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Abstract. In order to ensure memory properties of an operating system,
it is important to verify the implementation of its heap manager. In
the case of an existing operating system, this is a difficult task because
the heap manager is usually written in a low-level language that makes
use of pointers, and it is usually not written with verification in mind.
In this paper, our main contribution is the formal verification of the
heap manager of an existing embedded operating system, namely Topsy.
For this purpose, we develop in the Coq proof assistant a library for
separation logic, an extension of Hoare logic to deal with pointers. Using
this library, we were able to verify the C source code of the Topsy heap
manager, and to find and correct bugs.

1 Introduction

In order to ensure memory properties of an operating system, it is important
to verify the implementation of its heap manager. The heap manager is the set
of functions that provides the operating system with dynamic memory alloca-
tion. Incorrect implementation of these functions can invalidate essential memory
properties. For example, task isolation, the property that user processes cannot
tamper with the memory of kernel processes, is such a property: the relation
with dynamic memory allocation comes from the fact that privilege levels of
processes are usually stored in dynamically allocated memory blocks (see [5] for
a detailed illustration).

However, the verification of the heap manager of an existing operating system
is a difficult task because it is usually written in a low-level language that makes
use of pointers, and it is usually not written with verification in mind. For these
reasons, the verification of dynamic memory allocation is sometimes considered
as a challenge for mechanical verification [15].

In this paper, our main contribution is to formally verify the heap manager
of an existing embedded operating system, namely Topsy [2]. For this purpose,
we develop in the Coq proof assistant [4] a library for separation logic [1], an
extension of Hoare logic to deal with pointers. Using this library, we verify the
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C source code of the Topsy heap manager. In fact, this heap manager proves
harder to deal with than dynamic memory allocation facilities verified in previous
studies (see Sect. 8 for a comparison). A direct side-effect of our approach is to
provide advanced debugging. Indeed, our verification highlights several issues
and bugs in the original source code (see Sect. 7.1 for a discussion).

We chose the Topsy operating system as a test-bed for formal verification
of memory properties. Topsy was initially created for educational use and has
recently evolved into an embedded operating system for network cards [3]. It is
well-suited for mechanical verification because it is small and simple, yet it is a
realistic use-case because it includes most classical features of operating systems.

The paper is organized as follows. In Sect. 2, we give an overview of the Topsy
heap manager, and we explain our verification goal and approach. In Sect. 3, we
introduce separation logic and explain how we encode it in Coq. In Sect. 4, we
formally specify and prove the properties of the underlying data structure used
by the heap manager. In Sect. 5, we formally specify and explain the verification
of the functions of the heap manager. In Sect. 6, we discuss practical aspects of
the verification such as automation and translation from the original C source
code. In Sect. 7, we discuss the outputs of our experiment: in particular, issues
and bugs found in the original source code of the heap manager. In Sect. 8, we
comment on related work. In Sect. 9, we conclude and comment on future work.

2 Verification Goal and Approach

2.1 Topsy Heap Manager

The heap manager of an operating system is the set of functions that provides
dynamic memory allocation. In Topsy, these functions and related variables
are defined in the files Memory/MMHeapMemory.{h,c}, with some macros in the file
Topsy/Configuration.h. We are dealing here with the heap manager of Topsy
version 2; a browsable source code is available online [2].

The heap is the area of memory reserved by Topsy for the heap manager. The
latter divides the heap into allocated and free memory blocks: allocated blocks
are memory blocks in use by programs, and free blocks form a pool of memory
available for new allocations. In order to make an optimal use of the memory,
allocated and free memory blocks form a partition of the heap. This is achieved
by implementing memory blocks as a simply-linked list of contiguous blocks. In
the following, we refer to this data structure as a heap-list.

In a heap-list, each block consists of a two-fields header and an array of
memory. The first field of the header gives information on the status of the
block (allocated or free, corresponding to the Alloc and Free flags); the second
field is a pointer to the next block, which starts just after the current block. For
example, here is a heap-list with one allocated block and one free block:
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Observe that the size of the arrays of memory associated to blocks can be com-
puted using the values of pointers. (In this paper, when we talk about the size of
a block, we talk about its “effective” size, that is the size of the array of memory
associated to it, this excludes the header.) The terminal block of the heap-list
always consists of a sole header, marked as allocated, and pointing to null.

Initialization of the heap manager is provided by the following function:

Error hmInit(Address addr) {...}

Concretely, hmInit initializes the heap-list by building a heap-list with a single
free block that spans the whole heap. The argument is the starting location of
the heap. The size of the heap-list is defined by the macro KERNELHEAPSIZE. The
function always returns HM_INITOK.

Allocation is provided by the following function:

Error hmAlloc(Address* addressPtr, unsigned long int size) {...}

The role of hmAlloc is to insert new blocks marked as allocated into the heap-list.
The first argument is a pointer provided by the user to get back the address of
the allocated block, the second argument is the desired size. In case of successful
allocation, the pointer contains the address of the newly allocated block and the
value HM_ALLOCOK is returned, otherwise the value HM_ALLOCFAILED is returned. In
order to limit fragmentation, hmAlloc performs compaction of contiguous free
blocks and splitting of free blocks.

Deallocation is provided by the following function:

Error hmFree(Address address) {...}

Concretely, hmFree turns allocated blocks into free ones. The argument cor-
responds to the address of the allocated block to free. The function returns
HM_FREEOK if the block was successfully deallocated, or HM_FREEFAILED otherwise.

2.2 Verification Goal and Approach

Our goal is to verify that the implementation of the Topsy heap manager is
“correct”. By correct, we mean that the heap manager provides the intended ser-
vice: the allocation function allocates large-enough memory blocks, these mem-
ory blocks are “fresh” (they do not overlap with previously allocated memory
blocks), the deallocation function turns the status of blocks into free (except
for the terminal block), and the allocation and deallocation functions does not
behave in unexpected ways (in particular, they do not modify neither previ-
ously allocated memory blocks nor the rest of the memory). Guaranteeing the
allocation of fresh memory blocks and the non-modification of previously allo-
cated memory blocks is a necessary condition to ensure that the heap manager
preserves exclusive usage of allocated blocks. Formal specification goals corre-
sponding to the above informal discussion are explained later in Sect. 5.

Our approach is to use separation logic to formally specify and mechanically
verify the goal informally stated above. We choose separation logic for this pur-
pose because it provides a native notion of pointer and memory separation that
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facilitates the specification of heap-lists. Another advantage of separation logic
is that it is close enough to the C language to enable systematic translation from
the original source code of Topsy.

In the next sections, we explain how we encode separation logic in the Coq
proof assistant and how we use this encoding to specify and verify the Topsy
heap manager. All the verification is available online [6].

3 Encoding of Separation Logic

Separation logic is an extension of Hoare logic to reason about low-level programs
with shared, mutable data structures [1]. Before entering the details of the formal
encoding, we introduce the basic ideas behind separation logic.

Brief Introduction to Separation Logic Let us consider the program x *<- 4 that
puts the value 4 into a memory cell pointed to by the variable x. Let us assume
that this cell originally contained a pointer to a contiguous cell with the value
2. Informally, the corresponding Hoare triple could be written as follows:

2

x

{ }

4 2

x

{ }

x *<- 4

Separation logic provides connectives to conveniently specify and reason about
such Hoare triples. In particular, it extends the language of assertions of Hoare
logic with a separating conjunction ? that asserts that its subformulas hold
for disjoint parts of the memory. For illustration, the pre/post-conditions above
would be respectively written (x 7→ p)?(p 7→ 2) and (x 7→ 4)?(p 7→ 2), where p is
the location held by variable x. Separation logic also provides us with “axioms”
to verify such triples. For example, by applying the “axiom of backward reasoning
for mutation” (to be defined formally later in this section), the verification is
reduced to the proof of the (classical) implication (x 7→ p) ? (p 7→ 2) → (x 7→

p) ? ((x 7→ 4)−?((x 7→ 4) ? (p 7→ 2))) where −? is the separating implication; this
formula is easily provable using the properties of separation logic.

In the rest of this section, we explain the formal definition of separation
logic that we implemented in Coq to perform such reasoning as above. The
code displayed is directly taken from the implementation; we use traditional
mathematical notations instead of ASCII for Coq primitives (e.g., ∀, ∃, →, ∧,
6=, ≥ instead of forall, exists, ->, /\, <>, >=).

3.1 The Programming Language

The programming language of separation logic is imperative. The current state
of execution is represented by a pair of a store (that maps local variables to
values) and a heap (a finite map from locations to values). We have an abstract
type var.v for variables (ranged over by x, y), a type loc for locations (ranged
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over by p, adr), and a type val for values (ranged over by v, w) with the condi-
tion that all values can be seen as locations (so as to enable pointer arithmetic).
Our implementation is essentially abstracted over the choice of types, yet, in our
experiments, we have taken the native Coq types of naturals nat and relative in-
tegers Z for loc and val so as to benefit from better automation. Stores and heaps
are implemented by two modules store and heap whose types are (excerpts):

Module Type STORE.
Parameter s : Set. (* the abstract type of stores *)
Parameter lookup : var.v → s → val.
Parameter update : var.v → val → s → s.
End STORE.

Module Type HEAP.
Parameter l : Set. (* locations *)
Parameter v : Set. (* values *)
Parameter h : Set. (* the abstract type of heaps *)
Parameter emp : h. (* the empty heap *)
Parameter singleton : l → v → h. (* singleton heaps *)
Parameter lookup : l → h → option v.
Parameter update : l → v → h → h.
Parameter union : h → h → h. Notation "h1 ] h2" := (union h1 h2).
Parameter disjoint : h → h → Prop. Notation "h1 ⊥ h2" := (disjoint h1 h2).
End HEAP.

Definition state := prod store.s heap.h.

To paraphrase the implementation, (store.lookup x s) is the value of the vari-
able x in store s; (store.update x v s) is the store s in which the variable x

has been updated with the value v; (heap.lookup p h) is the contents (if any) of
location p; (heap.update p v h) is the heap h in which the location p has been
mutated with the value v; h ] h’ is the disjoint union of h and h’; and h ⊥ h’

holds when h and h’ have disjoint domains.
The programming language of separation logic manipulates arithmetic and

boolean expressions that are evaluated w.r.t. the store. They are encoded by
the inductive types expr and expr_b (the parts of the definitions which are not
essential to the understanding of this paper are abbreviated with “. . . ”):

Inductive expr : Set :=
var_e : var.v → expr

| int_e : val → expr
| add_e : expr → expr → expr Notation "e1 ’+e’ e2" := (add_e e1 e2).
...
Definition null := int_e 0%Z.
Definition nat_e x := int_e (Z_of_nat x).
Definition field x f := var_e x +e int_e f.

Notation "x ’-.>’ f " := (field x f).
Inductive expr_b : Set :=
eq_b : expr → expr → expr_b Notation "e == e’" := (eq_b e e’).

| neq_b : expr → expr → expr_b Notation "e =/= e’" := (neq_b e e’).
| and_b : expr_b → expr_b → expr_b Notation "e &&& e’" := (and_b e e’).
| gt_b : expr → expr → expr_b Notation "e >> e’" := (gt_b e e’).
...
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There is an evaluation function eval such that (eval e s) is the result of evalu-
ating the expression e w.r.t. the store s.

The commands of the programming language of separation logic are also
encoded by an inductive type:

Inductive cmd : Set :=
assign : var.v → expr → cmd Notation "x <- e" := (assign x e).

| lookup : var.v → expr → cmd Notation "x ’<-*’ e" := (lookup x e).
| mutation : expr → expr → cmd Notation "e ’*<-’ f" := (mutation e f).
| seq : cmd → cmd → cmd Notation "c ; d" := (seq c d).
| while : expr_b → cmd → cmd
| ifte : expr_b → cmd → cmd → cmd Notation "’ifte’ b ’thendo’ c ’elsedo’ c"
... := (ifte b c d).

From this presentation, we omit the memory allocation and deallocation com-
mands of separation logic (they are not useful for our use-case precisely because
we verify the implementation of a memory allocation facility).

The operational semantics of the programming language of separation logic
is defined by the following inductive type. An object of type (exec s c s’) repre-
sents the execution of the command c from state s to state s’. Because heaps are
finite maps, lookup and mutation may fail; to take this possibility into account,
we use an option type.

Inductive exec : option state → cmd → option state → Prop :=
exec_assign : ∀ s h x e,
exec (Some (s, h)) (x <- e) (Some (store.update x (eval e s) s, h))

| exec_lookup : ∀ s h x e p v,
val2loc (eval e s) = p → heap.lookup p h = Some v →
exec (Some (s, h)) (x <-* e) (Some (store.update x v s, h))

| exec_lookup_err : ∀ s h x e p,
val2loc (eval e s) = p → heap.lookup p h = None →
exec (Some (s, h)) (x <-* e) None

| exec_mutation : ∀ s h e e’ p v,
val2loc (eval e s) = p → heap.lookup p h = Some v →
exec (Some (s, h)) (e *<- e’) (Some (s, heap.update p (eval e’ s) h))

| exec_mutation_err : ∀ s h e e’ p,
val2loc (eval e s) = p → heap.lookup p h = None →
exec (Some (s, h)) (e *<- e’) None

...

3.2 Assertions and Reynolds’ Axioms

Assertions of Hoare logic are predicate calculus formulas with the same expres-
sions as the programming language. In consequence, the validity of an assertion
depends on the current execution state of the program. There are mainly two
ways to encode the semantics of such assertions in a proof assistant:

1. Deep encoding : define a syntax for assertions and a satisfaction relation
between states and assertions.

2. Shallow encoding : identify formulas with functions from states to some
“boolean type”.
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The advantage of shallow encoding over deep encoding is that deciding the va-
lidity of formulas becomes a function computation, for which the proof assistant
provides native facilities (for example, tactics to prove tautologies).

We have developed a shallow encoding of separation logic in Coq. For this
purpose, we identify assertions of separation logic with functions from states to
Prop, the native type for predicate calculus formulas. For example, True:Prop

represents truth and ∧:Prop → Prop → Prop represents classical conjunction in
Coq. This gives rise to the type assert below. By way of example, we also show
the encoding of truth and conjunction in separation logic.

Definition assert := store.s → heap.h → Prop.
Definition TT : assert := fun s h => True.
Definition And (P Q:assert) : assert := fun s h => P s h ∧ Q s h.

Assertions of Separation Logic The assertion that holds for empty heaps is
defined by testing whether the heap is empty:

Definition emp : assert := fun s h => h = heap.emp.

e 7→ e’ is the formula that holds for a singleton heap whose only location is the
result of evaluating e and this location has for contents the result of evaluating e’:

Definition mapsto e e’ s h := ∃ p,
val2loc (eval e s) = p ∧ h = heap.singleton p (eval e’ s).

Notation "e1 7→ e2" := (mapsto e1 e2).

For example, (var_e x 7→ int_e 4) asserts that the variable x points to a cell that
contains the integer 4. The following derived definitions will prove useful later: e
7→ _ asserts that the cell e has some undefined contents, and e

�
⇒ l asserts that

there is a list l of contiguous cell contents starting from e.

The separating conjunction P ? Q holds for a heap that can be decomposed
into two disjoint heaps for which P and Q respectively hold:

Definition con (P Q:assert) : assert := fun s h =>
∃ h1, ∃ h2, h1 ⊥ h2 ∧ h = h1 ] h2 ∧ P s h1 ∧ Q s h2.

Notation "P ? Q" := (con P Q).

For example, (var_e x 7→ nat_e p) ? (nat_e p 7→ int_e 2) is the formal version
of the example given in the beginning of this section.

The separating implication P −? Q is less intuitive. It is used to represent
logically mutations. In particular, the idiom (e 7→ _ ? (e 7→ e’ −? P)) holds for a
heap such that the mutation of location e to contents e’ leads to a heap that
satisfies P. Section 4.2 gives a concrete example of such a formula together with
its utilization. For the time being, we limit ourselves to the formal definition:

Definition imp (P Q:assert) : assert := fun s h =>
∀ h’, h ⊥ h’ ∧ P s h’ → ∀ h’’, h’’ = h ] h’ → Q s h’’.

Notation "P −? Q" := (imp P Q).
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Reynolds’ Axioms The axioms of separation logic are defined by the following in-
ductive type. An object of type (semax P c Q) represents the fact that, going from
a state satisfying P, the execution of the command c leads to a state satisfying Q:

Inductive semax : assert → cmd → assert → Prop :=
semax_assign : ∀ P x e,
semax (update_store2 x e P) (x <- e) P

| semax_lookup : ∀ P x e,
semax (lookup2 x e P) (x <-* e) P

| semax_mutation : ∀ P e e’,
semax (update_heap2 e e’ P) (e *<- e’) P

| semax_seq : ∀ P Q R c d,
semax P c Q → semax Q d R → semax P (c ; d) R

...
Notation "{{ P }} c {{ Q }}" := (semax P c Q).

where update_store2, etc. are predicate transformers, for example:

Definition update_store2 (x:var.v) (e:expr) (P:assert) : assert :=
fun s h => P (store.update x (eval e s) s) h.

Using these definitions, we have implemented much of [1], including in par-
ticular the proof of soundness of the axioms of separation logic, the “frame
rule”, various axioms for backward reasoning, etc. For example, let us just give
the axiom for backward reasoning used in the example at the beginning of this
section:

Lemma semax_mutation_backwards : ∀ P e e’,
{{ fun s h => ∃ e’’, (e 7→ e’’ ? (e 7→ e’ −? P)) s h }} e *<- e’ {{ P }}.

4 The Heap-list Data Structure

4.1 The Heap-list Assertion

We define an assertion called Heap_List that holds for heaps that contain a well-
formed heap-list. Separation logic is very convenient for this purpose. In partic-
ular, the property that blocks are disjoint can be expressed using the separating
conjunction. The fact the blocks are contiguous relies on pointer arithmetic and
this can also be expressed directly in separation logic.

Before defining the Heap_List assertion, we define an assertion to represent
arrays of memory, i.e. sets of contiguous locations. Array p sz holds for a heap
whose locations p, . . . , p+sz-1 have some contents:

Fixpoint Array (p:loc) (size:nat) {struct size} : assert :=
match size with

O => emp
| S n => (fun s h => ∃ y, (nat_e p 7→ int_e y) s h) ? Array (p+1) n

end.

We now come to the definition of heap-lists without terminal block (let us
call them pre-heap-lists for convenience). Intuitively, (hl p l) represents the set
of headers of a pre-heap-list whose first block starts at location p together with
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the set of free blocks (the allocated blocks are left outside); information about
the blocks is captured by the parameter (l:list (nat*bool)): the list of sizes
and flags of the blocks (:: is the list constructor and nil is the empty list):

Inductive hl : loc → list (nat*bool) → assert :=
| hl_last: ∀ s p h,

emp s h → hl p nil s h
| hl_Free: ∀ s h p h1 h2 size tl,

h1 ⊥ h2 → h = h1 ] h2 →
((nat_e p

�
⇒ Free::nat_e (p+2+size)::nil) ? (Array (p+2) size)) s h1 →

hl (p+2+size) tl s h2 →
hl p ((size,free)::tl) s h

| hl_Allocated: ∀ s h p h1 h2 size tl,
h1 ⊥ h2 → h = h1 ] h2 →
(nat_e p

�
⇒ Allocated::nat_e (p+2+size)::nil) s h1 →

hl (p+2+size) tl s h2 →
hl p ((size,alloc)::tl) s h.

where free and alloc are synonymous for booleans. The first constructor spec-
ifies empty pre-heap-lists. The second constructor specifies pre-heap-lists that
start with a free memory block (that is, a header marked as free and its associ-
ated block) followed by a pre-heap-list. The third constructor specifies pre-heap-
lists that start with an allocated memory header (in this case, the associated
block is left outside). Observe that the definition above uses pointer arithmetic
to guarantee that there is no lost space between linked blocks.

Finally, we define heap-lists (with terminal block). This is simply the sepa-
rating conjunction of a pre-heap-list with a terminal block (an allocated block
pointing to null):

Definition Heap_List (l:list (nat*bool)) (p:nat) : assert :=
(hl p l) ? (nat_e (get_endl l p)

�
⇒ Allocated::null::nil).

where (get_endl l p) returns the size of the domain covered by the list l from
location p, i.e., the location of (the header of) the terminal block.

4.2 Properties of Heap-lists

The heart of our verification of the Topsy heap manager consists of a few basic
lemmas capturing the properties of operations such as compaction of blocks,
splitting of a block, changing the status of blocks, etc. Since these operations
rely on destructive updates, the properties in question are adequately expressed
using the separating implication.

For example, the following lemma expresses compaction of two contiguous
free blocks (++ is the list append function of Coq):

Lemma hl_compaction: ∀ l1 l2 size size’ p s h,
Heap_List (l1 ++ (size,free)::(size’,free)::nil ++ l2) p s h →
∃ y, (nat_e (get_endl l1 p + 1) 7→ y ?

(nat_e (get_endl l1 p + 1) 7→ nat_e (get_endl l1 p + size + size’ + 4) −?
Heap_List (l1 ++ (size+size’+2,free)::nil ++ l2) p)) s h.
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The left-hand side of the (classical) implication states the existence of two con-
tiguous free blocks (size,free) and (size’,free). The right-hand side represents
the destructive update of the “next” field of the first block that is made to point
to the block following the second block. As a result, the first block sees its size in-
creased by the size of the second block. The function get_endl is used to compute
the starting location of a block.

We can use this lemma to verify that a destructive update really performs
compaction of blocks. Let us consider a concrete example:
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p + 1 *<- p + 22 8 + 2 + 10

In Coq, we input the following goal, that makes use of Heap_List assertions:

Goal ∀ p, {{ Heap_List ((8,free)::(10,free)::nil) p }}
nat_e p +e int_e 1 *<- nat_e p +e int_e 22

{{ Heap_List ((20,free)::nil) p }}.

The application of the axiom for backward reasoning (seen in Sect. 3.2) leads to:

p : nat
s : store.s
h : heap.h
H : Heap_List ((8, free) :: (10, free) :: nil) p s h
============================
∃ e’’ : expr,
((nat_e p +e int_e 1) 7→ e’’ ?
((nat_e p +e int_e 1) 7→ (nat_e p +e int_e 22) −?
Heap_List ((20, free) :: nil) p)) s h

This new goal is precisely the conclusion of the lemma we gave above. Application
of this lemma terminates the proof.

5 Formal Verification

For each function of the heap manager, we give formal specifications using Hoare
triples written with the encoding of Sect. 3 and the assertions of Sect. 4. We
explain in more details the verification of the allocation function, because it is
the most involved. All proof sketches can be found in Appendix A.

Prior to verification, the C source code of each function is translated into the
programming language of separation logic. As a result of this translation, the
signature of each function is augmented with parameters to represent local vari-
ables and the return value. This explains the differences between the signatures
given in this section and in Sect. 2.1. The translation is explained in Sect. 6.2.

5.1 Formal Verification of Initialization

The initialization function hmInit transforms a given area of raw memory into an
initial heap-list that consists of a single free block. In the source code, this area
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starts at location hmStart and has a fixed length KERNELHEAPSIZE. We formally
verify hmInit for the general case of any starting location and any size greater
than 4: the minimal space needed for two headers (the header of the free block
and the header of the terminal block):

Definition hmInit_specif := ∀ p size, size ≥ 4 →
{{ Array p size }} hmInit p size {{ Heap_List ((size-4,free)::nil) p }}.

The size of the array of memory corresponding to the free block is the size of
the whole area of memory minus the size of the two headers. The verification
of this triple is done almost automatically using a tactic provided by our Coq
implementation. The non-automatic part is due to the translation of the asser-
tions Array and Heap_List into the fragment of separation logic handled by this
tactic. See Sect. 6.1 for more details.

Despite its apparent simplicity, this function turns out to be buggy, as we
explain in Sect. 7.1.

5.2 Formal Verification of Allocation

The allocation function hmAlloc searches for a large-enough free block in the
heap-list, possibly performing compaction of free blocks if needed. If an adequate
block is found, it is split into an allocated block (whose location is returned) and
a free block (available for further allocations); otherwise, an error is returned.

We introduce new assertions to simplify specifications. Under the hypothesis
that (Heap_List lst p0) holds, the assertion (In_hl lst (p,size,flag) p0) means
that the block starting at location p has size size and flag flag. The assertion
(s |= b) holds when b is true in the store s.

As stated informally in Sect. 2.2, the specification of the allocation function
consists in checking that (1) newly allocated blocks have at least the requested
size, (2) they do not overlap with already allocated memory blocks (they are
“fresh”), and (3) neither previously allocated memory blocks nor the rest of the
memory is modified.

The formal specification of hmAlloc follows. In the pre-condition, we isolate
some already allocated block (x,sizex,alloc). In the post-condition, we ensure
that (1) the newly allocated block (y,size’’,alloc) has an appropriate size
(i.e., greater than the requested size), (2) this newly allocated block does not
overlap with previously allocated blocks (more precisely, the newly allocated
block is built out of free blocks since (Heap_List l adr ? Array (y+2) size’’),
and it cannot be the previously allocated block x since x 6= y), and (3) previously
allocated memory blocks and the rest of the memory are not modified (because
these areas are left outside of the area described by the Heap_List assertion).
The second disjunction in the post-condition applies when allocation fails.

Definition hmAlloc_specif := ∀ adr x sizex size, adr > 0 → size > 0 →
{{ fun s h => ∃ l, Heap_List l adr s h ∧ In_hl l (x,sizex,alloc) adr ∧

(s |= var_e hmStart == nat_e adr) }}
hmAlloc result size entry cptr fnd stts nptr sz

{{ fun s h => (∃ l, ∃ y, y > 0 ∧ (s |= var_e result == nat_e (y+2)) ∧
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∃ size’’, size’’ ≥ size ∧ (Heap_List l adr ? Array (y+2) size’’) s h ∧
In_hl l (x,sizex,alloc) adr ∧ In_hl l (y,size’’,alloc) adr ∧ x 6= y)

∨
(∃ l, (s |= var_e result == nat_e 0) ∧

Heap_List l adr s h ∧ In_hl l (x,sizex,alloc) adr) }}.

Other assertions are essentially technical. The equality about the variable hmStart
and the location adr is necessary because the variable hmStart is actually global
and written explicitly in the original C source code of the allocation function.
The inequality about the location adr is necessary because the function implicitly
assumes that there is no block starting at the null location. The inequality about
the requested size is not necessary, it is just to emphasize that null-allocation is
a special case (see Sect. 7.1 for a discussion).

The allocation function relies on three functions to do (heap-)list traversals,
compaction of free blocks, and eventually splitting of free blocks. In the rest of
this section, we briefly comment on the verification of these three functions.

Traversal The function findFree traverses the heap-list in order to find a large-
enough free block. It takes as parameters the requested size and a return variable
entry to be filled with the location of an appropriate block if any:

Definition findFree_specif := ∀ adr x sizex size, size > 0 → adr > 0 →
{{ fun s h => ∃ l, Heap_List l adr s h ∧ In_hl l (x,sizex,alloc) adr ∧

(s |= (var_e hmStart == nat_e adr) &&& (var_e result == null)) }}
findFree size entry fnd sz stts

{{ fun s h => ∃ l, Heap_List l adr s h ∧ In_hl l (x,sizex,alloc) adr ∧
(s |= (var_e hmStart == nat_e adr) &&& (var_e result == null)) ∧
((∃ y, ∃ size’’, size’’ ≥ size ∧ In_hl l (y,size’’,free) adr ∧
(s |= (var_e entry == nat_e y) &&& (nat_e y >> null)))
∨
s |= var_e entry == null) }}.

The post-condition asserts that the search succeeds and the return value corre-
sponds to the starting location of a large-enough free block, or the search fails
and the return value is null.

Compaction The function compact is invoked when traversal fails. Its role is to
merge all the contiguous free blocks of the heap-list, so that a new traversal can
take place and hopefully succeeds:

Definition compact_specif:= ∀ adr size sizex x, size > 0 → adr > 0 →
{{ fun s h => ∃ l, Heap_List l adr s h ∧ In_hl l (x,sizex,alloc) adr ∧

(s |= (var_e hmStart == nat_e adr) &&& (var_e result == null) &&&
(var_e cptr == nat_e adr)) }}

compact cptr nptr stts
{{ fun s h => ∃ l, Heap_List l adr s h ∧ In_hl l (x,sizex,alloc) adr ∧

(s |= (var_e hmStart == nat_e adr) &&& (var_e result == null)) }}.

The formal specification of compact asserts that it preserves the heap-list struc-
ture. Its verification is technically involved because it features two nested loops
and therefore large invariants. The heart of this verification is the application of
the compaction lemma already given in Sect. 4.2.
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Splitting The function split splits the candidate free block into an allocated
block of appropriate size and a new free block:

Definition split_specif := ∀ adr size sizex x, size > 0 → adr > 0 →
{{ fun s h => ∃ l, Heap_List l adr s h ∧ In_hl l (x,sizex,alloc) adr ∧

(s |= (var_e hmStart == nat_e adr) &&& (var_e result == null)) ∧
(∃ y, ∃ size’’, size’’ ≥ size ∧ In_hl l (y,size’’,free) adr ∧

(s |= var_e entry == nat_e y) ∧ y > 0 ∧ y 6= x) }}
split entry size cptr sz

{{ fun s h => ∃ l, In_hl l (x,sizex,alloc) adr ∧
(∃ y, y > 0 ∧ (s |= var_e entry == int_e y) ∧

(∃ size’’, size’’ ≥ size ∧
(Heap_List l adr ? Array (y+2) size’’) s h ∧
In_hl l (y,size’’,alloc) adr ∧ y 6= x)) }}.

The pre-condition asserts that there is a free block of size greater than size

starting at the location pointed by entry (this is the block found by the previous
list traversal). The post-condition asserts the existence of an allocated block of
size greater than size (that is in general smaller than the original free block used
to be).

5.3 Formal Verification of Deallocation

The deallocation function hmFree does a list traversal; if it runs into the location
passed to it, it frees the corresponding block, and fails otherwise. Besides the
fact that an allocated block becomes free, we must also ensure that hmFree does
not modify previously allocated blocks nor the rest of the memory; here again,
this is taken into account by the definition of Heap_List:

Definition hmFree_specif := ∀ p x sizex y sizey statusy, p > 0 →
{{ fun s h => ∃ l, (Heap_List l p ? Array (x+2) sizex) s h ∧

In_hl l (x,sizex,alloc) p ∧ In_hl l (y,sizey,statusy) p ∧
x 6= y ∧ s |= var_e hmStart == nat_e p }}

hmFree (x+2) entry cptr nptr result
{{ fun s h => ∃ l, Heap_List l p s h ∧

In_hl l (x,sizex,free) p ∧ In_hl l (y,sizey,statusy) p ∧
s |= var_e result == HM_FREEOK }}.

The main difficulty of this verification was to identify a bug that allows for
deallocation of the terminal block, as we explain in Sect 7.1.

6 Practical Aspects of the Implementation

6.1 About Automation

Since our specifications take into account many details of the actual implemen-
tation, a number of Coq tactics needed to be written to make them tractable.

Tactics to decide disjointness and equality for heaps turned out to be very
important. In practice, proofs of disjointness and equality of heaps are ubiqui-
tous, but tedious because one always needs to prove disjointness to make unions
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of heaps commute; this situation rapidly leads to intricate proofs. For example,
the proof of the lemma hl_compaction given in Sect. 4.2 leads to the creation
of 15 sub-heaps, and 14 hypotheses of equality and disjointness. With these hy-
potheses, we need to prove several goals of disjointness and equality. Fortunately,
the tactic language of Coq provides us with a means to automate such reasoning.

We also developed a certified tactic to verify automatically programs whose
specifications belong to a fragment of separation logic without the separating
implication (to compare with related work, this is the fragment of [9] without
inductively defined datatypes).

We used this tactic to verify the hmInit function, leading to a proof script
three times smaller than the corresponding interactive proof we made (58 lines/167
lines). Although the code in this case is straight-line, the verification is not fully
automatic because our tactic does not deal directly with assertions such as Array
and Heap_List.

Let us briefly comment on the implementation of this tactic. The target
fragment is defined by the inductive type assrt. The tactic relies on a weakest-
precondition generator wp_frag whose outputs are captured by another inductive
type L_assrt. Using this weakest-precondition generator, a Hoare triple whose
pre/post-conditions fall into the type assrt is amenable to a goal of the form
assrt → L_assrt → Prop. Given a proof system LWP for such entailments, one can
use the following lemma to automatically verify Hoare triples:

Lemma LWP_use: ∀ c P Q R,
wp_frag (Some (L_elt Q)) c = Some R →
LWP P R →
{{ assrt_interp P }} c {{ assrt_interp Q }}.

—The function assrt_interp projects objects of type assrt (a deep encoding)
into the type assert (the shallow encoding introduced in this paper).
Goals of the form assrt → L_assrt → Prop can in general be solved automati-
cally because the weakest-precondition generator returns goals that are inside
the range of Presburger arithmetic (pointers are rarely multiplied between each
other) for which Coq provides a native tactic (namely, the Omega test).

6.2 Translation from C Source Code

The programming language of separation logic is close enough to the subset of the
C language used in the Topsy heap manager to enable a translation that preserves
a syntactic correspondence. Thanks to this correspondence, it is immediate to
identify a bug found during verification with its origin in the C source code.
Below, we explain the main ideas behind the translation in question. Though it
is systematic enough to be automated, we defer its certified implementation to
future work and do it by hand for the time being.

The main difficulty in translating the original C source code is the lack of
function calls and labelled jumps (in particular, the break instruction) in sepa-
ration logic. To deal with function calls, we add global variables to serve as local
variables and to carry the return value. To deal with the break instruction, we
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static void compact(HmEntry at) {
HmEntry atNext;

while (at != NULL) {
atNext = at->next;

while ((at->status == HM_FREED) &&
(atNext != NULL)) {

if (atNext->status != HM_FREED)
break;

at->next = atNext->next;

atNext = atNext->next;
}
at = at->next;}

}

Definition compact (at
atNext
brk tmp cstts nstts:var.v) :=

while (var_e at =/= null) (
atNext <-* (at -.> next);
brk <- nat_e 1 ;
cstts <-* (at -.> status);
while ((var_e cstts == Free) &&&

(var_e atNext =/= null) &&&
(var_e brk == nat_e 1)) (

nstts <-* (atNext -.> status);
ifte (var_e nstts =/= Free) thendo (

brk <- nat_e 0
) elsedo (

tmp <-* atNext -.> next;
at -.> next *<- var_e tmp;
atNext <-* atNext -.> next

));
at <-* (at -.> next)

).

Fig. 1. Code Translation from C to Coq—Example

add a global variable and a conditional branching to force exiting where loops
can break.

Another minor point is that we need to add temporary variables to make up
for the restricted set of expressions and commands of separation logic. For exam-
ple, the evaluation of an expression in separation logic never returns a location,
only values, thus we need beforehand to load a location into variable to be able
to use it in a boolean expression; also, there is no command to lookup and mu-
tate memory at the same time. We overcome these restrictions by decomposing
complex expressions and commands, and using temporary variables. These tem-
porary variables correspond to the parameters written without vowels in our
specifications.

By way of example, Fig. 1 displays side-by-side the original compact function
and its Coq counterpart.

Table 1 summarizes the whole Coq implementation.

7 Benefits of Formal Verification

The main output of our experiment is that we have found several issues and
bugs in the original source code of the Topsy heap manager. Another output is
the Coq implementation of separation logic, that is readily available for other
experiments. In particular, the verification of the Topsy heap manager in itself
can actually be used for other verifications.
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Script files Contents (lines)

util.v Non-standard lemmas about integers, lists, etc. (825)

heap.v Modules for locations, values, and heaps (2388)

bipl.v Separation logic connectives (with tactics) (1579)

axiomatic.v Separation logic triples, frame rule (1080)

vc.v Weakest-precondition generator (196)

contrib.v Various lemmas (arrays, etc.) (1077)

contrib tactics.v Various tactics (Omega extensions, etc.) (324)

examples.v Small examples (411)

example reverse list.v Reverse-list example (383)

frag.v Tactic for a fragment of separation logic (1972)

frag examples.v Examples for the tactic above (176)

total: 10411 lines

Script files Contents (lines)

topsy hm.v Heap-list definition and properties (1015)

topsy hmInit.v Initialization code, specification, and verification (313)

topsy hmAlloc.v Allocation code, specifications, and verifications (2762)

topsy hmFree.v Deallocation code, specification, and verification (536)

hmAlloc example.v Example of Sect. 7.2 (130)

total: 4756 lines

Table 1. Coq Implementation Overview

7.1 Issues and Bugs found in the Original Source Code

Out of Range Initialization When verifying the initialization function of the
heap manager (Sect. 5.1), we found that the header of the terminal block was
actually written outside of the memory area reserved for the heap manager. This
illegal destructive update made the Heap_List assertion unprovable because the
latter holds for a fixed area of memory. We corrected this bug by changing a
single arithmetic operation, suggesting a programming miss. In all fairness, we
must say that this bug was corrected in versions of Topsy posterior to version 2
(that we are using for verification).

Optimizations of Allocation When verifying the allocation function (Sect. 5.2),
we found several useless operations that suggested immediate optimizations.

One such useless operation is the possibility to allocate a non-empty memory
block (that is, a header and a non-empty array of memory) when performing a
null-size allocation. Since null-size allocations are not filtered out, the alignment
calculation is applied anyway, resulting in a non-empty allocation (in addition
to the header). This was highlighted when writing assertions. We improved the
implementation by forcing failure for null-size allocation.

Among other optimizations, there were useless assignments (to dead vari-
ables) and useless tests. For example, there were two identical variables assign-
ments before calling and at the beginning of the findFree function; this was
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highlighted when writing the loop invariant in findFree. More interestingly, there
was a useless test in the compact function. The second conjunct of the test of
the inner loop (see Fig. 1) is useless because only the terminal block marked as
allocated can point to null. Such an optimization cannot be done by an ordinary
compilers, contrary to the former one.

Deallocation of the Terminal Block When verifying the deallocation function
(Sect. 5.3), we found that it was possible to suppress allocable space without
performing any allocation. This is because it is possible to deallocate the terminal
block of the heap-list to trick compaction. The problem is better explained by
the following scenario:

F
r
e
e

A
l
l
o
c

n
u
ll

F
r
e
e

F
r
e
e

n
u
ll

hmFree

F
r
e
e

n
u
ll

compact

In this scenario, the terminal block is preceded by a free block. If we deallo-
cate the terminal block and try to allocate a too-large block, this will trigger
compaction and cause the leading free block to point to null. This problem is
easily identified by the Heap_List assertion that enforces the terminal block to
be marked as allocated. We fixed this problem by adding a test on the “next”
field of the block to be deallocated in the deallocation function.

7.2 Using the Verification Result to Verify Other Code

Our verification of the Topsy heap manager provides us with new separation
logic axioms that can be used for dynamic memory allocation without resorting
to the native malloc/free commands of separation logic. In other words, we can
use the specifications of hmAlloc and hmFree as triples to verify programs. For
example, let us consider the following program:

Definition hmAlloc_example result entry cptr fnd stts nptr sz v :=
hmAlloc result 1 entry cptr fnd stts nptr sz;
ifte (var_e result =/= nat_e 0) thendo (

(var_e result *<- int_e v)
) elsedo ( skip ).

This program allocates a new block using hmAlloc, stores its location into the
variable result, and stores some value v into this block. Using the specification
of hmAlloc proved in Sect. 5.2, we can prove the following specification:

Definition hmAlloc_example_specif := ∀ v x e p, p > 0 →
{{ (nat_e x 7→ int_e e) ?

(fun s h => ∃ l, (s |= var_e hmStart == nat_e p) ∧
Heap_List l p s h ∧ In_hl l (x,1,alloc) p) }}

hmAlloc_example result entry cptr fnd stts nptr sz v
{{ fun s h => s |= var_e result =/= nat_e 0 →

((nat_e x 7→ int_e e) ? (var_e result 7→ int_e v) ? TT ?
(fun s h => ∃ l, Heap_List l p s h ∧ In_hl l (x,1,alloc) p)) s h }}.

The post-condition asserts that, in case of successful allocation, the newly allo-
cated block is separated from any previously allocated block.
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8 Related Work

Our use case is reminiscent of work by Yu et al. that propose an assembly lan-
guage for proof-carrying code and apply it to certification of dynamic storage
allocation [7]. The main difference is that we deal with existing C code, whose
verification is more involved because it has not been written with verification in
mind. In particular, the heap-list data structure has been designed to optimize
space usage; this leads to trickier manipulations (e.g., nested loop in compact),
longer source code, and ultimately bugs, as we saw in Sect. 7.1. Also both al-
locators differ: the Topsy heap manager is a real allocation facility in the sense
that the allocation function is self-contained (the allocator of Yu et al. relies on a
pre-existing allocator) and that the deallocation function deallocated only valid
blocks (the deallocator of Yu et al. can deallocate partial blocks).

The implementation of separation logic we did in the Coq proof assistant
improves the work by Weber in the Isabelle proof assistant [8]. We think that
our implementation is richer since it benefits from a substantial use case. In
particular, we have developed several practical lemmas and tactics. Both imple-
mentations also differ in the way they implement heaps: we use an abstract data
type implemented by means of modules for the heap whereas Weber uses partial
functions.

Mehta and Nipkow developed modeling and reasoning methods for impera-
tive programs with pointers in Isabelle [12]. The key idea of their approach is
to model each heap-based data structure as a mapping from locations to values
together with a relation, from which one derives required lemmas such as sepa-
ration lemmas. The combination of this approach with Isabelle leads to compact
proofs, as exemplified by the verification of the Schorr-Waite algorithm. In con-
trast, separation logic provides native notions of heap and separation, making it
easier to model, for example, a heap containing different data structures (as it is
the case for the hmInit function). The downside of separation logic is its special
connectives that call for more implementation work regarding automation.

Tuch and Klein extended the ideas of Mehta and Nipkow to accommodate
multiple datatypes in the heap by adding a mapping from locations to types
[13]. Thanks to this extension, the authors certified an abstraction of the virtual
mapping mechanism in the L4 kernel from which they generate verified C code.
Obviously, such a refinement strategy is not directly applicable to the verification
of existing code such as the Topsy heap manager. More importantly, the authors
point that the verification of the implementation of malloc/free primitives is not
possible in their setting because they “break the abstraction barrier” (Sect. 6
of [13]).

Schirmer also developed a framework for Hoare logic-style verification in-
side Isabelle [11]. The encoded programming language is very rich, including in
particular procedure calls, and heap-based data structures can be modeled using
the same techniques as Mehta and Nipkow. Thanks to the encoding of procedure
calls, it becomes easier to model existing source code (by avoiding, for exam-
ple, the numerous variables we needed to add to translate the source code of
the Topsy heap manager into our encoding of separation logic). However, it is
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not clear whether this richer encoding scales well for verification of non-trivial
examples.

Caduceus [14] is a tool that takes a C program annotated with assertions
and generates verification conditions that can be validated with various theo-
rem provers and proof assistants. It has been used to verify several non-trivial
C programs including the Schorr-Waite algorithm [15]. The verification of the
Topsy heap manager could have been done equally well using a combination of
Caduceus and Coq. However, Caduceus does support separation logic. Also, we
needed a verification tool for assembly code in Topsy; for this purpose, a large
part of our implementation for separation logic is readily reusable (this is actu-
ally work in progress). Last, we wanted to certify automation inside Coq instead
of relying on a external verification condition generator.

Berdine, Calcagno and O’Hearn have developed Smallfoot, a tool for checking
separation logic specifications [10]. It uses symbolic execution to produce verifi-
cation conditions, and a decision procedure to prove them. Although Smallfoot
is automatic (even for recursive and concurrent procedures), the assertions only
describe the shape of data structures without pointer arithmetic. Such a limita-
tion excludes its use for data structures such as heap-lists.

9 Conclusion

In this paper, we formally specified and verified the heap manager of the Topsy
operating system inside the Coq proof assistant. In order to deal with pointers
and ensure the separation of memory blocks, we used separation logic. This
verification approach proved very effective since it enabled us to find bugs in the
original C source code. In addition, this use-case led us to develop a Coq library
of lemmas and tactics that is reusable for other formal verifications of low-level
code.

Recent Work According to the specification described in this paper, an alloca-
tion function that always fails is correct. A complementary specification should
make clearer the condition under which the allocation function is expected to
succeed. In Topsy, allocation always succeeds when there is a list of contiguous
free blocks whose compaction has the requested size. We have recently completed
the verification of such a specification:

Definition hmAlloc_specif2 := ∀ adr size, adr > 0 → size > 0 →
{{ fun s h => ∃ l1, ∃ l2, ∃ l,

(Heap_List (l1 ++ (Free_block_list l) ++ l2) adr) s h ∧
Free_block_compact_size l ≥ size ∧
(s |= var_e hmStart == nat_e adr) }}

hmAlloc result size entry cptr fnd stts nptr sz
{{ fun s h => ∃ l, ∃ y,

y > 0 ∧ (s |= var_e result == nat_e (y+2)) ∧
∃ size’’, size’’ ≥ size ∧
(Heap_List l adr ? Array (y+2) size’’) s h ∧
In_hl l (y,size’’,alloc) adr }}.
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This verification turned out to be technically more involved than the one de-
scribed in this paper because of the numerous clauses required by the verification
of compact.
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A Proof Sketches for hmAlloc and hmFree

We provide a bird’s-eye view of the formal verification of hmAlloc and hmFree

using proof sketches. For each function, the Coq model is displayed side-by-side
with relevant assertions: each command is juxtaposed with its post-condition,
its pre-condition being the post-condition of the previous command. Assertions
corresponding to loop invariants are boxed. The grayed areas indicate where the
key lemmas are applied (the name of the corresponding lemma is underlined).

The assertions are written in an abbreviated syntax to save space:

– We write HL(l, adr) for the assertion Heap List l adr.
– (x, y, z) ∈adr l stands for the assertion In hl l (x, y, z) adr.
– In all the proof sketches, the assertion hmStart=adr holds.
– In the proof of compact, we write PAllocated for all the assertions where

cstts=Allocated; for states corresponding to these assertions, the loop is
actually not executed.



Definition hmAlloc result size

entry cptr fnd stts nptr sz :=
�
∃l.HL(l, adr) ∧ (x, sizex, alloc) ∈adr l �

1 result <- null;
�
∃l.HL(l, adr) ∧ (x, sizex, alloc) ∈adr l ∧ result=0 �

2 findFree size entry fnd sz stts;

������ ����� ∃l.HL(l, adr) ∧ (x, sizex, alloc) ∈adr l ∧ result=0 ∧���� ∃y.∃sizey.sizey ≥ size ∧
(y, sizey, free) ∈adr l ∧ entry=y

∨
entry=0

	�

�
 ����������

3 ifte (entry == null) thendo (

4 cptr <- hmStart; � ∃l.HL(l, adr) ∧ (x, sizex, alloc) ∈adr l ∧ result=0 ∧
entry=0 ∧ cptr=hmStart �

5 compact cptr nptr stts; � ∃l.HL(l, adr) ∧ (x, sizex, alloc) ∈adr l ∧ result=0 ∧
entry=0 �

6 findFree size entry fnd sz stts;

������ �����
∃l.HL(l, adr) ∧ (x, sizex, alloc) ∈adr l ∧ result=0 ∧���� ∃y.∃sizey.sizey ≥ size ∧

(y, sizey, free) ∈adr l ∧ entry=y

∨
entry=0

	�

�
 ����������

7 ) elsedo (

8 skip;

9 )

10 ifte (entry == null) thendo ( � ∃l.HL(l, adr) ∧ (x, sizex, alloc) ∈adr l ∧
result=0 ∧ entry=0 �

(* HM ALLOCFAILED is equal to 0 *)

11 result <- HM ALLOCFAILED; � ∃l.HL(l, adr) ∧ (x, sizex, alloc) ∈adr l ∧
result=HM ALLOCFAILED ∧ entry=0 �

12 ) elsedo (

�� � ∃l.HL(l, adr) ∧ (x, sizex, alloc) ∈adr l ∧ result=0 ∧
∃y.∃sizey.sizey ≥ size ∧

(y, sizey, free) ∈adr l ∧ entry=y ∧ x 6= y

 ��
13 split entry size cptr sz;

���� ��� ∃y.∃sizey.sizey ≥ size ∧
∃l.HL(l, adr) ? Array (y + 2) sizey ∧

(x, sizex, alloc) ∈adr l ∧ (y, sizey, alloc) ∈adr l ∧
result=0 ∧ entry=y ∧ x 6= y

 ������
14 result <- entry + 2;

15 ).

���������� ���������
∃y.∃sizey.sizey ≥ size ∧

∃l.HL(l, adr) ? Array (y + 2) sizey ∧
(x, sizex, alloc) ∈adr l ∧ (y, sizey, Alloc) ∈adr l ∧

result=y+2 ∧ x 6= y

∨
∃l.HL(l, adr) ∧ (x, sizex, alloc) ∈adr l ∧

result=0

 ������������������
Fig. 2. Proof sketch of hmAlloc (see Fig. 3, 4, and 5 for the proof sketches of findFree,
compact, and split)



Definition findFree size entry

fnd sz stts :=
�
∃l.HL(l, adr) ∧ (x, sizex, alloc) ∈adr l �

1 entry <- hmStart;

2 stts <-* (entry -.> status);

3 fnd <- 0;

�� � ∃l.HL(l, adr) ∧ (x, sizex, Alloc) ∈adr l ∧
entry=hmStart ∧ fnd=0 ∧
(stts=Alloc ∨ stts=Free)

 ��

4
while ((entry =/= null) &&&

(fnd =/= 1)) (

������������������������ �����������������������

∃l.HL(l, adr) ∧ (x, sizex, alloc) ∈adr l ∧
∃block adr.entry=block adr ∧��������������������

block adr=0 ∧ fnd=0
∨

block adr > 0 ∧ fnd=0
block adr=get endl l adr

∨
block adr > 0 ∧ fnd=0 ∧
∃block size.∃block status.

(block adr, block size, block status) ∈adr l

∨
block adr > 0 ∧ fnd=1 ∧

∃block size.block size ≥ size ∧
(block adr, block size, free) ∈adr l

	�

















�

 ����������������������������������������������
5 stts <-* (entry -.> status);

6 ENTRYSIZE entry sz;

7 ifte ((stts == Free) &&&

(sz >>= size)) thendo

8 fnd <- 1

������ ����� ∃l.HL(l, adr) ∧ (x, sizex, alloc) ∈adr l ∧
∃block adr.entry=block adr ∧

block adr > 0 ∧ fnd=1
∃block size.block size ≥ size ∧

(block adr, block size, free) ∈adr l

 ����������
9 elsedo

10 entry <-* (entry -.> next)

11 ).

������ ����� ∃l.HL(l, adr) ∧ (x, sizex, alloc) ∈adr l ∧���� ∃y.∃sizey.sizey ≥ size ∧
(y, sizey, free) ∈adr l ∧ entry=y

∨
entry=0

	 

�
 ����������

Fig. 3. Proof sketch of findFree (partial proof of hmAlloc in Fig. 2)



Definition compact

cptr nptr brk tmp cstts nstts :=
� ∃l.HL(l, adr) ∧ (x, sizex, alloc) ∈adr l ∧

cptr=adr �
1

(* cptr points to the current block *)

while (cptr =/= null) (

���������� ���������
∃l.HL(l, adr) ∧ (x, sizex, alloc) ∈adr l ∧��������

cptr=null

∨
cptr=get endl l adr ∧ nptr=null

∨
∃cptr size, ∃cptr status,

(cptr, cptr size, cptr status) ∈adr l

	 





�
 ������������������

2 nptr <-* (cptr -.> next);

3 brk <- 1 ;

4 cstts <-* (cptr -.> status);

5

(* nptr points to the next block *)

while (cstts == Free &&&

nptr =/= null &&&

brk == 1) (

���������������������� ���������������������

∃l.HL(l, adr) ∧ (x, sizex, alloc) ∈adr l ∧

cstts=Free ∧ ∃cptr size,

(cptr, cptr size, free) ∈adr l ∧
nptr=cptr+2+nptr size ∧��������

nptr=get endl l adr ∧ (brk=0 ∨ brk=1)
∨

∃nptr size,∃nptr status,

(nptr, nptr size, nptr status) ∈adr l ∧
(nptr status=free → brk=1) ∧

(nptr status=alloc → (brk=0 ∨ brk=1))

	�





�
∨

PAllocated

 ������������������������������������������
6 nstts <-* (nptr -.> status);

7 ifte (nstts =/= Free) thendo (

8 brk <- 0

9 ) elsedo (

10 tmp <-* nptr -.> next;

������ ����� ∃l.HL(l, adr) ∧ (x, sizex, alloc) ∈adr l ∧ brk=1 ∧
cstts=Free ∧ ∃cptr size, ∃nptr size,

nptr=cptr+2+cptr size ∧
(cptr, cptr size, free) ∈adr l ∧
(nptr, nptr size, free) ∈adr l

 ����������
hl_compact

11 cptr -.> next *<- tmp ;

�� � ∃l.HL(l, adr) ∧ (x, sizex, alloc) ∈adr l ∧ brk=1 ∧
cstts=Free ∧ ∃cptr size,

(cptr, cptr size, free) ∈adr l ∧

 ��
12 nptr <- tmp

13 )

14 )

15 cptr <-* (cptr -.> next)

16 )
�
∃l.HL(l, adr) ∧ (x, sizex, alloc) ∈adr l �

Fig. 4. Proof sketch of compact (partial proof of hmAlloc in Fig. 2)



Definition split entry size cptr sz :=

���� ��� ∃l.HL(l, adr) ∧ (x, sizex, alloc) ∈adr l ∧
∃y.∃sizey.sizey ≥ size ∧
(y, sizey, free) ∈adr l ∧

entry=y ∧ x 6= y

 ������
1 ENTRYSIZE entry sz;

���� ��� ∃l.HL(l, adr) ∧ (x, sizex, alloc) ∈adr l ∧
∃y.∃sizey.sizey ≥ size ∧

(y, sizey, free) ∈adr l ∧ y > 0 ∧
entry=y ∧ x 6= y ∧ sz=sizey

 ������
2 ifte (sz >>= (size + LEFTOVER + 2) thendo (

���� ��� ∃l.HL(l, adr) ∧ (x, sizex, alloc) ∈adr l ∧
∃y.∃sizey.sizey ≥ size ∧

(y, sizey, free) ∈adr l ∧ y > 0 ∧
entry=y ∧ x 6= y ∧ sz=sizey

 ������
3 cptr <- (entry + 2 + size);

4 sz <-* (entry -.> next);

������ ����� ∃l.HL(l, adr) ∧ (x, sizex, alloc) ∈adr l ∧
∃y.∃sizey.sizey ≥ size ∧

(y, sizey, free) ∈adr l ∧ y > 0 ∧
cptr=entry+2+size ∧ sz=y+2+sizey ∧

entry=y ∧ x 6= y

 ����������
hl_splitting

5 (cptr -.> next) *<- sz;

6 (cptr -.> status) *<- Free;

7 (entry -.> next) *<- cptr

�� � ∃l.HL(l, adr) ∧ (x, sizex, alloc) ∈adr l ∧
∃y.∃sizey.sizey ≥ size ∧ (y, sizey, free) ∈adr l ∧

entry=y ∧ x 6= y ∧ y > 0

 ��
8 ) elsedo (

9 skip

10 );

�� � ∃l.HL(l, adr) ∧ (x, sizex, alloc) ∈adr l ∧
∃y.∃sizey.sizey ≥ size ∧ (y, sizey, free) ∈adr l ∧

entry=y ∧ x 6= y ∧ y > 0

 ��
hl_free2alloc

11 (entry -.> status) *<- Allocated.

���� ��� ∃y.∃sizey.sizey ≥ size ∧
∃l.HL(l, adr) ? Array (y+2) sizey ∧

(x, sizex, alloc) ∈adr l ∧ (y, sizey, alloc) ∈adr l ∧
entry=y ∧ x 6= y ∧ y > 0

 ������
Fig. 5. Proof sketch of split (partial proof of hmAlloc in Fig. 2)



Definition hmFree

(x + 2) entry cptr nptr result :=
� ∃l.(HL(l, adr) ? Array (x+2) sizex) ∧ x 6= y ∧

(x, sizex, alloc) ∈adr l ∧ (y, sizey, statusy) ∈adr l �
1 entry <- hmStart;

2 cptr <- (x + 2) - 2;

3
while (entry =/= null &&&

entry =/= cptr)

���� ��� ∃l.(HL(l, adr) ? Array (x+2) sizex) ∧ x 6= y ∧ cptr=x ∧
(x, sizex, alloc) ∈adr l ∧ (y, sizey, statusy) ∈adr l ∧

∃l1.∃size.∃stat.∃l2. l= l1++(size, stat) :: l2 ∧
entry=get endl l1 adr ∧ ¬(x, sizex, alloc) ∈adr l1

 ������
4 nptr <-* (entry -.> next);

5 entry <- nptr

6 ); � ∃l.(HL(l, adr) ? Array (x+2) sizex) ∧ x 6= y ∧ entry=x ∧
(x, sizex, alloc) ∈adr l ∧ (y, sizey, statusy) ∈adr l �

7 ifte (entry =/= null) thendo (

8 nptr <-* (entry -.> next);

9 ifte (nptr =/= null) thendo ( � ∃l.(HL(l, adr) ? Array (x+2) sizex) ∧ x 6= y ∧ entry=x ∧
(x, sizex, alloc) ∈adr l ∧ (y, sizey, statusy) ∈adr l �

hl_alloc2free

10 (entry -.> status) *<- Free; � ∃l.HL(l, adr) ∧ x 6= y ∧ entry=x ∧
(x, sizex, free) ∈adr l ∧ (y, sizey, statusy) ∈adr l �

11 result <- HM FREEOK

�� � ∃l.HL(l, adr) ∧ x 6= y ∧ entry=x ∧
(x, sizex, free) ∈adr l ∧ (y, sizey, statusy) ∈adr l ∧

result=HM FREEOK

 ��
12 ) elsedo (result <- HM FREEFAILED)

13 ) elsedo (result <- HM FREEFAILED)

�� � ∃l.HL(l, adr) ∧ x 6= y ∧
(x, sizex, free) ∈adr l ∧ (y, sizey, statusy) ∈adr l ∧

result=HM FREEOK

 ��
Fig. 6. Proof sketch of hmFree


