Formalization_and Verification
of a Mail Server in Coq

Reynald Affeldt> and Naoki Kobayashi®

aDepartment of Computer Science, University of Tokyo
PDepartment of Computer Science, Tokyo Institute of Technology

Verification of System Software

o Most critical systems rely on software
(traffic control, financial transactions, etc.)

o Software errors may result in disasters
(Ariane 5, Therac-25, etc.)

o Testing cannot guarantee the absence of errors

- Formal verification is necessary

Verification of a Mail Server

« Motivation :

Verification for midsize system softwares
o Case study: Electronic mail

— Widely used in business

— Costly security holes:
CodeRed / IS Server — USs$2.6 billions =

asource: Computer Economics, Inc.

Our Approach
1. Pick up the AnZenMail mail server [Shibayama,
Taura et al. 2002]

2. Write reliability specifications
3. Prove the implementation meets them

|IOW, Proof that a program has certain
properties

- Coq (logical framework + proof assistant)

Contributions

o Formal verification of (a part of) the AnZenMail
mail server

e Demonstrate usefulness and feasibility of our
approach

o Show techniques for narrowing the
“Implementation-model” gap
“Implementation-model” gap?
Goal of verification: Implementation in Java
Means of verification: Model in Coq

Outline

1. Introduction to SMTP
2. Modelization

3. Specifications

4. Results

5. Conclusion

A Client/Server Protocol
Mail system:

o Mail servers:

~ SMTP receiver

~ SMTP sender
o Mail clients

remote SME P Seedre méai | server SMTP remote
mail server protocol FURREEe L _____. . protocol mail server

mail user : - rec_ei_vf:r_ i | - ?ef]c_le_r_ -
=) A e

o
mail queue

|

mail user
agent

SMTP Protocol Sessions
SMTP session?:

e SMTP commands:

RSET

e« SMTP replies:

— Acknowledgments
— Error messages

afull specification: RFC 821

Outline
1. Introduction to SMTP

2. Modelization
3. Specifications
4. Results

5. Conclusion

Modelization Overview

e From Java to Coqg

o Useful verification

= Narrow the “implementation-model” gap
— Faithful code conversion

Difficulties:
1. Java is imperative whereas Coq is functional

2. Explicit relevant non-software specific aspects
(e.g., non-deterministic system errors)

10

Code Conversion Basis (1/2)

Java datatypes — Coq types

For instance, SM TP commands:
Inductive SMTP_cmd : Set :=

int
int
int
int
int
int
int
int
int

cmd_helo

cmd_mail_
cmd_rcpt_

cmd_data
cmd_noop
cmd_rset
cmd_quit

cmd_abort

from =
to = 2;

3
= 4;
5
6

L;

cmd_unknown = 101;

11

cmd-helo: String — SMTP_cmd
cmd-mail_from: String — SMTP_cmd
cmd_rcpt_to: String — SMTP_cmd
cmd_data: String — SMTP_cmd
cmd-noop: SMTP_cmd

cmd-rset: SMTP_cmd

cmd_quit: SMTP_cmd

cmd_abort: SMTP_cmd
cmd_unknown: SMTP_cmd.

Code Conversion Basis (2/2)

Java control structures — Coq control structures

For Instance, switch statements:

switch (cmd) { (Cases m of

case cmd_unknown: /x ... x/ ¢md-unknown =(* ..)

case cmd_abort: /x ... x/ cmd_abort =(* ... *)
case cmd_quit: /x* ... x/ cmd_quit =(* ... *)

case cmd_rset: /x ... x/ cmd_rset =(* ... ¥)

case cmd_noop: /* ... x /_> emd_noop =(* ... *)

case cmd_helo: /x ... x/ (emd_helo arg) =(* ... *)
case cmd_rcpt_to: /x ... %/ (emd_rept_to b) =(* ... *)
default: /x ... x/ Lo (F %)

} end)

19

Modeling System Errors

« Several kinds (recoverable network errors,
fatal host computer failures, etc.)

— Representation as exceptions:
Inductive Exception: Set :=

10FException: Exception
parse_error—_exception: Fxception

Smail_implementation_exception: Fxception
empty_stream_exception: Exception

system_failure: Exception.
« Non-deterministic
= Representation as test oracles:

Colnductive Set Oracles := flip : bool — Oracles — Oracles.

19

Put It All Together (1/2)

Exceptions + test oracles + global state
- Monadic style programming:

o A type for computation results:

Definition Result : Set := (FExcept unit).
Inductive Fxcept [A: Set]: Set :=
Succ: A — STATE — (FExcept A)
| Fail: Fxception — STATE — (FExcept A).

« A function for sequential execution:

Definition seq: Result — (STATE— Result) — Result := ...

= Application to code conversion:

a;b — (seqad)

114

Put It All Together (2/2)

Concretely?:

Definition seq: Result — (STATE— Result) — Result :=
|x: Result]|f:STATE— Result]
(* the first statement may be a success or a failure *)
(Cases z of
(Succ _ st) =
(* the host computer may fail *)
Cases (oracles st) of
(flip true coin) = (f (update—coin st coin))
| (flip false coin) = (Fail unit system_failure st)
end
| (Fail e st) = (Fail unit e st)
end).

asee the paper for detailed explanations

1R

Model Summary

SMITP secure mail server | }
proFocoI s | stream of SMTP | TT T T T - -
~ T ™ commands . > Coq Globa

: |
! |
| N } function + stateé |
| sream of SMTP |+ work STATE
i replies | Lo mpm e o i
' |

| g,———_—:————le | g_?—J}_—_I%
| L mail queue, __ ! OF L gtlgtr Sem
|) |

i \@‘

Properties preserved by modelization:
e Ihe structure of the source code
e Non-determinism for system errors

= “Implementation-model” match

1R

Outline

1. Introduction to SMTP
2. Modelization

3. Specifications
(a) Verified Properties
(b) Formal Statements

4. Results

5. Conclusion

17

Verified Properties

Program properties expressed modulo system
errors:

« Compliance to standard protocols

— The server accepts correct SMTP commands
unless a fatal error occurs

— The server sends back correct SMTP replies
— The server rejects wrong SMTP commands

« Reliability of the provided service

— Accepted mails are not lost
even if a system error occurs

1R

A Formal Statement

The server accepts correct SMTP commands
unless a fatal error occurs:

Theorem accept_SMTP:
(s: InputStream)(st:STATE)

(valid_protocol s) — (is_succ_or_fatal (work s st)).

Basic definitions:
e (valid_protocol s): SMTP commands s are correct?

o (is_succ_or_fatal r): result r is a success or a fatal error

2as defined in RFC 821

10

Another Formal Statement

Accepted mails are not lost even if a system error
OCCUrs:

Theorem reliability:
(s: InputStream)(st: STATE)(st’: STATE)(exn: Exception)
((work s st)=(succ st’) V (work s st)=(fail exn st’)) —
(all-mails_saved_in_file
(received_mails s (to_client st’)) (files st) (files st’)).

Basic definitions:
e (received_mails s r): accepted mails

o (all_mails_saved_in_file m fs’ fs): saved mails

90N

Outline

1. Introduction to SMTP
2. Modelization

3. Specifications

4. Results

5. Conclusion

91

Verification is Useful

e Bugs found in the implementation:

— Resetting of the state of the mail server
— Number of SMTP replies

o Formal specifications in themselves

(Debatable comparison:
SMTP RFC in prose ~ 4050 lines
Specifications in Coq ~ 500 lines)

99

Verification is Feasible

e Size:
— Java implementation ~ 700 lines
— Cogq model ~ 700 lines
— Proofs scripts ~ 18,000 lines

e Time:
— Full development ~ 150 hours for 1 person

— Proof check ~ 7.3 minutes
(Coq 7.1, UltraSparc 400MHz)

9Q

Application to Other System
Softwares

o Any implementation language is ok
o Systematic (though manual) code conversion

e Proofs done in parallel with code development

Possible issues:

 No support for threads (not a problem here)

o Size of proofs (solutions: modularity,
automation, libraries)

o There may be errors in specifications

9N

Outline

1. Introduction to SMTP
2. Modelization

3. Specifications

4. Results

5. Conclusion

OR

Related Work (1/2)

« Formal verification of algorithms:
Many experiments

(often tailored for formal verification)

o Formal verification of implementations:

~ Thttpd [Black 1998]

Proofs of security for an http daemon
About 100 lines of C code

— Unison [Pierce and Vouillon 2002]

Program for file synchronization
Certified reference implementation in Coqg

IR

Related Work (2/2)

e Code conversion:

— Correctness tactic in Coq [Filliatre 1999]

Semi-automatic certification of imperative
programs

o Secure electronic mail:
— AnZenMail [Shibayama, Taura et al. 2002]

— gmail [Bernstein et al.]
Straight-paper-path philosophy

o7

Conclusion
Verification for midsize system softwares in Coq:

e Implementation-model” match:
— Faithful code conversion
— Failure-conscious modelization

o Useful and feasible in practice
Future work:
 Verification of the SMTP sender
e Modularity and redundancy in Coq proofs

e Support for concurrency

R

