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Abstract

Mechanical tools have recently been developed that enable computer-aided verifi-
cation of spatial properties of concurrent systems. To be practical, these tools are
expected to deal with the state-space explosion problem. In order to alleviate this
problem, we develop partial order reduction for verification of spatial properties of
pi-calculus processes. The main issue is that spatial logics are very expressive and
some spatial formulas prevent partial order reduction. After discussing this issue,
we propose a restricted spatial logic such that partial order reduction holds. Our
approach relies on exploiting partially confluent communications and on identifying
invisible communications in the pi-calculus, for which we propose a simple syntactic
criterion.
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1 Introduction

Spatial logics [3,4,5,6] have been drawing much attention as specification lan-
guages for concurrent systems. They can express, among others, properties
of structure of concurrent systems, for example whether or not a concurrent
system is composed of two or more identifiable subsystems.

Recently, efforts have been made to construct tools for computer-aided
verification of spatial-logic specifications of concurrent systems. Vieira and
Caires have been developing a model checker for automatic verification of
finite-control concurrent systems written in a nominal π-calculus and speci-
fied using a rich spatial logic [16]. The authors of the present paper have been
developing a library for interactive verification of concurrent systems written
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in an applied version of the π-calculus using a spatial logic [1]. Like all verifi-
cation tools for concurrent systems, these tools must deal with the state-space
explosion problem.

In this paper, we study how to alleviate the state-space explosion prob-
lem for computer-aided verification of spatial logic specifications of concurrent
programs. Our approach is to enable partial order reduction by exploiting par-
tial confluence properties of π-calculus processes. We briefly explain the basic
idea of partial order reduction. Let us consider some satisfaction relation |=
between the states of some reduction system and some set of formulas. The
basic idea of partial order reduction is to exploit reductions P → P ′ such
that, for some formula φ, P |= φ ⇔ P ′ |= φ. In such situations, in order
to verify whether P |= φ, one can choose to perform the reduction P → P ′

(even if there are other possible reductions) and check whether P ′ |= φ. In
this paper, our goal is to find appropriate conditions for the formula φ and
the reduction P → P ′ in the case where φ is a formula of the spatial logic
and P → P ′ is a reduction of the π-calculus. The same question has already
been addressed for usual temporal logics such as LTL and CTL* (for Kripke
structures), but not for spatial logics. In particular, the existence of expressive
spatial formulas makes this question difficult. In addition, the target language
being the π-calculus also makes it non-trivial to find an appropriate syntactic
condition for P → P ′. In usual model checkers like Spin, P → P ′ is just a
transition caused by access to a local variable [10], but in the π-calculus, all
the computations are communications.

Our contributions can be summarized as follows:

(i) We identify a set of spatial formulas that prevent partial order reduction.

(ii) We define a syntactic notion of invisible communication and we introduce
a restricted spatial logic such that invisible communications cannot be
observed by the set of spatial formulas.

(iii) We show that invisibility and partial confluence of communications is a
sufficient criterion to enable sound partial order reduction for this spatial
logic.

Outline In Sect. 2, we show informally with an example that the knowledge
of partially confluent communications enables partial order reduction for ver-
ification of spatial properties of π-calculus processes. In Sect. 3, we discuss
spatial formulas that prevent partial order reduction. In Sect. 4, we introduce
the TSL logic, we define partially confluent and invisible communications and
state our main theorem, namely that partially confluent invisible communi-
cations enable partial order reduction. In Sect. 5, we outline the proof of the
main theorem. In Sect. 6, we discuss potential extensions to the TSL logic.

Notation and Vocabulary We use a version of the π-calculus [13] standard
enough not to require a detailed introduction. For the sake of completeness,
we give the complete description in Appendix A. It can be skipped on a
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first reading provided the reader is aware of the following points: (1) we
use a subset of the π-calculus where the choice operator is removed and the
replication operator is restricted to input processes, (2) we use a reduction
operational semantics.

2 Motivating Example

We are interested in verifying π-calculus processes against spatial formulas.
In this section, we show informally that partially confluent communications
simplify such verifications.

Let us consider the following π-calculus process:

P = c.e.f |c︸ ︷︷ ︸
process C

| d.e.f |d︸ ︷︷ ︸
process D

(In this paper, we write c.P instead of c〈v〉.P when the name v is not relevant,
similarly we write c.P instead of c(x).P when the name x does not appear
in P .)

The process P consists of the parallel composition of several (sub)processes.
The process c.e.f is ready to send some data along the name c (intuitively, a
channel of communication) and will behave as the process e.f after emission.
The process c waits for input along the name c. The name c is only known
of the process C; the name d is only known of the process D; both process C
and process D share the names e and f : they use e to perform a hand-shake
and will both seek access to some resource available along name f .

Let us assume that we want to verify that there is no race condition along
the name f (this is actually wrong). Put formally, we want to verify that
there is no execution such that the spatial formula φ = f()|f() is eventually
true (a process satisfies φ1|φ2 if it consists of a process satisfying φ1 and a
process satisfying φ2, a process satisfies f() 3 if it consists of an input process
that waits for data along the name f). The motivation for such a verification
may be for instance that the resource along f expects processes C and D to
perform inputs in some predetermined order.

Naive verification of P leads to the exhaustive enumeration of all execution
paths, and in general this approach is impractical because it leads to the state-
space explosion problem.

In comparison, the knowledge of partially confluent communications en-
ables efficient verification. Informally, a communication is partially confluent
when it commutes with all other communications. Because the communica-
tion along c in our example is partially confluent, the state-space of P can be
represented as follows (we represent communication with arrows and annotate

3 The formula f() is actually an abbreviation for the formula f()> defined later.
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them with the name used for communication):

P = c.e.f |c|d.e.f |d
c
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d
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P ′ = e.f |d.e.f |d

d $$HHHHHHHH
P ′′ = c.e.f |c|e.f

c
zzvvv

vvv
vvv

Q = e.f |e.f
e
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f |f

Since both possible execution paths lead to the same state, it is intuitively
obvious that the verification of P can be reduced to the verification of, say, P ′.
Although this is true for the verification of the formula φ, this is wrong for the
verification of the formula c()> ∧ e()> (where the conjunction has its usual
meaning) because the latter actually holds of P ′′.

In this paper, we will show for a spatial logic that the partial order re-
duction above is valid as long as the communication along c is (1) partially
confluent and (2) invisible (intuitively, the same spatial formulas hold of P
and P ′, and P ′′ and Q).

3 Partial Order Reduction and Spatial Formulas

For LTL and CTL*, partial order reduction is sound for the fragment without
the “next” formula (see for instance [7]). So, a natural question is: Is partial
order reduction sound for the standard spatial logic without the “next” for-
mula? The answer is no: as discussed below, there are many other formulas
of the spatial logic that prevent partial order reduction.

Problem with the Zero Formula The zero formula of spatial logics is
defined as follows:

P |= 0 iff P ≡ 0

Using the zero formula, it is possible to write formulas to count the number
of non-zero subprocesses (this is observed for instance in [9]). For example,
formulas below hold respectively of processes with one, two, or three non-zero
subprocesses:

1
def
= ¬0 ∧ ¬(¬0|¬0)

2
def
= (¬0|¬0) ∧ ¬(¬0|¬0|¬0)

3
def
= (¬0|¬0|¬0) ∧ ¬(¬0|¬0|¬0|¬0)

These formulas prevent partial order reduction. For instance, the problem of
verifying P cannot be reduced to the problem of verifying P ′ in the following
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example because it would let us conclude that 3 must be eventually true:

P = c|c.e|d|d 6|= 3
c
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P ′ = e|d|d |= 3

d ""FF
FF

FF
FF

c|c.e 6|= 3

c
}}zz
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e 6|= 3

Problem with the Input/Output Formulas There are several alternative
definitions for input/output formulas (see [2,3], or [6] where the formula for
ambient locations can be compared with the output formula). For instance:

P |= c()φ iff P ≡ c(x).Q and for all v, Q{v/x} |= φ

P |= c〈v〉φ iff P ≡ c〈v〉.Q and Q |= φ

These definitions are problematic because they can be used to implicitly test
for the absence of actions. For example, they prevent partial order reduction
for the following verification (> is a formula true of any process):

c|c|d|d 6|= d〈〉>|d()>
c

zzttt
ttt

ttt d

$$III
III

III

d|d |= d〈〉>|d()>

d $$JJJ
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c|c 6|= d〈〉>|d()>

c
zzuuu

uuu
uuu

0 6|= d〈〉>|d()>

Problem with the Temporal Modality To compensate for the loss of
expressiveness due to the removal of the “next” temporal modality, we can
replace it by its weak version (also defined in [9]):

P |= 3φ iff there exists P ′ such that P →∗ P ′ and P ′ |= φ

There is still a problem: mixed use of this temporal modality and the com-
position formula of spatial logics. For example, partial order reduction is not
sound for the following process:

d. ((c.e|c) | (c.e|c)) | d 6|= 3e〈〉>|3e〈〉>
d
��

(c.e|c) | (c.e|c) |= 3e〈〉>|3e〈〉>
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4 The TSL Logic and Partial Order Reduction

As we have seen in the previous section, partial order reduction is not sound for
the full spatial logic. In this section, we first introduce a restricted fragment
(which we call the TSL logic) of the spatial logic, for which partial order
reduction will be shown to hold.

We first introduce the TSL logic. We then formally define partial con-
fluence and invisible communications. We finally state our main theorem,
namely that partially confluent invisible communications enable partial order
reduction.

4.1 The TSL Logic

The TSL logic is a spatial logic, restricted in such a way that it enables partial
order reduction. Its definition takes into account the issues discussed in the
previous section: there is no zero formula, the semantics of input/output
formulas is defined appropriately, the usual temporal modality is replaced
with its weak version (noted EF instead of 3), arbitrary mixing of spatial and
temporal formulas is prevented by distinguishing state and temporal formulas.

The TSL logic consists of state formulas and temporal formulas:

Definition 4.1 The set of state formulas (noted SL) is given by the following
grammar:

φ ::= > | ¬φ | φ1∨φ2︸ ︷︷ ︸
propositional formulas

| c()φ | c〈〉φ | (φ1|φ2)︸ ︷︷ ︸
spatial formulas

Its semantics is defined as follows (νy1,...,n is an abbreviation for νy1. · · · .νyn):

P |= > always true

P |= ¬φ iff not P |= φ

P |= φ1∨φ2 iff P |= φ1 or P |= φ2

P |= c()φ iff there exist T, R, y1, . . . , yn such that P ≡ νy1,...,n.(c(x).T |R)

with c /∈ y1, . . . , yn and for all v such that v /∈ y1, . . . , yn,

νy1,...,n.(T{v/x}|R) |= φ

P |= c〈〉φ iff there exist U,R, y1, . . . , yn, v such that P ≡ νy1,...,n.(c〈v〉.U |R)

with c /∈ y1, . . . , yn and νy1,...,n.(U |R) |= φ

P |= φ1|φ2 iff there exist R1, R2, y1, . . . , yn such that P ≡ νy1,...,n.(R1|R2)

with νy1,...,n.R1 |= φ1 and νy1,...,n.R2 |= φ2

Lemma 4.2 (Structural congruence preserves state-formulas validity)
Let P and Q be two processes such that P ≡ Q. Then, for any state formula φ,
we have P |= φ ⇔ Q |= φ.
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Definition 4.3 Let S be a set of state formulas (ranged over by φ) whose sat-
isfaction relation is noted |=. The set of temporal formulas for S (noted T (S))
is given by the following grammar:

f ::= φ | ¬tf | f1 ∨tf2 | EF f | AF f

Its semantics is defined as follows. A path is a possibly infinite sequence of
processes such that each process is obtained by a communication from the
previous one. A path if full either if it is infinite, or if it is finite and the last
process cannot be reduced. We write pi for the ith process of a path p.

P |=t φ iff P |= φ

P |=t ¬t f iff not P |=t f

P |=t f1 ∨tf2 iff P |=t f1 or P |=t f2

P |=t EF f iff there exists a path p such that p1 = P and pk |=t f for some k

P |=t AF f iff for any full path p such that p1 = P , pk |=t f for some k

Definition 4.4 The TSL logic is the logic defined by T (SL).

4.2 Partial Confluence and Invisible Communications

In the following, we decorate π-calculus reductions with labels. A labeled

reduction is written P
l,S−→ Q where l is a name or a special label ε and S

is a set of names. Informally, l is the name used for communication or the
special label ε for internal communication, and names in S are the names
that are revealed by the communication (labels are ranged over by α, β, see
Appendix A for a formal definition). For instance:

c|c.(d.e〈v〉|c) c,{c,d}−−−→ d.e〈v〉|c

We first formally define partial confluence.

Definition 4.5 The set of partially confluent communications is the largest
set S such that for any (P, α, Q) ∈ S we have:

(i) P
α−→ Q, and

(ii) if P → P ′, then either:
(a) Q ≡ P ′, or
(b) there exists Q′ such that Q → Q′ and (P ′, α,Q′) ∈ S.

For example, the communication along c in the process P = c|c|d.e|d.f |d
7
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is partially confluent because we have the state-space below:

c|c|d.e|d.f |d
c
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e|d.f d.e|f

The property of partial confluence is for instance enjoyed by linearized
names [12] and ω-receptive names [15].

We now define the notion of invisible communication. For any formula f ,
let fn(f) be the set of names in f .

Definition 4.6 For any state formula φ, the communication P
c,S−→ P ′ is

invisible with respect to φ if ({c} ∪ S) ∩ fn(φ) = ∅.

For instance, the communication c|c.(d.e〈v〉|c) c,{c,d}−−−→ d.e〈v〉|c is invisible
with respect to the formula e〈〉> because fn(e〈〉>) = {e} and {c, d}∩{e} = ∅.

We conclude this section with an important lemma stating when invisible
communications cannot be observed by the state formulas. Note that this
lemma holds thanks to the restrictions on the state formulas; as discussed in
Sect. 3, it is not true for spatial logics in general.

Lemma 4.7 (Invisible Communications cannot be Observed) Let φ be

a state formula. If P
c,S−→ P ′ is invisible with respect to φ, then we have

P |= φ ⇔ P ′ |= φ.

Proof. See Appendix B. 2

4.3 Main Theorem

We finally state our main theorem, namely that partially confluent invisible
communications enable partial order reduction:

Theorem 4.8 (Partial Order Reduction) Let the communication P
α−→ Q

be partially confluent and invisible with respect to a set S of state formulas.
Then, for any temporal formula f ∈ T (S), we have Q |=t f ⇔ P |=t f .

Proof. Obtained directly as a corollary of Lemma 5.3 by using Lemma 5.2.
See next section. 2

We show how to use this theorem on an example. Let us consider the
following process:

P = c|c|d.e.f |d.e
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Let us assume that we want to verify that P must eventually perform some out-
put along the name f . Put formally, we want to verify whether P |=t AF f〈〉>
holds.

Since the communication along name c is partially confluent and invisible
with respect to the formula f〈〉>, by the theorem above, this verification is
equivalent to the verification of P ′ |=t AF f〈〉> with:

P ′ = d.e.f |d.e

The latter verification is simpler because P ′ is deterministic. This simplifica-
tion is better appreciated by examining the state-space of P :

P = c|c|d.e.f |d.e
c

yysssssssss
d

##HHHHHHHH

P ′ = d.e.f |d.e
d

%%KKKKKKKKK c|c|e.f |e
c

{{vvvvvvvv
e
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JJJ
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e.f |e

e

$$HHHHHHHHHH c|c|f

c

zztttttttttt

f

We observe that the theorem allows us to restrict verification to the path
P, P ′, . . .

5 Proof of the Main Theorem

We first introduce the notion of S-preserving bisimulation, where S is a set
of state formulas (as defined in Sect. 4.1). We then show that if P

α−→ Q is
partially confluent and invisible with respect to the formulas in S, then P and
Q are S-preserving bisimilar (Lemma 5.2). Finally, we show that S-preserving
bisimilar processes satisfy the same temporal formulas in T (S) (as defined in
Sect. 4.1) (Lemma 5.3). The main theorem (Theorem 4.8) is an immediate
corollary of those lemmas.

Definition 5.1 Let S be a set of state formulas. A binary relation R on
processes is an S-preserving bisimulation if whenever (P, Q) ∈ R:

(i) if P → P ′, then there exist Q1, ..., Qn (n ≥ 1) and i (1 ≤ i ≤ n) such that
Q = Q1 → . . . → Qn and (P, Q1), . . . , (P, Qi−1), (P

′, Qi), . . . , (P
′, Qn) ∈

R,

(ii) if Q → Q′, then there exist P1, . . . , Pn (n ≥ 1) and i (1 ≤ i ≤ n) such that
P = P1 → . . . → Pn and (P1, Q), . . . , (Pi−1, Q), (Pi, Q

′), . . . , (Pn, Q
′) ∈ R,

and

(iii) for any state formula φ ∈ S, P |= φ if and only if Q |= φ.
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P and Q are S-bisimilar, written P ≈S Q, if (P, Q) ∈ R for some S-
preserving bisimulation R.

Lemma 5.2 If P
α−→ Q is an invisible communication with respect to a set S of

state formulas and if it is a partially confluent communication, then P ≈S Q.

Proof. Consider the relation R
def
=≡ ∪{(P, Q) | P α−→ Q}. We show that R is

an S-preserving bisimulation. Consider (P, Q) ∈ {(P, Q) | P α−→ Q}.
• Suppose that P → P ′. Since P

α−→ Q is partially confluent, then either (1)
P ′ ≡ Q, in which case we can take Q2 = Q, and (P, Q), (P ′, Q2) ∈ R, or (2)
there exists Q′ such that Q → Q′ and P ′ α−→ Q′, in which case we can take
Q2 = Q′, and (P, Q), (P ′, Q2) ∈ R.

• Suppose that Q → Q′. We have P
α−→ Q → Q′. Therefore we can take

P2 = Q and P3 = Q′, and (P, Q), (P2, Q), (P3, Q
′) ∈ R.

• Let φ be a state formula in S. Since P
α−→ Q is an invisible communication

with respect to the set S of state formulas, by Lemma 4.7, we know that
P |= φ if and only if Q |= φ.

Thus, P ≈S Q. 2

Lemma 5.3 If P ≈S Q, then, for any temporal formula f ∈ T (S), we have
P |=t f ⇔ Q |=t f .

Proof. By induction on f :

• Case f = φ where φ ∈ S, f = ¬tf ′, f = f1 ∨tf2 are immediate.

• Case f = EF f ′.
Case ⇒. (The case ⇐ is similar.) By assumption, there exists a path p

such that p1 = P and there exists k such that pk |=t f ′. Since P ≈S Q,
there exists a path q such that q1 = Q and an index j such that pk ≈S qj.
By the inductive hypothesis, qj |=t f ′, which implies Q |=t EF f ′.

• Case f = AF f ′.
Case ⇒. (The case ⇐ is similar.) Let q be a full path such that q1 = Q.

Since P ≈S Q, there exists a full path p such that p1 = P and such that for
any i, there exists ji such that pi ≈S qji

. Since P |=t AF f ′, there exists k
such that pk |=t f ′. By the induction hypothesis, qjk

|=t f ′. Thus, we have
Q |=t AF f ′.

2

6 Extensions

In this section, we discuss potential extensions to the TSL logic.

We can alleviate the restriction that prevents mixing of temporal and spa-
tial formulas in TSL. As discussed in Sect. 3, we forbid arbitrary mixing of
temporal and spatial formulas because it makes it difficult to define a satisfac-
tory definition of invisibility. In the light of our development, it appears that
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we can allow a restricted form of mixing where temporal formulas can appear
in composition formulas as long as they are guarded by temporal modalities
and do not contain negation symbols, thus extending the set of temporal for-
mulas as follows:

f ::= . . . | EF(f1|f2) where f1, f2 do not contain negation symbols

We conjecture that our approach can be applied to TSL extended with
fairness conditions. This extension amounts to restrict path quantifiers to
fair paths in the semantics of temporal formulas. A path is fair if there is
no communication that is infinitely often enabled but never performed (this
corresponds to the definition of strong fairness). For instance, we can add the
following formula to TSL:

P |=t AFfairf iff for any fair full path p such that p1 = P,

there exists k such that pk |=t f

However, this extension requires refinement of the definition of label and of
the definition of partial confluence. These refinements call for special care in
the definition of the operational semantics of the π-calculus (similar to the
development in [11]).

It is trivial to extend TSL with the adjunct of the composition formula
defined as follows:

P |= φ1 . φ2 iff for any Q such that Q |= φ1, P |Q |= φ2 holds

(where φ0 and φ1 are state formulas) but not useful. If temporal formulas are
allowed to be used with the adjunct of composition, then the extension of TSL
would require a change of the above definition. For illustration, consider the
process P = c.d.e|c.d. Provided we allow temporal formulas to be used with
the adjunct, we have P |= > . AF e〈〉>. Even though the communication
along c is partially confluent, this is no longer true if we compose P with,
say, c.

7 Conclusion

In this paper, we introduced an approach to partial order reduction for veri-
fication of spatial properties of π-calculus processes. First, we discussed some
spatial formulas that prevent partial order reduction. Second, we defined the
TSL logic, which is a restricted spatial logic, and a notion of invisible commu-
nication for the π-calculus. Then, we showed that partially confluent invisible
communications enables partial order reduction in TSL. Finally, we discussed
potential extensions to our approach.

Related Work Our work is directly related to partial order reduction tech-
niques for model checking. Partial order reduction techniques have been de-
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fined for several temporal logics (LTL-X [7], CTL*-X [8], the weak modal
mu-calculus [14]). The main originality of our work lies in the application to
spatial formulas (that requires adequate restrictions) and the application to
the π-calculus (that requires an appropriate definition of invisibility).

The problem of finding partially confluent communications has been ad-
dressed several times in the literature on the π-calculus (linear types and
linearized types [12], linear receptiveness and ω-receptiveness [15]). Our work
can be seen as an application of this work.

Future Work We plan to extend our work to enable mixing of temporal
formulas with the adjunct of the composition formula. We also plan to inves-
tigate extension to other spatial formulas, in particular the revelation formula
and quantifiers.

We plan to formalize the results of the present paper in Coq for the sake
of completeness of the library in [1].
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Revised March 2004.

13



Affeldt and Kobayashi

A Syntax and Semantics for the π-calculus

Syntax The π-calculus consists of two syntactic entities: names and pro-
cesses. Processes use names to interact and can pass names to one another
during interactions. In this paper, names are ranged over by 4 x, y, c, d, e, f, v
and processes are ranged over by P, Q,R, T, U . The syntax of processes is
given by the following grammar:

P ::= c〈v〉.P | c(x).P | P |Q | !c(x).P | νx.P | 0

The output process c〈v〉.P can send the name v along the name c and then
behave as P . The input process c(x).P can receive some name, say v, along
c, and then behave as P{v/x}, that represents the process P in which all the
free occurrences of the name x have been replaced with the name v. Parallel
composition P |Q makes it possible for processes to interact. The replicated
input !c(x).P behaves as infinitely many input processes in parallel. The
restriction νx.P indicates that the scope of the name x is restricted to P . The
process 0 represents termination.

We define fn(P ) to be the set of free names in the process P . The prefix
νx1. · · · .νxn is abbreviated νx1,...,n. The process c1(x).P1|c2(x).P2| · · · is ab-
breviated Πici(x).Pi, and similarly for outputs and replicated inputs. When
the name v in c〈v〉.P (resp. the name x in c(x).P ) is not relevant, we write
instead c.P (resp. c.P ). We omit trailing zeros; for instance, we write c instead
of c.0.

Structural Congruence Structural congruence relates pairs of processes
that only differ by spatial rearrangements. It facilitates the definition of the
operational semantics of the π-calculus and is at the basis of the definition
of spatial formulas. Two processes P and Q are structurally congruent when
P ≡ Q can be inferred from the following rules:

P ≡ P |0 zero P ≡ P refl

P |Q ≡ Q|P comm P ≡ Q ⇒ Q ≡ P sym

P |(Q|R) ≡ (P |Q)|R assoc P ≡ Q ∧Q ≡ R ⇒ P ≡ R trans

νx.νy.P ≡ νy.νx.P swap !c(x).P ≡ !c(x).P | c(x).P rep

νx.0 ≡ 0 reszero !c(x).P ≡ !c(x).P | !c(x).P rep2

νx.(P |Q) ≡ P |νx.Q (x /∈ fn(P )) extrusion

Operational Semantics The operational semantics of the π-calculus is
defined inductively by the following rules. The use of labels and the use of

4 We tend to use x, y for names used as binders, c, d, e, f for names used as channels of
communication, and v for names used as transmitted values.
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the guards predicate in the rule for communication are not standard. In this
paper, labels are ranged over by α, β.

guards(P |Q{v/x}) = S

c〈v〉.P |c(x).Q
{c,S}−−−→ P |Q{v/x}

com

P
α−→ Q

νx.P
α\x−−→ νx.Q

res P
α−→ P ′

P |Q α−→ P ′|Q
par

Q
α−→ Q′ P ≡ Q P ′ ≡ Q′

P
α−→ P ′

struct

where guards is defined inductively as follows:

guards(c〈v〉.P ) = {c} guards(P |Q) = guards(P ) ∪ guards(Q)

guards(c(x).P ) = {c} guards(νx.P ) = guards(P )− {x}

guards(!c(x).P ) = {c} guards(0) = ∅

and α\x is defined as follows:

(y, S)\x =

 (y, S − {x}) if y 6= x

(ε, S − {x}) if y = x

(ε, S)\x = (ε, S − {x})

where ε is a special label for denoting an internal name.

We write P → Q when P
α−→ Q and α is not relevant. We write →+ for

the transitive closure of →, and →∗ for the reflexive transitive closure of →.

B Proof of Lemma 4.7

We first prove an intermediate lemma. This intermediate lemma shows that,
if a state formula φ holds of a process, then we can remove input/output sub-
processes whose input/output name is not a free name of φ without affecting
validity.

We introduce the rem inout function that removes the input/output pro-
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cesses that use certain names for input/output. Formally:

rem inout (S, P ) = Case P of

| c〈v〉.Q → if c ∈ S then 0 else P

| c(x).Q → if c ∈ S then 0 else P

| !c(x).Q → if c ∈ S then 0 else P

| P |Q → rem inout (S, P ) | rem inout (S, Q)

| νx.P → νx.(rem inout (S, P )) assuming x /∈ S by convention of bound names

| → P

Lemma B.1 (Removal of in/out-processes preserves structural congruence)
Let P and Q be two processes such that P ≡ Q. For any set of names S, we
have rem inout (S, P ) ≡ rem inout (S, Q).

Lemma B.2 (Removal of in/out-processes inversion) For any processes
P and Q such that rem inout ({c}, P ) = νy1,...,n.Q, there exist processes Ui, Tj

and names vi such that P ≡ νy1,...,n.(Q | Πic〈vi〉.Ui | Πjc(x).Tj | Πk!c(x).Tk).

Lemma B.3 (Removal of unrelated in/out-processes preserves validity)
Let P be a process and φ be a state formula. For any name c such that
c /∈ fn(φ), we have P |= φ ⇔ rem inout ({c}, P ) |= φ.

Proof. By induction on φ:

• Cases φ = >, φ = ¬φ′, φ = φ1 ∨ φ2 are immediate.

• Case φ = d()φ′. (The case for φ = d〈〉φ′ is similar.)
Case ⇒. By assumption, there exist T,R, y1, . . . , yn such that P ≡

νy1,...,n.(d(x).T |R) with d /∈ y1, . . . , yn, and for all v such that v /∈ y1, . . . , yn,
we have νy1,...,n.(T{v/x}|R) |= φ′. Since c /∈ fn(φ), we have c 6= d. There-
fore, there exists R′ such that rem inout ({c}, P ) ≡ νy1,...,n.(d(x).T |R′).
Since c /∈ fn(φ), we have c /∈ fn(φ′). Therefore, for all v such that
v /∈ y1, . . . , yn, we have rem inout ({c}, νy1,...,n.(T{v/x}|R)) |= φ′, by the
inductive hypothesis. We conclude that rem inout ({c}, P ) |= d()φ′.

Case ⇐. By assumption, there exist T,R, y1, . . . , yn such that
rem inout ({c}, P ) ≡ νy1,...,n.(d(x).T |R) with d /∈ y1, . . . , yn, and for all v
such that v /∈ y1, . . . , yn, we have νy1,...,n.(T{v/x}|R) |= φ′. Since c /∈
fn(φ), we have c 6= d. By Lemma B.2, there exists R′ such that P ≡
νy1,...,n.(d(x).T |R′). Since c /∈ fn(φ), we have c /∈ fn(φ′). Therefore,
by the inductive hypothesis, for all v such that v /∈ y1, . . . , yn, we have
νy1,...,n.(T{v/x}|R′) |= φ′. We conclude that P |= d()φ′.

• Case φ = φ1|φ2.
Case ⇒. By assumption, there exist P1, P2 such that P ≡ νy1,...,n.(P1|P2)

with νy1,...,n.P1 |= φ1 and νy1,...,n.P2 |= φ2. By Lemma B.1, we know that
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rem inout ({c}, P ) |= φ1|φ2 is equivalent to rem inout ({c}, νy1,...,n.(P1|P2)) |=
φ1|φ2. By definition of rem inout, we have rem inout ({c}, νy1,...,n.(P1|P2)) =
νy1,...,n.(rem inout ({c}, P1) |rem inout ({c}, P2)). By the inductive hypothe-
sis, νy1,...,n.(rem inout ({c}, P1)) |= φ1 and νy1,...,n.(rem inout ({c}, P2)) |= φ2.
Therefore, rem inout ({c}, P ) |= φ1|φ2.

Case ⇐. By assumption, there exist P1, P2 such that rem inout ({c}, P ) ≡
νy1,...,n.(P1|P2) with νy1,...,n.P1 |= φ1 and νy1,...,n.P2 |= φ2. By Lemma B.2,
there exist processes Ui, Tj and names vi such that
P ≡ νy1,...,n.(P1 | P2 | Πic〈vi〉.Ui | Πjc(x).Tj | Πk!c(x).Tk). Since we have
νy1,...,n.(rem inout ({c}, P1 | Πic〈vi〉.Ui | Πjc(x).Tj | Πk!c(x).Tk)) |= φ1, then
we also have νy1,...,n.(P1 | Πic〈vi〉.Ui | Πjc(x).Tj | Πk!c(x).Tk) |= φ1 by the
inductive hypothesis. Therefore P |= φ1|φ2.

2

Proof of Lemma 4.7:

Proof. By Lemma B.3, we have P |= φ ⇔ rem inout (({c} ∪ S), P ) |= φ, and
P ′ |= φ ⇔ rem inout (({c} ∪ S), P ′) |= φ. We conclude by observing that

rem inout (({c} ∪ S), P ) = rem inout (({c} ∪ S), P ′) because P
c,S−→ P ′. 2
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