
even hold. We show in Sect. 3.1 how we encode the fairness assumption and in
Sect. 3.2 we give the semantics of the formulas of our specification language.

3.1 Encoding of the Fairness Assumption

Fairness is expressed by means of quantifications over runs of concurrent programs.
We first explain how we encode runs.

Encoding of Runs
A run intuitively consists of a maximal sequence of successive reductions. A

state sequence is an indexed set of optional states. A stable state is a state that
cannot evolve anymore.

Definition stateSeq : Type := nat -> optionT state.
Definition Stable (P:state) : Prop := ~(exists Q, Red P Q).

A reduction sequence is a state sequence such that each state is obtained by a
reduction of its predecessor:

Definition isRedSeq (PS:stateSeq) : Prop := forall n,
(forall P, PS n = SomeT _ P ->
(exists Q, PS (S n) = SomeT _ Q /\ Red P Q) \/
PS (S n) = NoneT _) /\

(PS n = NoneT _ -> PS (S n) = NoneT _).

A maximal reduction sequence (or a run) is a reduction sequence whose last
state is stable, or an infinite reduction sequence:

Definition isMaxRedSeq (PS:stateSeq) : Prop := isRedSeq PS /\
(forall n P, PS n = SomeT _ P -> PS (S n) = NoneT _ -> Stable P).

One may observe that empty sequences are valid runs. In the encoding of formulas,
we enforce the condition that a run starts with some state.

Encoding of Fairness
We formalize the notion of strong fairness. Informally, strong fairness says that

any process that is infinitely often enabled is eventually reduced 5 . We need a few
intermediate definitions. We say that P is a subprocess of Q when Q consists of the
parallel composition of P with some other process(es). The predicate reduced P Q R

5 Weak fairness says that a continuously and infinitely enabled process is eventually reduced. Strong
fairness subsumes weak fairness.
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intuitively means Q reduces to R by reducing its subprocess P. The formal definition
is omitted for lack of space.

We define what it means for a subprocess to be enabled and eventually reduced :

Definition enabled (P : proc) (Q : state) : Prop :=
exists R, reduced P Q R.

Definition ev_reduced (P : proc) (PS : stateSeq) : Prop :=
exists n, (exists Q, (exists R,
PS n = SomeT _ Q /\ PS (S n) = SomeT _ R /\ reduced P Q R)).

We define what it means for a property to hold infinitely often:

Definition is_postfix (PS’ PS : stateSeq) : Prop :=
exists n, (forall m, PS’ m = PS (m + n)).

Definition infinitely_often (p:state -> Prop) (PS:stateSeq) : Prop :=
forall m, exists n, (exists P, PS (m + n) = SomeT _ P /\ p P).

A fair reduction sequence is a state sequence such that there is no process that
is infinitely often enabled but never reduced:

Definition isFairRedSeq (PS : stateSeq) : Prop :=
forall PS’, is_postfix PS’ PS ->
forall P, infinitely_often (fun Q => enabled P Q) PS’ ->
ev_reduced P PS’.

3.2 Available Formulas

Our specification language consists of a set of logical and spatial formulas (of type
form) and a set of temporal formulas (of type tform). The semantics of formulas is
implemented by two satisfaction relations (sat of type form -> state -> Prop and
tsat of type tform -> state-> Prop). The explicit distinction between logical and
spatial formulas, and temporal formulas is required for the confluence properties
introduced in the next section to hold. The informal semantics of basic formulas
appears in Table 1. Observe that we make use of a predicate Cong that encodes the
standard notion of structural congruence (which intuitively relates processes that
only differ by spatial rearrangements).

By way of example, we show the formal semantics of the FMUSTEV temporal
formula. It is defined by quantification over all possible fair runs, as defined in the
previous section:

Axiom FMUSTEV_satisfaction : forall P F, tsat (FMUSTEV F) P <->
(forall PS, PS 0 = SomeT _ P -> isMaxRedSeq PS -> isFairRedSeq PS ->
exists Q, (exists n, PS n = SomeT _ Q /\ tsat F Q)).

In our implementation, the satisfaction relations are axiomatized. This is be-
cause the formula for negation does not respect the positivity constraints imposed
by Coq. This problem has already been observed in [29]. This is not problematic
as long as we do not study formally the properties of the formulas.
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Logical Formulas

sat ISANY S
sat NEG f S
sat OR f g S

iff
iff
iff

True
~ sat f S
sat f S \/ sat g S

Spatial Formulas

sat INPUTS c f L#P

sat OUTPUTS c v f L#P

sat CONSISTS f g L#P

iff

iff

iff

Cong P (parP (inP c Q) R) and
sat f L#(Q v) for any v
Cong P (parP (outP c v Q) R) and
sat f L#Q
Cong P (parP Q R) with
sat f L#Q and sat g L#R

Temporal Formulas

tsat (MAYEV f) S

tsat (FMUSTEV f) S

iff

iff

for some run, there exists S’ such that
Reds S S’ and sat f S’
for any fair run, there exists S’ such that
Reds S S’ and sat f S’

Table 1
Basic Formulas

4 Collection of Lemmas

At this point, we are able to write a concurrent program P, a (temporal) property f,
and we can try to prove tsat f P using Coq tactics. This direct approach is tedious
because the Coq native tactics are too low-level and not adapted to the problem at
hand. Our solution is to propose a collection of lemmas (and accompanying tactics)
to facilitate formal proof.

The main difficulty in proving properties of concurrent programs is non-deter-
minism. In order to prove a property for some program, one often needs to check
all possible runs. This is at best costly and often impossible because there may
be infinitely many runs or because some process is unknown. To deal with these
situations, we propose several lemmas based on confluence properties. In Sect. 4.1
we explain lemmas based on confluence properties and in Sect. 4.2 we give an
overview of the whole library.

4.1 Confluence Properties

Basic Idea
We say that two reductions are confluent when they can be executed in either

order to reach the same result. More precisely, if P is a process such that P
l1−→ P1

and P
l2−→ P2 are confluent, then for any P ′ such that P2

l1−→ P ′, we have P1
l2−→ P ′.

Graphically, P has the following “diamond property”:
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Since we know that, no matter the run, P necessarily reduces to P ′, it is not always
necessary to explore both runs to verify a FMUSTEV property. This is the basic idea
behind lemmas based on confluence properties.

Partial Confluence and Linearized Channels
In order to identify “diamond properties”, we appeal to the notion of partial

confluence, which is more general than confluence and often occurs in practice. We
say that a reduction is partially confluent [21] when it is confluent with any other

reduction. More precisely, if P is a process such that P
l1−→ P1 is a partially confluent

reduction, then for any reduction P
l2−→ P2 and for any P ′ such that P2

l1−→ P ′, we
have P1

l2−→ P ′.
The property of partial confluence is enjoyed by linearized channels [21]. A

linearized channel is a generalization of a linear channel. It can be used more than
once, but only in a sequential manner: an output process outP c v P can reuse c
again for output in P, an input process inP c P can reuse c again for input in P v
for any v of the appropriate type. We introduce linearized channels in applπ by
adding some boolean information to the type of channels chan and by adding a new
constructor to the type of processes proc:

Axiom chan : Set -> bool -> Set.

Inductive proc : Type :=
...
| nuP : forall A, (chan A false -> proc) -> proc (* non-linearized *)
| nuPl : forall A, (chan A true -> proc) -> proc. (* linearized *)

The operational semantics is modified accordingly.
For the time being, we assume that linearized channels are correctly annotated.

Verification that a process is well-annotated can be done by the type system pro-
posed in [20], Sect. 6.

Sample Confluence Property
The following example is taken from our library:

Axiom conf_red_com : forall L P P’ A (c:chan A true),
well_annotated (L#P) ->
Redwith (L#P) (epsilon c) (L#P’) ->
forall f Lf, tfree_vars Lf f ->
~ in_ChanList c Lf -> (* f does not depend on the *)
forall K, guard K P’ -> (* channels that are consumed *)
inter Lf K nilC -> (* or revealed by communication *)
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tsat (FMUSTEV f) (L#P’) ->
tsat (FMUSTEV f) (L#P).

Intuitively, it says that if L#P reduces to L#P’ by a linearized communication, then in
order to prove tsat (FMUSTEV f) L#P, it is sufficient to prove tsat (FMUSTEV f) L#P’,
modulo some syntactical condition on f. Currently, these lemmas are axiomatized.
They are similar to partial order reduction techniques used in model checking.
See [4] for a pencil-and-paper evidence of their validity.

4.2 Library Overview

The library consists of the applπ language as defined in Sect. 2 (extended with
linearized channels), the specification language as defined in Sect. 3, and a collection
of lemmas. Although the library is very large (at the time of this writing, 42 scripts,
20969 lines), only a few lemmas are axiomatized (most axioms have actually been
discussed in this paper). See [3] for details.

Not all lemmas are equally important. During formal proof, the most important
lemmas are those that simplify the goal. For example, confluence properties such as
the one seen above are such lemmas: they basically act by simplifying the process
that appears in the goal. Similarly, the properties of the formulas of the specification
language (distributivity laws, etc.) act by simplifying the formula that appears in
the goal.

There are a large number of lemmas that are not intended to be used directly
during formal proof but that are very important because they are ubiquitously used
to prove other lemmas. Such technical lemmas prove properties about the applπ
language (injection, inversion) whose proofs are not immediate because of our use
of dependent types, and properties about structural congruence (e.g., structural
congruence is a bisimulation).

5 Case Study

We evaluate feasibility of verification of concurrent programs using our library. Our
case study is the SMTP receiver part of an existing mail server. In short, this
program receives and processes SMTP commands, sends back SMTP replies and
queues received electronic mail.

We chose this application for the purpose of comparison. Indeed, we have already
performed verification of this application in Coq using a different approach that
consists of building a faithful functional model [2]. In short, the original Java
implementation was turned into a Coq function using monadic style programming,
third-party programs (client and file-system) were modeled using Coq predicates
and non-software aspects were modeled using functional constructs (for example,
non-deterministic system failures were modeled using infinite lists to serve as test
oracles). Arguably, this approach has little overhead because it takes advantage of
the Coq built-in support for functional programs. Therefore, comparison should
highlight the overhead of using our library for verification.

In the following, we first explain how we model the mail server using our library,
and then we comment on the formal proof that it correctly implements the SMTP
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protocol. See [3] for details.

Modeling of the Main Program
The mail server is modeled as a process work that is itself the parallel composi-

tion of several processes that handle incoming SMTP requests: get_helo_def, etc.
The state of the application is reified as a data structure that is communicated
from one subprocess to the other. The flow of communication reproduces the flow
of control of the Java program. Subprocesses correspond to the Java methods that
(are supposed to) implement the SMTP protocol. The reified state corresponds to
fields of the server object:

Definition work
(c1:InputStream) (c2:OutputStream) (tofs:ToFileSystem) : proc :=
let st := initial_state in
nuPl (fun heloc:chan STATE _ =>
nuPl (fun mailc:chan STATE _ =>
nuPl (fun rcptc:chan STATE _ =>
parP (rinP heloc (get_helo_def heloc mailc))

(parP (rinP mailc (get_mail_def mailc rcptc))
(parP (rinP rcptc (get_rcpt_def mailc rcptc))
(OutAtom heloc st)))))).

Modeling benefits from the fact that applπ is based on the π-calculus. The con-
nections between the mail server and third-party programs (client and file-system)
are modeled using channels (instead of sockets in the original Java implementation)
that are aggregated into the reified state and “move” around with the state during
computation. Acknowledgments are modeled by a typical π-calculus idiom: a fresh
channel is sent to receive the acknowledgment on it.

Modeling of Third-party Programs
Third-party programs are modeled by Coq predicates. For example, the client

is modeled by predicates (speaks_valid_protocol and acknowledges_replies)
that implement the SMTP protocol as defined in RFC 821.

Modeling of System Errors
System errors are modeled by channels. A system failure (resp. a network error)

is modeled by outputting some value along the channel system_failure_chan (resp.
IOexn_chan). Since non-determinism is inherent to applπ, we can model non-
deterministic system failures by a process:

Definition may_fail := nuP (fun x => parP (InAtom x)
(parP (OutAtom x tt)
(inP x (fun _ => OutAtom system_failure_chan tt)))).

This is more elegant than infinite lists that serve as test oracles in the functional
model discussed above. Indeed, the process may_fail is clearly separated from the
model of the main program, so that we can extract an ML program for the server
without pollution from the modeling of system errors.

12
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Formal Proof
We have formally proved that the parallel composition of the mail server, a valid

client, a valid file-system, and a non-deterministic system failures generator ends up
with a successful termination (modeled by channel result_chan, similarly to system
errors), a system failure or a network error (formula reports_succ_or_error):

Definition reports_succ_or_error : form :=
OR (OUTPUTS result_chan tt ISANY)
(OR (OUTPUTS IOexn_chan tt ISANY)
(OUTPUTS system_failure_chan tt ISANY)).

Theorem server_accepts_valid_protocol :
forall Client : InputStream -> OutputStream -> proc,
(forall s y, (valid_client (Client s y))) ->
forall file_system : ToFileSystem -> proc,
(forall tofs, valid_fs tofs (file_system tofs)) ->
(* channels for termination detection are distinct *)
is_set (result_chan & IOexn_chan & system_failure_chan & nilC) ->
tsat (FMUSTEV (STAT reports_succ_or_error))
(result_chan & IOexn_chan & system_failure_chan & nilC #
nuPl (fun s1:InputStream =>
nuPl (fun s2:OutputStream =>
nuPl (fun tofs:ToFileSystem =>
parP (Client s1 s2) (parP (file_system tofs)
(parP (work s1 s2 tofs) may_fail)))))).

Verification using our library requires 3927 commands. This is large compared
to the 1059 commands required by the verification using the functional model.
However, there are several ways to reduce the size of the proof. In particular,
we used for verification a confluence property that is weaker (but easier to use in
practice) than the one presented in Sect. 4.1. Also, it should be observed that the
applπ model is more satisfactory than the functional model in many respects: the
work process takes multi-threading into account and it can easily be run as an ML
program, which was not the case of the functional model.

6 Conclusion

In this paper, we proposed a Coq library to verify realistic concurrent programs.
We have formalized a modeling language based on the π-calculus that is convenient
to write and run (models of) realistic concurrent programs. We have introduced
a specification language based on spatial logics extended with the notion of strong
fairness. In order to facilitate formal proof, we have built a collection of lemmas
among which confluence properties of the modeling language significantly simplify
proofs. We have evaluated the feasibility of our approach by verifying a non-trivial
application using our library.

13
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Related Work
There exist several formalizations of pure concurrent calculi in proof assistants.

In Coq, Hirschkoff proposes a first-order abstract syntax encoding of the π-calculus
and formalizes proof techniques [17]; Despeyroux formalizes a proof of subject re-
duction for the π-calculus [13]; Honsell et al. formalize the foundational paper on the
π-calculus [18]; Scagnetto and Miculan formalize the ambient calculus (a derivative
of the π-calculus) and its spatial logic [29]. In Isabelle, Röckl et al. propose a HOAS
encoding of the π-calculus and formalize the Theory of Contexts [28]. This work
focuses on the formalization of the theory of pure concurrent calculi. In contrast,
we are concerned with verification of realistic concurrent programs and we aim at
building a practical library for that purpose.

The verification of concurrent programs using proof assistants is also addressed
using the UNITY formalism. In particular, there exist several formalizations of
compositional reasoning [16,25] that is useful to tackle realistic examples. Our work
is complementary: we use the π-calculus as an underlying formalism and therefore
we can benefit from known analyses to formalize additional proof techniques (e.g.,
lemmas based on confluence properties).

Watkins et al. propose a logical framework [31] with built-in facilities for reason-
ing about concurrency. Using this concurrent logical framework (CLF), Cervesato
et al. encode several concurrent systems [8], including the π-calculus. Although the
authors have not addressed directly the issue of verification of realistic concurrent
programs, it seems that an implementation of CLF may ease the development of a
library similar to ours.

Coupet-Grimal [9] proposes an encoding of linear temporal logic in Coq. Tem-
poral formulas are defined for an abstract transition system and their properties
are collected into a library that has been used to prove correctness of a garbage-
collection algorithm [10]. It would be useful to integrate similar reasoning on tem-
poral formulas for our language.

Future Work
As stated in Sect. 4.1, we assume that channels are annotated so as to reflect

partial confluence. In order to verify that channels are correctly annotated, we plan
to formalize an adequate type system inside Coq, similarly to the work by Gay [15]
who formalizes the type system of Kobayashi et al. [21] in Isabelle. We also plan to
provide mechanical proofs for the lemmas based on confluence properties that are
axiomatized for the time being.

We have been formalizing new formulas (such as fixed points) to enhance ex-
pressiveness but they are not yet integrated in the library. In order to reduce the
size of formal proofs, we are improving automation and investigating additional
proof techniques based on other type systems, such as Kobayashi’s type system for
lock-freedom [19].
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1366, LRI, Université Paris Sud, Mar. 2003.

[15] Gay, Simon J., A framework for the formalisation of pi calculus type systems in Isabelle/HOL, in
Theorem Proving in Higher Order Logics (TPHOLs 2001), volume 2152 of Lecture Notes in Computer
Science, p. 217–232, Springer-Verlag, Sep. 2001.

[16] Heyd, Barbara, and Pierre Crégut, A modular coding of UNITY in Coq, in Theorem Proving in
Higher Order Logics (TPHOLs 1996), volume 1125 of Lecture Notes in Computer Science, p. 251–266,
Springer-Verlag, Aug. 1996.

[17] Hirschkoff, Daniel, “Mise en œuvre de preuves de bisimulation,” Ph.D. thesis, École Nationale des
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