
Towards Verification with no False Attack of

Security Protocols in First-order Logic

一階述語論理に於ける誤検知の無いセキュリティプロトコル検証に向けて

Reynald Affeldt∗ Hubert Comon-Lundh
アフェルト レナルド コモン-ルンド ウーベル

Nat. Inst. of Advanced Industrial Science and Technology, Research Center for Information Security

産業技術総合研究所 情報セキュリティ研究センター

Keywords: Security protocols, first-order logic, resolution, rigid variables, false attacks
キーワード：セキュリティプロトコル、一階述語論理、導出、厳正な変数、誤検知

It is possible to model security protocols and their properties using first-order logic. Out of such models,

it is even possible to get automatically security proofs using theorem provers for first-order logic. Yet, this

approach sometimes fails to produce security proofs despite the correctness of the protocol. This is because

of the detection of false attacks that originate from abstractions made for the purpose of modeling. We

show that we get rid of some false attacks by using the notion of “rigid variable” to model protocols. Thanks

to a simple translation to first-order logic, it turns out that automatic verification with rigid variables can

be implemented using standard techniques.

1 Security Protocols in First-order Logic

I(x) ∧ I(y) → I(x, y) (I0)
I(x, y) → I(x) (I1)
I(x, y) → I(y) (I2)
I(x) ∧ I(y) → I([x]y) (I3)
I([x]y) ∧ I(y) → I(x) (I4)

Figure 1: Intruder Model

To verify a security protocol one first needs to model an intruder.
The standard model is the so-called Dolev-Yao intruder: it can
initiate and divert communications, and send to participants fake
messages built out of public or leaked information. In logic, the
(knowledge of the) intruder is modeled as a predicate I and its ca-
pabilities by logical implications, or rules (see Fig. 1). For example,
the rule (I4) models the capability of the intruder to decrypt the
cipher [x]y if it knows the key y.

I([A, N0]K) (P0)
I([A, x]K) → I([B, x,N1]K , [B, x,N2]K) (P1)
I([B,N0, y]K , [B,N0, z]K) → I(y) (P2)

Figure 2: Sample protocol

The model of the security protocol to be ana-
lyzed extends the Dolev-Yao intruder with more
rules that model the input/output behavior of
the participants. In those rules, logical variables
(x, y, z, . . .) can be instantiated by the intruder
with whatever (well-formed) message. Let us
explain such a model by commenting on the sample protocol of Fig. 2. The goal of this pro-
tocol is to produce a secret known only of two participants that already share a secret key K.
The initiator A uses this key to start the protocol by sending an encrypted nonce N0—rule (P0).
Upon reception, the responder B sends back two nonces N1, N2—rule (P1). Eventually, A pub-
licly revealed the nonce N1 (this peculiarity is for illustrative purpose)—rule (P2). The claimed
security properties is that, even though one nonce is revealed, the pair is not known of the intruder.
This claim is modeled by stating its negation (Fig. 3). ¬I(N1, N2) is intended to mean that the
intuder should not be able to derive both the knowledge of N1 and N2 by using the intruder rules
and the protocol rules.

¬I(N1, N2) (S)

Figure 3: Security Goal

Verification amounts to an exhaustive enumeration of all the log-
ically derivable consequences by a procedure known as resolution.
Derivation of a contradiction shows a (potential) attack; the absence
of contradiction is a proof of security.

∗E-mail: reynald.affeldt at aist.go.jp



(P0) + (P1) ⇒ I([B,N0, N1]K , [B,N0, N2]K) (R0)
(R0) + (P2) ⇒ I(N1) (R1)
(R0) + (I1) ⇒ I([B,N0, N1]K) (R2)
(R0) + (I2) ⇒ I([B,N0, N2]K) (R3)
(R2) + (R3) + (I0) ⇒ I([B,N0, N2]K , [B,N0, N1]K) (R4)
(R4) + (P2) ⇒ I(N2) (R5)
(R1) + (R5) + (I0) ⇒ I(N1, N2) (S′)
(S) + (S′) ⇒ contradiction

Figure 4: A False Attack

Detection of a False Attack
The use of first-order logic actu-
ally introduces several approxima-
tions regarding the order of ex-
ecution of rules or their replay.
This is safe since the absence of
attacks implies the absence of at-
tacks for any refined model. How-
ever, these approximations can
lead to false attacks, i.e., deriva-
tion of a contradiction that, after analysis, can be shown to correspond to no real attack.

Fig. 4 shows a false attack for our sample protocol. It comes from the replay of the protocol
rule (P2). This is not a real attack because in a concrete implementation the protocol participants
would have an internal state that they move forward so as to avoid such replays during the same
session.

2 Avoid False Attacks using Rigid Variables

The above false attacks can be avoided by introducing rigid variables. Intuitively, rigid variables are
variables that can participate in only one logical derivation. This turns out to be precisely what
we need to model security protocols: the Dolev-Yao intruder still has the freedom to send fake
messages to participants, but one it has sent a message, it cannot revoke it. Unfortunately, rigid
variables complicate the resolution procedure [1]. Our contribution is a simple way to implement
resolution for rigid variables, as we now sketch.

I(x, y, z, [A,N0]K) (P0)
I(x, y, z, [A, x]K) → I(x, y, z, [B, x,N1]K , [B, x,N2]K) (P1)
I(x, y, z, [B,N0, y]K , [B,N0, z]K) → I(x, y, z, y) (P2)
¬I(x, y, z, N1, N2) (S)

Figure 5: Translation of the Sample Protocol of Fig. 2,3

First, we translate the model
of the security protocol with rigid
variables so as to eliminate them
while preserving logical satisfiabil-
ity. Fig. 5 concretely shows the re-
sult of our translation. The idea is
to gather together all the (rigid) variables occuring in protocol rules and to prepend a vector of
these variables to the predicate I. For protocol rules, this causes a capture: the variables in the
prepended vector and the variables in the I predicate are the same. For the intruder rules (not
displayed here) and the security goal, there is no capture. In Fig. 6 one can confirm that the
derivation of a contradiction is indeed avoided.

(P0) + (P1) ⇒ I(N0, y, z, [B,N0, N1]K , [B,N0, N2]K) (R0)
(R0) + (P2) ⇒ I(N0, N1,N2, N1) (R1)
(R0) + (I1) ⇒ I(N0, y, z, [B,N0, N1]K) (R2)
(R0) + (I2) ⇒ I(N0, y, z, [B,N0, N2]K) (R3)
(R2) + (R3) + (I0) ⇒ I(N0, y, z, [B,N0, N2]K , [B,N0, N1]K) (R4)
(R4) + (P2) ⇒ I(N0, N2,N1, N2) (R5)
(R1) + (R5) + (I0) ⇒ not possible (S′)

Figure 6: The False Attack of Fig. 4 avoided

The translation above
is only one part of the veri-
fication procedure. In fact,
nothing a priori guarantees
that the resulting fragment
of first-order logic is decid-
able. In [2], we exhibit a
refinement of resolution for
which one can show com-
pleteness and termination.

Conclusion The verification procedure sketched above allows for a more precise analysis of
security protocols since it avoids replays (this is under the restriction that only a bounded number
of sessions is considered for verification, see [2] for details). One can further extend it so as to
eliminate false attacks due to the absence of ordering of rules. This approach is appealing in
practice because the underlying machinery is based on standard resolution for which there already
exist numerous results and implementations.

References

[1] S. Delaune, H. Lin, and C. Lynch. Protocol verification via rigid/flexible resolution. In LPAR’07.

[2] R. Affeldt and H. Comon-Lundh. A Note on First-order Logic and Security Protocols. In FCS-
ARSPA-WITS’08.


