
Formalization and Verification
of a Mail Server in Coq
Reynald A�eldta and Naoki Kobayashib

aDepartment of Computer Science, University of Tokyo
bDepartment of Computer Science, Tokyo Institute of Technology

1

Verification of System Software

• Most critical systems rely on software
(tra�c control, �nancial transactions, etc.)

• Software errors may result in disasters
(Ariane 5, Therac-25, etc.)

• Testing cannot guarantee the absence of errors

⇒ Formal veri�cation is necessary

2

Verification of a Mail Server

• Motivation :
Veri�cation for midsize system softwares

• Case study: Electronic mail
– Widely used in business
– Costly security holes:

CodeRed / IIS Server → US$2.6 billions a

asource: Computer Economics, Inc.

3

Our Approach

1. Pick up the AnZenMail mail server [Shibayama,
Taura et al. 2002]

2. Write reliability speci�cations
3. Prove the implementation meets them

IOW, Proof that a program has certain
properties

⇒ Coq (logical framework + proof assistant)

4

Contributions

• Formal veri�cation of (a part of) the AnZenMail
mail server

• Demonstrate usefulness and feasibility of our
approach

• Show techniques for narrowing the
\implementation-model" gap

\Implementation-model" gap?
Goal of veri�cation: Implementation in Java
Means of veri�cation: Model in Coq

5

Outline

1. Introduction to SMTP

2. Modelization
3. Speci�cations
4. Results
5. Conclusion

6

A Client/Server Protocol
Mail system:
• Mail servers:

– SMTP receiver
– SMTP sender

• Mail clients

SMTP
receiver

SMTP
sender

SMTP
protocol

mail user
agent

mail user
agent

SMTP
protocol

mail queue

remoteremote
secure mail server

mail server mail server

7

SMTP Protocol Sessions
SMTP sessiona:
• SMTP commands:

HELO RCPT

DATA"."

RCPT

RSET RSET

RSET

RSET

MAIL

• SMTP replies:
– Acknowledgments
– Error messages

afull specification: RFC 821

8

Outline

1. Introduction to SMTP
2. Modelization

3. Speci�cations
4. Results
5. Conclusion

9

Modelization Overview

• From Java to Coq
• Useful veri�cation

⇒ Narrow the \implementation-model" gap
⇒ Faithful code conversion

Di�culties:
1. Java is imperative whereas Coq is functional
2. Explicit relevant non-software speci�c aspects

(e.g., non-deterministic system errors)

10

Code Conversion Basis (1/2)

Java datatypes → Coq types

For instance, SMTP commands:

int cmd_helo = 0;

int cmd_mail_from = 1;

int cmd_rcpt_to = 2;

int cmd_data = 3;

int cmd_noop = 4;

int cmd_rset = 5;

int cmd_quit = 6;

int cmd_abort = 100;

int cmd_unknown = 101 ;

→

Inductive SMTP cmd : Set :=

cmd helo: String → SMTP cmd

| cmd mail from: String → SMTP cmd

| cmd rcpt to: String → SMTP cmd

| cmd data: String → SMTP cmd

| cmd noop: SMTP cmd

| cmd rset : SMTP cmd

| cmd quit : SMTP cmd

| cmd abort : SMTP cmd

| cmd unknown: SMTP cmd.

11

Code Conversion Basis (2/2)

Java control structures → Coq control structures
For instance, switch statements:

switch (cmd) {
case cmd_unknown : / ∗ . . . ∗ /

case cmd_abort : / ∗ . . . ∗ /

case cmd_quit : / ∗ . . . ∗ /

case cmd_rset : / ∗ . . . ∗ /

case cmd_noop : / ∗ . . . ∗ /

case cmd_helo : / ∗ . . . ∗ /

case cmd_rcpt_to : / ∗ . . . ∗ /

default : / ∗ . . . ∗ /

}

→

(Cases m of

cmd unknown ⇒(* ... *)

| cmd abort ⇒(* ... *)

| cmd quit ⇒(* ... *)

| cmd rset ⇒(* ... *)

| cmd noop ⇒(* ... *)

| (cmd helo arg) ⇒(* ... *)

| (cmd rcpt to b) ⇒(* ... *)

| ⇒(* ... *)

end)

12

Modeling System Errors
• Several kinds (recoverable network errors,

fatal host computer failures, etc.)
⇒ Representation as exceptions:
Inductive Exception: Set :=

IOException: Exception
| parse error exception: Exception
| Smail implementation exception: Exception
| empty stream exception: Exception
| system failure: Exception.

• Non-deterministic
⇒ Representation as test oracles:
CoInductive Set Oracles := flip : bool → Oracles → Oracles.

13

Put It All Together (1/2)
Exceptions + test oracles + global state

⇒ Monadic style programming:
• A type for computation results:

Definition Result : Set := (Except unit).
Inductive Except [A: Set]: Set :=

Succ: A → STATE → (Except A)
| Fail : Exception → STATE → (Except A).

• A function for sequential execution:
Definition seq : Result → (STATE→Result) → Result := ...

⇒ Application to code conversion:
a;b → (seq a b)

14

Put It All Together (2/2)
Concretelya:
Definition seq : Result → (STATE→Result) → Result :=

[x : Result][f :STATE→Result]

(* the first statement may be a success or a failure *)

(Cases x of

(Succ st) ⇒
(* the host computer may fail *)

Cases (oracles st) of

(flip true coin) ⇒ (f (update coin st coin))

| (flip false coin) ⇒ (Fail unit system failure st)

end

| (Fail e st) ⇒ (Fail unit e st)

end).

asee the paper for detailed explanations

15

Model Summary

SMTP
receiver

SMTP
protocol

mail queue

secure mail server

→
Global
state

Coq
function

file system
abstraction

stream of SMTP

test o
racles

stream of SMTP

+

replies

commands

work STATE

Properties preserved by modelization:
• The structure of the source code
• Non-determinism for system errors

⇒ \Implementation-model" match

16

Outline

1. Introduction to SMTP
2. Modelization
3. Specifications

(a) Veri�ed Properties
(b) Formal Statements

4. Results
5. Conclusion

17

Verified Properties
Program properties expressed modulo system
errors:
• Compliance to standard protocols

– The server accepts correct SMTP commands
unless a fatal error occurs

– The server sends back correct SMTP replies
– The server rejects wrong SMTP commands

• Reliability of the provided service
– Accepted mails are not lost

even if a system error occurs

18

A Formal Statement
The server accepts correct SMTP commands
unless a fatal error occurs:
Theorem accept SMTP :

(s: InputStream)(st :STATE)
(valid protocol s) → (is succ or fatal (work s st)).

Basic definitions:

• (valid protocol s): SMTP commands s are correcta

• (is succ or fatal r): result r is a success or a fatal error

aas defined in RFC 821

19

Another Formal Statement
Accepted mails are not lost even if a system error
occurs:
Theorem reliability :

(s: InputStream)(st : STATE)(st’ : STATE)(exn: Exception)
((work s st)=(succ st’) ∨ (work s st)=(fail exn st’)) →

(all mails saved in file
(received mails s (to client st’)) (files st) (files st’)).

Basic definitions:

• (received mails s r): accepted mails

• (all mails saved in file m fs’ fs): saved mails

20

Outline

1. Introduction to SMTP
2. Modelization
3. Speci�cations
4. Results

5. Conclusion

21

Verification is Useful

• Bugs found in the implementation:
– Resetting of the state of the mail server
– Number of SMTP replies

• Formal speci�cations in themselves
(Debatable comparison:
SMTP RFC in prose ' 4050 lines
Speci�cations in Coq ' 500 lines)

22

Verification is Feasible

• Size:
– Java implementation ' 700 lines
– Coq model ' 700 lines
– Proofs scripts ' 18,000 lines

• Time:
– Full development ' 150 hours for 1 person
– Proof check ' 7.3 minutes

(Coq 7.1, UltraSparc 400MHz)

23

Application to Other System
Softwares

• Any implementation language is ok
• Systematic (though manual) code conversion
• Proofs done in parallel with code development

Possible issues:
• No support for threads (not a problem here)
• Size of proofs (solutions: modularity,

automation, libraries)
• There may be errors in speci�cations

24

Outline

1. Introduction to SMTP
2. Modelization
3. Speci�cations
4. Results
5. Conclusion

25

Related Work (1/2)

• Formal veri�cation of algorithms:
Many experiments
(often tailored for formal veri�cation)

• Formal veri�cation of implementations:
– Thttpd [Black 1998]

Proofs of security for an http daemon
About 100 lines of C code

– Unison [Pierce and Vouillon 2002]
Program for �le synchronization
Certi�ed reference implementation in Coq

26

Related Work (2/2)

• Code conversion:
– Correctness tactic in Coq [Filliatre 1999]

Semi-automatic certi�cation of imperative
programs

• Secure electronic mail:
– AnZenMail [Shibayama, Taura et al. 2002]
– qmail [Bernstein et al.]

Straight-paper-path philosophy

27

Conclusion
Veri�cation for midsize system softwares in Coq:
• \Implementation-model" match:

– Faithful code conversion
– Failure-conscious modelization

• Useful and feasible in practice
Future work:
• Veri�cation of the SMTP sender
• Modularity and redundancy in Coq proofs
• Support for concurrency

28

