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The Radon-Nikodým Theorem and the

Lebesgue-Stieltjes Measure in Coq

Yoshihiro Ishiguro　Reynald Affeldt

We are concerned with the formalization of measure theory in the Coq proof assistant. Concretely, we

extend MathComp-Analysis, a library for functional analysis built on top of the Mathematical Components

library, with standard constructions such as charges and the Lebesgue-Stieltjes measure, and with standard

theorems such as the Hahn decomposition theorem and the Radon-Nikodým theorem. These are prerequi-

sites for the formalization of probabilistic programs, of probability theory, and also for other applications

such as the formalization of connections between derivatives and integrals.

1 Introduction

In this paper, we are concerned with the formal-

ization of measure theory in the Coq proof as-

sistant [36]. Our goal is to extend MathComp-

Analysis [2], an on-going effort to formalize func-

tional analysis in Coq, with theorems useful to deal

with probabilistic programs and to formalize math-

ematics in general, as illustrated by the following

two motivating examples.

1. 1 Motivation 1: Formal Verification of

Probabilistic Programs

Probabilistic programs provide a way to deal

with uncertainty in a rigorous way. They have

applications in artificial intelligence (e.g., formal

verification of machine learning [8]), information
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security (e.g., formal verification of cryptographic

proofs [23]), etc. Their semantics relies on proba-

bility theory and more generally on measure the-

ory [18].

The Coq proof assistant has arguably been an

important tool for the formal verification of pro-

grams. It has been awarded the ACM SIGPLAN

Programming Languages Sofware Award and the

ACM Software System Award in 2013; the ACM

Software System Award of 2021 has also been

awarded to a C compiler developed in Coq [29].

Unfortunately, it has been lacking libraries for mea-

sure theory and this has been detrimental to the

development of formal semantics for probabilistic

programs. For example, in the formalization of [40],

most of measure and integration theory is added in

the form of unproved axioms.

Using MathComp-Analysis (in particular [3]),

it has however been possible to formalize without

axioms the semantics of a first-order probabilistic

programming language proposed by Staton [35].

This formalization [6, 34] highlights, among oth-

ers, the importance of density functions or Radon-

Nikodým derivatives. See also [13, Sect. 2.3] that

also stresses the importance of Radon-Nikodým

derivatives.

1. 2 Motivation 2: Formalization of Con-

nections between Derivatives and In-
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tegrals

Derivatives and integrals are the main topic of

analysis. The connections between them take the

form of fundamental theorems whose formalization

relies on measure theory.

This is for example the case of the Fundamental

Theorem of Calculus for the Lebesgue integral [33,

Thm 7.18]. It says that for any function f that

is absolutely continuous �1 on [a, b], there exists

almost-everywhere a function f ′ integrable on [a, b]

such that

∀x ∈ [a, b], f(x)− f(a) =

∫ x

t=a

f ′(t)(dΛ)

where Λ is the Lebesgue measure. Conversely, for

any function f that is integrable on [a, b], there ex-

ists an absolutely continuous function F such that

the derivative of F at x is equal almost-everywhere

to f(x) for x in [a, b].

In a nutshell, the proof for a non-decreasing func-

tion f goes as follows. Let Λf be the Lebesgue-

Stieltjes measure associated with f ; f is absolutely

continuous on [a, b] if and only if Λf is dominated

by the Lebesgue measure. By applying the Radon-

Nikodým theorem to Λf , we obtain the Radon-

Nikodým derivative fRN of the Lebesgue-Stieltjes

measure associated with f which satisfies

Λf (E) =

∫
t∈E

fRN(t)(dΛ)

for all measurable sets E. If E is an interval

[a, x] for any x in [a, b], then Λf [a, x] evaluates

to f(x) − f(a) by definition. It remains to show

that the Radon-Nikodým derivative is the standard

derivative (see [9]).

1. 3 Our Contribution in This Paper

We use the two motivating examples above

to set our objectives for the extension of the

formalization of measure theory of MathComp-

Analysis. Concretely, we provide formalizations of

the Radon-Nikodým theorem and of the Lebesgue-

Stieltjes measure in the Coq proof assistant. The

Radon-Nikodým theorem establishes the existence

of Radon-Nikodým derivatives or density functions;

it uses as an intermediate step the Hahn decompo-

�1 A function f : R → R is absolutely continuous on

interval [a, b] when f satisfies the following condi-

tion. For all ϵ > 0, there exists δ > 0 such that

for all n ∈ N and for every collection of pairwise

disjoint intervals ]ak, bk[⊂ [a, b] with
∑n

k=1 |bk −
ak| < δ, we have

∑n
k=1 |f(bk)− f(ak)| < ϵ.

sition theorem. The Lebesgue-Stieltjes measure is

a generalization of the Lebesgue measure used in

particular in probability theory [28, Example 1.58].

To the best of our knowledge, these are the first

formalizations of these results in Coq and some as-

pects also compare favorably with related work (see

Sect. 6 for details).

Besides these contributions to Coq, this pa-

per also has another objective: to document the

process of formalization of measure theory with

MathComp-Analysis. Indeed, measure theory is

vast (it includes integration and probability the-

ory), its formalization is therefore not an easy task

and ought better be a collaborative effort, which re-

quires documentation. For this purpose, we focus

on the main technical parts of the pencil-and-paper

proofs and explain how we turn them into proof

scripts. We emphasize the reusable components

of MathComp-Analysis, such as the charges used

in the Radon-Nikodým theorem and the Hahn de-

composition theorem, or a generic result from pre-

vious work that we use to build the Lebesgue-

Stieltjes measure. The key technology to organize

charges and measures in a hierarchy of mathemati-

cal structures that favors reusability is Hierarchy-

Builder [15], a generic tool for the Coq proof as-

sistant.

1. 4 Paper Outline

This paper is organized as follows. Section 2

summarizes mathematical preliminaries and pro-

vides background information about the formaliza-

tion of measure theory in MathComp-Analysis.

Section 3 explains the formalization of charges and

of the Hahn decomposition theorem, an interme-

diate step to prove the Radon-Nikodým theorem,

which is the topic of Sect. 4. Section 5 uses previous

work [3] to build the Lebesgue-Stieltjes measure.

We review related work in Sect. 6 and conclude in

Sect. 7 with more insights about the formalization

of the Fundamental Theorem of Calculus.

2 Background about the Formalization

of Measure Theory

We recall the basics of measure and integration

theory in Sect. 2. 1 and we provide an overview

of how it is formalized in MathComp-Analysis

in Sect. 2. 2. More details about MathComp-

Analysis can be found in the following papers [3–5]
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or in teaching material [1].

2. 1 Mathematical Preliminaries

A σ-algebra on a set T is a collection of sub-

sets of T that contains ∅ and that is closed under

complement and countable union. We note ΣT for

such a σ-algebra and call the sets in ΣT measurable

sets. The standard σ-algebra on R (the Borel sets)

is the smallest σ-algebra containing the intervals.

A semiring of sets on a set T is a collection of sub-

sets of T that contains ∅, that is closed under finite

intersection, and that is “closed under finite differ-

ence”, i.e., such that for all sets A and B in the

semiring, there exists a set D of pairwise-disjoint

sets in the semiring such that A \ B =
∪

x∈D x. A

σ-algebra is a semiring of sets.

A measure is a non-negative function µ : ΣX →
[0,∞] such that µ(∅) = 0 and µ(

∪
i Ai) =

∑
i µ(Ai)

for pairwise-disjoint measurable sets Ai where the

sum is countable. The latter property is called

σ-additivity. When the sum is finite, this prop-

erty is called additivity and the measure is said

to be a content. A function µ is σ-subadditive

when for any measurable set A and any countable

family of measurable sets F , A ⊆
∪

k Fk implies

µ(A) ≤
∑

k µ(Fk). A non-negative, monotone, σ-

subadditive function µ such that µ(∅) = 0 is called

an outer measure. The standard measure on R is

the Lebesgue measure, which is such that the length

of an interval ]a, b] is b − a. A measure µ is finite

when the measure of the full set is not +∞. A mea-

sure µ is σ-finite over A when there is a countable

family of measurable sets F such that A =
∪

i Fi

and µ(Fi) < ∞ for all i.

A function f : X → Y is measurable when for

all measurable sets B ∈ ΣY , f−1(B) is also mea-

surable. We can integrate a measurable function

f w.r.t. a measure µ over D to get an extended

real number denoted by
∫
x∈D

f(x)(dµ). When D

is the full set, we write
∫
x
f(x)(dµ). When a func-

tion f is measurable and
∫
x∈D

|f(x)|(dµ) < +∞,

we say that f is integrable over D. Integration

satisfies the monotone convergence theorem, i.e.,∫
x∈D

f x(dµ) = limn

∫
x∈D

fn x(dµ) where fn is

an increasing sequence of non-negative measur-

able functions converging towards f , a non-negative

measurable function.

2. 2 Measure and Integration Theory in

MathComp-Analysis

As already explained in Sect. 1, MathComp-

Analysis is an on-going effort to formalize func-

tional analysis in Coq. It extends the Mathe-

matical Components library [30] (hereafter, Math-

Comp) which is a constructive library consisting

of several algebraic theories that made it possible

to formalize the Odd Order theorem [22, Sect. 6].

MathComp-Analysis extends MathComp with

classical axioms [5, Sect. 5].

2. 2. 1 Basic Notations from MathComp

We make use of standard MathComp notations.

The notation f ^~ y is for the function λx.f x y.

The notation \o is for function composition. The

projections of a pair are denoted by .1 and .2.

The notation [/\ P0, P1, ... & Pn] (the first n−1

separators are commas (,) while the last one is

an ampersand (&)) is for the iterated conjunc-

tion P0 /\ P1 /\ ... /\ Pn. This notation comes

with constructors when there is a small number

of conjuncts, for example And3 is used to build a

conjunction of three propositions. The notation

n%:R is for injecting the natural number n into a

ring type; %R is a delimiter for the notation scope

of rings. Finitely iterated operators are noted

\big[op/idx]_(k < n | P k) f k where f is for the

terms, P an optional filtering boolean predicate, op

a binary operation, and idx its neutral [11]. In the

case of additions, there is a specialized notation

\sum_(k < n | P k) f k.

2. 2. 2 Basic Notations from MathComp-

Analysis

The type set T is for sets of objects of type T;

we therefore write S : set T when S is a subset

of T seen as a full set. The full set of objects of

type T is denoted by [set: T]; it is a notation for

setT, which can be used instead when the infer-

ence of the type is automatic. Set inclusion is de-

noted by `<=`, set union by `|` (identifier setU),

set intersection by `&` (identifier setI), set differ-

ence by `\` (identifier setD), set complement by ~`

(identifier setC), the preimage of the set A by f is

denoted by f @^-1` A, the identifier corresponding

to the empty set is set0. Sets can be defined by

comprehension using the notation [set x | P], for

the set of objects x such that P holds, or the no-

tation [set E | x in A], where E is an expression

containing x and A is a set. When the sets of a fam-

ily F indexed by D are pairwise-disjoint, we write
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trivIset D F. We can write A a (in Prop) or a \in A

(in bool) to state that a belongs to the set A.

The convergence of a sequence u towards l is de-

noted by u --> l, we can also write lim u = l, as

explained in [5, Sect. 2.3]. The type of a sequence of

objects of type A indexed by natural numbers is de-

noted by A^nat. The type {posnum R} is for positive

numeric types, where R is a numeric type among

numDomainType for integral domains with an order,

numFieldType for numeric fields, or realType for real

numbers. Given e : {posnum R}, e%:num is the pro-

jection of type R. The type \bar R is for extended

real numbers. In particular, when R is realType,

\bar R corresponds to R = R ∪ {+∞,−∞}. Infi-

nite values are denoted by the notations -oo and

+oo and r%:E represents the injection of r : R into

\bar R; the notations about extended real numbers

lie in the scope %E. An extended real number x

which is not +∞ or −∞ satisfies the boolean (post-

fix) predicate \is a fin_num, i.e., x \is a fin_num

means that the extended real number x is actually

a real number�2. The supremum of a set E of ex-

tended real numbers is ereal_sup E. The maximum

of two real numbers x and y is maxe x y.

The type of intervals over a numeric type R is

interval R. Closed intervals are denoted by the

notation `[a, b], open intervals by `]a, b[, open-

closed intervals by `]a, b], etc. When an interval

i is an interval of extended real numbers, we can

write i.1 and i.2 for its endpoints.

2. 2. 3 Measure Theory in MathComp-

Analysis

The type of σ-algebra is measurableType d.

Given T of type measurableType d and U of type

set T, measurable U asserts that U belongs to the

σ-algebra corresponding to T. In other words,

we write T : measurableType d for a measurable

space (T,ΣT ), and measurable S when S belongs

to ΣT . The parameter d controls the display of

the measurable predicate, so that measurable U is

printed as d.-measurable U. This is useful to disam-

biguate the local context of a proof in the presence

of several σ-algebras but this parameter can be ig-

nored on a first reading; see [3, Sect. 3.4] for more

�2 For aesthetics, MathComp provides the possibil-

ity to add to the notation \is (and similarly to

the notation \isn’t) the articles a or an. This is

documented in the file theory/ssr/ssrbool.v of

the standard Coq distribution.

details about this display mechanism. The pred-

icate semi_setD_closed is the formalization of the

property of being “closed under finite difference”

(Sect. 2. 1). Semiring of sets are available as the

type semiRingOfSetsType d.

Given T of type measurableType d, the type

of (non-negative) measures on T is denoted

by {measure set T -> \bar R} where R has type

realType [3, Sect. 3.5.2]. Similarly, the type of con-

tents is denoted by {content set T -> \bar R} [3,

Sect. 3.5.2] and the type of σ-finite measures is de-

noted by {sigma_finite_measure set T -> \bar R}

[3, Sect. 4.3].

We write measurable_fun D f for a measurable

function f with domain D. When a func-

tion f is integrable over D w.r.t. mu, we write

mu.-integrable D f. The notation for the integral∫
x∈D

f(x)(dµ) is \int[mu]_(x in D) f x.

3 The Hahn Decomposition Theorem

in Coq

The Hahn decomposition theorem is a standard

result of measure theory. It is used for example

to prove the Radon-Nikodým theorem and can be

found in many lecture notes (we used the follow-

ing online resource [19] but the same proof can be

found elsewhere). Before explaining the Hahn de-

composition theorem in Sect. 3. 2, we need to define

charges in Sect. 3. 1. We take this occasion to in-

troduce the Hierarchy-Builder tool [15] to build

hierarchies of mathematical structures.

3. 1 Formalization of Charges and Intro-

duction to Hierarchy-Builder

Let ΣT be a σ-algebra of subsets of T . A charge

(a.k.a. signed measure) is a σ-additive function ν

that maps measurable sets to real numbers [27,

Sect. 7.1.1]�3. MathComp-Analysis already pro-

vides measures and therefore also provides formal

definitions for additivity and σ-additivity. Since

a measure is potentially infinite, these formal def-

initions are for extended real numbers. In order

to reuse these definitions to define charges, we

define an interface for extended real-valued func-

tions whose outputs are finite numbers (definition

�3 In the literature, a “charge” can also be under-

stood as finitely additive [12].
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fin_num_fun):
1 Definition fin_num_fun

2 d (T : semiRingOfSetsType d)

3 (R : numDomainType)

4 (mu : set T -> \bar R) :=

5 forall U, measurable U -> mu U \is a fin_num.

6 HB.mixin Record SigmaFinite_isFinite

7 d (T : semiRingOfSetsType d)

8 (R : numDomainType)

9 (mu : set T -> \bar R) :=

10 { fin_num_measure : fin_num_fun mu }.

The reader can observe that fin_num_fun is defined

with four parameters (d, T, R, and mu at lines 2–

4) and that the first ones can be inferred from the

type of the last one. Arguments that can be in-

ferred from others are called implicit parameters

and they are not required by Coq upon applica-

tion. This explains why fin_num_fun has only one

argument at line 10�4.

The interface is defined by the command HB.mixin

which is provided by Hierarchy-Builder. An

interface takes the form of a Coq record. Inter-

faces are used to define structures. For example,

the interface above is used to define the structure

FinNumFun of functions that respect this interface:
HB.structure Definition FinNumFun

d (T : semiRingOfSetsType d)

(R : numFieldType) :=

{ mu of SigmaFinite_isFinite _ T R mu }.

The notation {mu of ...mu...} is intentionally rem-

iniscent of Coq’s sigma-types (noted {x : T & P x}

in the standard library) but what Hierarchy-

Builder does under the hood is actually to im-

plement a packed class [20]. More precisely, the

command
HB.structure Definition M :=

{A of f1 & f2 & ... & fn}.

equips A with the interfaces f1, f2, . . . , fn. Con-

cretely, it creates a Coq Record with a parameter

corresponding to A where each field is one of the in-

terfaces applied to the parameter, a dependent pair

whose first field corresponds to A and whose second

field is an instance of the Record mentioned just

above, a module that contains the Record and the

dependent pair, and unification hints [15, Sect. 3.2].

Figure 1 explains the naming of the interface.

The primary use of SigmaFinite_isFinite is to de-

fine the structures of finite measures, i.e., this is

�4 The user can prefix identifiers with @ to enforce

the explicit use of implicit parameters.

Probability

SubProbability

FiniteMeasure

SigmaFiniteMeasure

Charge

AdditiveCharge

FinNumFun

SFiniteMeasure

SigmaFiniteContent

Measure

Content

isSemiSigmaAdditive

isAdditiveCharge

Measure_isFinite

SigmaFinite_isFinite

Fig. 1 Hierarchy of structures for measures.

Rounded boxes represent structures from

previous work [3]. Square boxes represent

structures introduced by this paper: filled

boxes represent structures that are strictly

needed to define charges and finite measures,

dashed boxes represent structures needed to

accommodate a hierarchy of kernels from

previous work [6]. This paper does not deal

directly with s-finite measures and probability

measures, but they are displayed for the sake

of completeness.

the interface used to define the structure of finite

measures from the structure of σ-finite measures.

More precisely, the mathematical structure of fi-

nite measures is defined by combining the interface

SigmaFinite_isFinite and the structure of σ-finite

measures [3, Sect. 4.3].

For the definition of charges in itself, we mim-

ick MathComp-Analysis where measures are de-

fined as the structure of σ-additive functions that

extends the structure of contents. We therefore in-

troduce an interface for additive charges:
HB.mixin Record isAdditiveCharge

d (T : semiRingOfSetsType d)

(R : numFieldType)

(mu : set T -> \bar R) :=

{ charge_semi_additive : semi_additive mu }.

The predicate semi_additive is coming from

MathComp-Analysis and it is a formalization of

the notion of additivity that we saw in Sect. 2. 1
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when introducing the definition of measures. It is

defined using the library of finitely iterated opera-

tors of MathComp (Sect. 2. 2. 1) as follows:
1 Definition semi_additive

2 d (R : numFieldType)

3 (T : semiRingOfSetsType d)

4 (mu : set T -> \bar R) := forall F n,

5 (forall k, measurable (F k)) ->

6 trivIset setT F ->

7 measurable (\big[setU/set0]_(k < n) F k) ->

8 mu (\big[setU/set0]_(i < n) F i) =

9 \sum_(i < n) mu (F i).

Note that at line 7 there is a condition about the

iterated union being measurable. This is why we

refer to it as “semi-additivity”. When F is a family

of sets over a measurable type, this condition is al-

ways true, which corresponds to the mathematical

notion of additivity.

We use the interface isAdditiveCharge to define

the structure of additive charges:
HB.structure Definition AdditiveCharge

d (T : semiRingOfSetsType d)

(R : numFieldType) :=

{ mu of isAdditiveCharge d T R mu &

FinNumFun d mu }.

The definition indicates clearly that this structure

inherits from the interface isAdditiveCharge and

the structure FinNumFun.

Finally, we define the structure of charges as ad-

ditive charges that are moreover σ-additive:
HB.mixin Record isSemiSigmaAdditive

d (T : semiRingOfSetsType d)

(R : numFieldType)

(mu : set T -> \bar R) :=

{ charge_semi_sigma_additive :

semi_sigma_additive mu }.

HB.structure Definition Charge

d (T : semiRingOfSetsType d)

(R : numFieldType) :=

{ mu of isSemiSigmaAdditive d T R mu &

AdditiveCharge d mu }.

Thanks to Hierarchy-Builder, Coq now con-

siders (σ-additive) charges as a subtype of ad-

ditive charges. We finally define a notation

{charge set T -> \bar R} for the type of charges

over the measurable type T.

Compared with charges, the formalization of fi-

nite measures requires additional care because of

its use in the definition of s-finite measures. How

to deal with this apparent circularity is explained

in [6] in the more general case of kernels.

Eventually, the definitions of charges and of fi-

nite measures fit in the hierarchy of mathematical

structures for measures of MathComp-Analysis

seen in Fig. 1.

3. 1. 1 Building Instances of Charge

Looking at the definition of charges as displayed

in Fig. 1, at first sight it looks like, to build

an instance of charge, one needs beforehand to

build an instance of FinNumFun, then an instance

of AdditiveCharge, and finally an instance of Charge.

This would be cumbersome because, after all, addi-

tivity is a consequence of σ-additivity. A textbook

would not go through these detours and we now

explain how we can indeed avoid them.

For that kind of situations, Hierarchy-Builder

introduces the notion of factory. A factory is an

interface that is used to build instances of several

structures at the same time. For example, we pro-

vide, using the command HB.factory, a factory for

charges whose interface consists of (1) the fact that

the measure of the empty set is 0, (2) finiteness,

and (3) σ-additivity:
HB.factory Record isCharge

d (T : semiRingOfSetsType d)

(R : realFieldType)

(mu : set T -> \bar R) := {

charge0 : mu set0 = 0 ;

charge_finite : forall x, d.-measurable x ->

mu x \is a fin_num ;

charge_sigma_additive :

semi_sigma_additive mu }.

Note that this interface does not feature additivity

explicitly. Instead, we prove once and for all that

it can be derived from the isCharge factory using

the commands HB.builders/HB.end:
HB.builders Context

d (T : semiRingOfSetsType d) (R : realFieldType)

mu (_ : isCharge d T R mu).

Let finite : fin_num_fun mu.

Proof. (* omitted *) Qed.

HB.instance Definition _ :=

SigmaFinite_isFinite.Build d T R mu finite.

Let semi_additive : semi_additive mu.

Proof. (* omitted *) Qed.

HB.instance Definition _ :=

isAdditiveCharge.Build d T R mu semi_additive.

Let semi_sigma_additive : semi_sigma_additive mu.

Proof. (* omitted *) Qed.

HB.instance Definition _ :=
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isSemiSigmaAdditive.Build d T R

mu semi_sigma_additive.

HB.end.

In the code above, we assume a function mu that

satisfies the interface isCharge (unnamed hypothe-

sis isCharge d T R mu) using the HB.builders com-

mand. Using this information, we build instances

of the structures FinNumFun, AdditiveCharge, and

Charge, according to their definitions in Fig. 1.

As a consequence of the code above, we can now

use the function isCharge.Build to build an in-

stance of a charge, the instances for the structures

AdditiveCharge and FinNumFun being generated au-

tomatically.

The interface Measure_isFinite of Fig. 1 pro-

vides another example of factory: it builds a fi-

nite measure from the structures of measure and of

FinNumFun, producing automatically all the struc-

tures below in the hierarchy [2, file measure.v].

3. 1. 2 From Charges to Measures

There is a bit of theory to develop about charges.

For illustration, we can mention the construction

of a measure (which is non-negative by definition)

using a charge that happens to be non-negative.

First, we provide a definition:
Definition measure_of_charge

d (T : measurableType d) (R : realType)

(nu : set T -> \bar R)

(_ : forall E, 0 <= nu E) := nu.

In this definition, nu is expected to be a charge.

The last parameter is an anonymous hypothesis

(a.k.a. a phantom type [21]). Given such an hy-

pothesis (say, nupos), a charge is obviously a mea-

sure, i.e., we can prove that the measure of the

empty set is 0 (proof mu0 below), that it is σ-

additive (proof mu_sigma_additive) (these facts are

directly derived from the definition of charge), and

that it is non-negative (proof mu_ge0 below, es-

tablished thanks to the nupos hypothesis). Using

these proofs, we can declare an instance of mea-

sure using the isMeasure.Build constructor from

MathComp-Analysis [3, Sect. 3.5.2] and the com-

mand HB.instance from Hierarchy-Builder:
HB.instance Definition _ :=

isMeasure.Build d R T

(measure_of_charge nupos)

mu0 mu_ge0 mu_sigma_additive.

Thanks to this definition, Coq correctly infers the

type of {measure set T -> \bar R} when given a

non-negative charge.

This section has introduced the three main com-

mands of Hierarchy-Builder to create hierar-

chies of mathematical structures (namely, HB.mixin,

HB.structure, and HB.instance). See [3, Sect. 3.1]

for another overview of Hierarchy-Builder.

3. 2 The Hahn Decomposition Theorem

The Hahn decomposition theorem says that given

a charge, a measurable type can be partitioned into

a positive set and a negative set. We first define

positive and negative sets in Sect. 3. 2. 1. We then

give an overview of a standard proof of the Hahn de-

composition theorem in Sect. 3. 2. 2 to give an idea

of the elements that come into play. In Sect. 3. 2. 3,

we explain the formalization of the Hahn decom-

position theorem by focusing in particular on the

inductive construction of a particular sequence of

sets.

3. 2. 1 Formal Definition of Negative and

Positive Sets

Negative and positive sets are defined using

charges (Sect. 3. 1). Given a charge ν over a mea-

surable type T, a set N is a negative set when

it is measurable and when for all measurable sets

A ⊆ N , ν(A) ≤ 0:
Definition negative_set

(nu : {charge set T -> \bar R}) (N : set T) :=

measurable N /\

forall A, measurable A -> A `<=` N -> nu A <= 0.

To emphasize the charge, we introduce the Coq

notation nu.-negative_set for negative_set nu.

The definition of positive sets is similar:
Definition positive_set

(nu : {charge set T -> \bar R}) (P : set T) :=

measurable P /\

forall E, measurable E -> E `<=` P -> nu E >= 0.

Similarly to negative sets, positive sets come

with the Coq notation nu.-positive_set for

positive_set nu.

3. 2. 2 Proof of the Hahn Decomposition

Theorem

We consider a measurable space (T,ΣT ) and a

charge ν. Given a set D and a set A, we de-

fine the following extended real number d(A)
def
=

sup{ν(E) | measurable(E), E ⊆ D \ A}. Observe

that d is non-negative.

Lemma 3.1. Given a set D and a set A, there ex-

ists a measurable set B such that B ⊆ D \ A, and

min (d(A)/2, 1) ≤ ν(B).
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Proof. When d(A) = 0, the proof is by choosing

the witness ∅. Otherwise, the idea is to prove that

min (d(A)/2, 1) < d(A) and to use the following

property of the supremum: for any set S and any

extended real number x, x < sup(S) implies that

there exists y such that y ∈ S and x < y.

Lemma 3.2. Given a measurable set D, there

exists a ν-negative set A such that A ⊆ D and

ν(A) ≤ ν(D).

Proof. By Lemma 3.1, there exists a measurable set

A0 such that A0 ⊆ D and min(d(∅)/2, 1) ≤ ν(A0).

Let g0 = d(∅) and U0 = A0. By induction, we

can build three sequences Ai, gi, Ui such that

An+1 ⊆ D \ Un, gn+1 = d(Un), Un+1 = Un ∪ An+1

(again using Lemma 3.1). The desired set A is

D \
∪

n An.

Note that in Lemma 3.2, the measure of D is not

needed to be non-positive because we can always

use the empty set as a subset with a non-positive

measure for the base case of the induction.

Given a set A, we consider the extended real

number s(A)
def
= inf{ν(x) | measurable(E), E ⊆

A∁}. Observe that s is non-positive.

Lemma 3.3. Given A, there exists a ν-negative

set B such that B ⊆ A∁, and ν(B) ≤
max (s(A)/2,−1).

Proof. When s(A) = 0, the proof is by choos-

ing the witness ∅. Otherwise, we first show that

s(A) < max (s(A)/2,−1). By using a property of

the infimum, we obtain a measurable set B′ such

that B′ ⊆ A∁ and ν(B′) < max (s(A)/2,−1). Fi-

nally, we use Lemma 3.2 to obtain the desired wit-

ness.

Theorem 3.1 (Hahn decomposition). Let (T,ΣT )

be a measurable space and ν be a charge over ΣT .

There exist a ν-negative set N and a ν-positive set

P such that T = P ]N .

Proof. The proof consists in an explicit construc-

tion of the set N . The set N is built as
∪

n An

where An is a sequence of sets built as follows.

There exists a negative set A0 such that ν(A0) ≤
max (s(∅)/2,−1) (using Lemma 3.3). By induction,

we can build three sequences Ai, zi, Ui such that

z0 = s(∅), U0 = A0, An+1 ⊆ Un
∁, zn+1 = s(Un),

Un+1 = Un ∪ An+1 (again using Lemma 3.3). The

set P is taken to be N∁. We omit the details about

the non-trivial proof that P is indeed a positive

set.

3. 2. 3 Formalization of the Hahn Decom-

position Theorem

We define the partition of the Hahn decomposi-

tion theorem by the following predicate:
Definition hahn_decomposition

d (T : measurableType d) (R : realType)

(nu : {charge set T -> \bar R}) P N :=

[/\ nu.-positive_set P, nu.-negative_set N,

P `|` N = setT & P `&` N = set0].

This makes for a short formal statement of the

Hahn decomposition theorem:
Context d (T : measurableType d) (R : realType).

Variable nu : {charge set T -> \bar R}.

Theorem Hahn_decomposition :

exists P N, hahn_decomposition nu P N.

The heart of the proof of Theorem 3.1 is the con-

struction of the sequences Ai, zi, Ui. For this pur-

pose, we use the following lemma that, given a bi-

nary relation R and a proof that every element x has

a “successor” y (i.e., an element y such that R x y),

produces a sequence f obeying a relation R given an

initial element x0:
Context X (R : X -> X -> Prop).

Lemma dependent_choice_Type :

(forall x, {y | R x y}) ->

forall x0, {f | f 0 = x0 /\

forall n, R (f n) (f n.+1)}.

This lemma is key to formalize the proof of Theo-

rem 3.1. Surprisingly, its usefulness does not seem

to be well-known. As a matter of fact, even though

it is part of the standard library of Coq, we could

not use it right away because it was specialized

with X of type Set and needed to be generalized

to apply here�5.

First, we define a type for the elements of the

sequence (Ai, zi, Ui). An object of this type is such

that zi ≤ 0 and Ai is a negative set such that

ν(Ai) ≤ max (zi/2,−1). These properties are cap-

tured by the predicate elt_prop:
Let elt_prop (x : set T * \bar R) :=

[/\ x.2 <= 0,

nu.-negative_set x.1 &

nu x.1 <= maxe (x.2 * 2^-1%:E) (- 1%E) ].

The type of an element (Ai, zi, Ui) is elt_type:
Let elt_type := {AzU : set T * \bar R * set T |

�5 See the pull request https://github.com/coq/c

oq/pull/16382.
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elt_prop AzU.1}.

Second, we define the relation between two suc-

cessive elements (Ai, zi, Ui) and (Aj , zj , Uj) of the

sequence. The definition s_ corresponds to the

function A 7→ s(A) of Sect. 3. 2. 2 (see [2, file

charge.v] for details).
Let elt_rel i j := [/\ z_ j = s_ (U_ i),

A_ j `<=` ~` U_ i &

U_ j = U_ i `|` A_ j].

Last, we provide a lemma that given a Ui computes

Ai+1; this is the formalization of Lemma 3.3:
Let next_elt U : s_ U <= 0 -> { A |

[/\ A `<=` ~` U,

nu.-negative_set A &

nu A <= maxe (s_ U * 2^-1%R%:E) (- 1%E)] }.

Using the above elements, we can explain the

proof script to construct N . First, we define z0

as s(∅) (s_ set0). At line 2, we build A0 from ∅
to build A0 (A0) together with the proof that

it is a negative set (negA0) and that ν(A0) ≤
max (s(∅)/2,−1) (A0s0). We take z0 = s(∅) and

U0 = A0. We build the sequence (Ai, zi, Ui) as v at

line 4. The inductive construction of the sequence

happens between lines 9–14. Given Ui (U) at line 10,

we define zi+1 as s_ U and build Ai+1 (A') at line 12

from which we build Ui+1 = Ui ∪ Ai+1 (U `|` A')

at line 13. The set N is defined at line 17.
1 (* build A0 *)

2 have [A0 [_ negA0 A0s0]] := next_elt set0.

3 (* build the sequences Ai, zi, Ui *)

4 have [v [v0 Pv]] : {v |

5 v 0%N = exist _ (A0, s_ set0, A0)

6 (And3 (s_le0 set0) negA0 A0s0) /\

7 forall n, elt_rel (v n) (v n.+1)}.

8 (* obtain Ui *)

9 apply: dependent_choice_Type =>

10 -[[[A s] U] [/= s_le0' nsA]].

11 (* build Ai+1 *)

12 have [A' [? nsA' A's'] ] := next_elt U.

13 by exists (exist _ (A', s_ U, U `|` A')

14 (And3 (s_le0 U) nsA' A's')).

15 ...

16 (* build N *)

17 set N := \bigcup_k (A_ (v k)).

See [2, file charge.v] for details and for the rest of

the proof.

4 The Radon-Nikodým Theorem in

Coq

Given two measures µ and ν, the Radon-

Nikodým theorem establishes the existence of a

function f such that ν(A) =
∫
x∈A

f(x)(dµ) for all

measurable sets A. Here, µ is a σ-finite measure

and ν is a charge which is dominated by µ. The

function f is called the Radon-Nikodým derivative

of ν w.r.t. µ; it is indeed unique up-to almost-

everywhere equality. It can be written dν/dµ in

analogy with derivatives of functions.

We explain the formal statement of the Radon-

Nikodým theorem in Sect. 4. 1. Section 4. 2 pro-

vides an overview of a standard proof which high-

lights the main elements whose formalization is the

purpose of Sect. 4. 3.

4. 1 Statement of the Radon-Nikodým

Theorem

Given a measurable space (T,ΣT ) and two

(signed or unsigned) measures µ1 and µ2 over T , µ2

dominates�6 µ1 (written µ1 � µ2) when µ2(A) = 0

implies µ1(A) = 0 for all measurable sets A ∈ ΣT .

This definition translates directly in MathComp-

Analysis:
Context d (T : measurableType d) (R : realType).

Definition measure_dominates m1 m2 :=

forall A, measurable A -> m2 A = 0 -> m1 A = 0.

Notation "m1 `<< m2" :=

(measure_dominates m1 m2).

Theorem 4.1 (Radon-Nikodým). Let (T,ΣT ) be

a measurable space. Given a σ-finite measure µ

and a charge ν on ΣT such that ν � µ, there exists

an extended real-valued function f that is integrable

w.r.t. µ and that satisfies ν(A) =
∫
x∈A

f(x)(dµ)

for all measurable sets A. Moreover, any two func-

tions with this property are equal almost-everywhere

on T .

The statement of Theorem 4.1 translates directly

in MathComp-Analysis using its formalization of

measure and integration theory and the formaliza-

tion of charges we developed in Sect. 3. 1:
1 Context d (T : measurableType d)

2 (R : realType).

3 Variables (nu : {charge set T -> \bar R})

4 (mu : {sigma_finite_measure set T -> \bar R}).

5

6 Local Lemma Radon_Nikodym0 : nu `<< mu ->

7 exists f : T -> \bar R, [/\

8 (forall x, f x \is a fin_num),

�6 One can also say that µ1 is “absolutely continu-

ous” w.r.t. µ2. However, we use “domination” for

measures to avoid confusion with the absolutely

continuous functions seen in Sect. 1.
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9 mu.-integrable [set: T] f &

10 forall A, measurable A ->

11 nu A = \int[mu]_(x in A) f x.

First, note that the proviso about almost-

everywhere equality of theorem 4.1 is a conse-

quence of a generic lemma that can be found in

MathComp-Analysis [2, lemma integral_ae_eq].

This proviso gives us the freedom to pick, for the

derivative, a function that always returns a real

number; this is the meaning of the line 8 above.

As indicated by the use of the Coq command

modifier Local, this is not the statement of the

Radon-Nikodým theorem that we expose to the

user. Instead, we introduce an identifier and a

notation for Radon-Nikodým derivatives. We de-

fine Radon_Nikodym nu mu to be the witness f of

Radon_Nikodym0 when nu is dominated by mu and the

constant function −∞ otherwise:
Definition Radon_Nikodym nu mu :=

match pselect (nu `<< mu) with

| left nu_mu =>

sval (cid (Radon_Nikodym0 nu_mu))

| right _ => cst -oo

end.

The definition Radon_Nikodym is an example of a

technical idiom. The identifier pselect corresponds

to a version of the law of excluded middle [5,

Sect. 5.2]. It is implemented by a disjunction that

can be pattern-matched. When the proposition

is true (left case), we extract from the lemma

Radon_Nikodym0 a witness. This requires first the use

of the axiom of constructive indefinite description

cid (introduced in Coq to implement Hilbert’s ep-

silon) and the use of the generic function sval to ex-

tract the first projection of a dependent pair. Con-

stant functions are written with cst inMathComp-

Analysis.

We then associate the identifier Radon_Nikodym

with the ASCII notation 'd nu '/d mu, which of

course stands for dν/dµ:
Notation "'d nu '/d mu" := (Radon_Nikodym nu mu).

Eventually, we break up Radon_Nikodym0 into three

lemmas that express the properties of 'd nu '/d mu,

i.e., the fact that it is real-valued:
Lemma Radon_Nikodym_fin_num x :

nu `<< mu ->

('d nu '/d mu) x \is a fin_num.

the fact that it is integrable:
Lemma Radon_Nikodym_integrable mu nu :

nu `<< mu ->

mu.-integrable [set: T] ('d nu '/d mu).

and the property of its integral:
Lemma Radon_Nikodym_integral mu nu :

nu `<< mu ->

forall A, measurable A ->

nu A = \int[mu]_(x in A) ('d nu '/d mu) x.

4. 2 Proof of the Radon-Nikodým Theo-

rem

The first and main step of the proof of the Radon-

Nikodým theorem is to prove it for finite measures.

4. 2. 1 Radon-Nikodým for Finite Mea-

sures

The main idea of this proof is to introduce a

set G of non-negative and integrable functions g

whose integrals under-approximate ν(E) for all

measurable sets E, i.e., such that
∫
x∈E

g(x)(dµ) ≤
ν(E). The proof consists in showing that there

exists a function f ∈ G such that
∫
x
f(x)(dµ) =

sup{
∫
x
g(x)(dµ) | g ∈ G} def

= M and that this func-

tion satisfies ν(E) =
∫
x∈E

f(x)(dµ) for all measur-

able sets E.

From the definition of M , we get a sequence gk

of functions in G such that
∫
x
gk(x)(dµ) > M −

1/(k + 1). We define Fk(x)
def
= max{gi(x) | i ≤ k}

and f = limn→∞ Fn.

We then introduce a covering partition of the do-

main of the functions Fm and gk in the form of sets

Em,j such that x ∈ Em,j if and only if j ≤ m is the

smallest natural number such that Fm(x) = gj(x):

Em,j
def
= {x | Fm(x) = gj(x)∧

∀k < j, gk(x) < gj(x)}.
Givenm, the sets Em,j are pairwise-disjoint for all j

and the sets Em,j for all j ≤ m cover the whole

set T (recall that (T,ΣT ) is the measurable space

on which µ and ν are defined). Using the sets Em,j ,

we can show that Fm ∈ G and that f ∈ G by the

monotone convergence theorem, which leads ulti-

mately to the proof that
∫
x
f(x)(dµ) = M , which

concludes the first part of the proof.

We show that
∫
x∈E

f(x)(dµ) = ν(E) for any

measurable set E by contradiction. We sup-

pose that there is a measurable set A such that∫
x∈A

f(x)(dµ) < ν(A). Then we can define ε such

that
∫
x∈A

(f(x)+ε)(dµ) < ν(A) and define a charge

σ(B)
def
= µ(B)−

∫
x∈B

(f(x) + ε)(dµ).

By the Hahn decomposition theorem (Theo-

rem 3.1), there exist a positive set P and a negative

set N for σ. We define:
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h(x)
def
=

{
f(x) + ε x ∈ A ∩ P

f(x) otherwise.
We can show that, on the one hand, for all S ⊆
A ∩ P ,

∫
x∈S

h(x)(dµ) ≤ ν(S) and, on the other

hand, for all S ⊆ A ∩ P ∁,
∫
x∈S

h(x)(dµ) ≤ ν(S).

This leads to h ∈ G which is impossible because∫
x
h(x)(dµ) > M .

Once Radon-Nikodým is proved for finite mea-

sures, it can be generalized to the case where µ is

σ-finite, and then to the case where ν is a charge.

4. 3 Formalization of the Proof of the

Radon-Nikodým Theorem

The pencil-and-paper proof of the previous sec-

tion (Sect. 4. 2) actually provides a useful hint

about how to organize its formalization: it goes

through building a specific charge. This indicates

that we should proceed by first formalizing the el-

ements that participate to its construction. In this

section, we therefore explain the Coq formalization

of the set G, the bound M , the functions gk, Fm,

and f , and eventually the charge σ.

Let us first assume two measures mu and nu. The

set G of functions g can be defined directly as the

following definition approxRN using the predicates

integrable, measurable, and the definition of the

Lebesgue integral:
Definition approxRN := [set g : T -> \bar R |

[/\ forall x, 0 <= g x,

mu.-integrable [set: T] g &

forall E, measurable E ->

\int[mu]_(x in E) g x <= nu E] ].

The set {
∫
x
g(x)(dµ) | g ∈ G} of integrals and its

supremum (M in the pencil-and-paper proof) can

be defined using set comprehension and ereal_sup:
Definition int_approxRN :=

[set \int[mu]_x g x | g in approxRN].

Definition sup_int_approxRN :=

ereal_sup int_approxRN.

The definition of the functions gk requires a

proof of the existence of such functions as a se-

quence whose elements belong to G and such

that
∫
x
gk(x)(dµ) > M − 1/(k + 1) for each k.

Since this proof requires that the measure ν

is finite, we assume hereafter that nu has type

{finite_measure set X -> \bar R}:
Lemma approxRN_seq_ex :

{ g : (T -> \bar R)^nat |

forall k, g k \in approxRN /\

\int[mu]_x g k x > M - k.+1%:R^-1%:E }.

Since the proof of existence of the functions gk takes

the form of a sigma-type, we can obtain the se-

quence gk by taking the first projection using the

generic function sval:
Definition approxRN_seq : (X -> \bar R)^nat :=

sval approxRN_seq_ex.

To define Fm, it suffices to take the maximum of

the functions gk using the generic iterated opera-

tors from MathComp (see Sect. 2. 2):
Definition max_approxRN_seq m x :=

\big[maxe/-oo]_(k < m.+1) g_ k x.

The function f is the limit of the functions Fm.

Given the definitions so far, the start of the proof

of the Radon-Nikodým theorem is the matter of the

following declarations (where mu and nu are both fi-

nite measures as far as this first step is concerned):
Let G := approxRN mu nu.

Let M := sup_int_approxRN mu nu.

Let g := approxRN_seq mu nu.

Let F := max_approxRN_seq mu nu.

Let f := fun x => lim (F ^~ x).

It remains to show that f is the function searched

for, see [2] for these details.

We now move on to explain the construction of

the charge σ. When constructing σ, we are in the

second part of the proof sketched in the previous

section. This is a proof by contradiction in the con-

text of which we are given a measurable set A such

that
∫
x∈A

f(x)(dµ) < ν(A), that is, we are in the

following local context:
Context A (mA : measurable A)

(h : \int[mu]_(x in A) f x < nu A).

In this precise context, we first prove the existence

of an ε > 0 such that
∫
x∈A

(f(x) + ε)(dµ) < ν(A):
Lemma epsRN_ex : {eps : {posnum R} |

\int[mu]_(x in A) (f x + eps%:num%:E) < nu A}.

Since the conclusion of the lemma epsRN_ex is a

sigma-type, we can obtain the wanted ε by taking

its first projection:
Definition epsRN := sval epsRN_ex.

We now have enough material to define the func-

tion σ (however we do not know yet whether it is

a charge):
Definition sigmaRN B :=

nu B - \int[mu]_(x in B) (f x + epsRN%:num%:E).

To show that the function σ is actually a charge,

we need to show that it satisfies the interface

SigmaFinite_isFinite, i.e., that sigmaRN is not in-

finite (see Sect. 3. 1):
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Let fin_num_sigmaRN B :

measurable B -> sigmaRN B \is a fin_num.

We also need to show that sigmaRN is additive so

that it satisfies the interface isAdditiveCharge:
Let sigmaRN_semi_additive :

semi_additive sigmaRN.

And we also need to show that sigmaRN is σ-

additive, i.e., that it satisfies the interface isCharge:
Let sigmaRN_semi_sigma_additive :

semi_sigma_additive sigmaRN.

Now that σ has been shown to be a gen-

uine charge, we can apply the Hahn decomposi-

tion theorem of Sect. 3. 2. 3 to pursue and con-

clude the proof of the Radon-Nikodým theorem

sketched in the previous section. See [2, lemma

radon_nikodym_finite] for the remaining details of

the proof of Radon-Nikodým for finite measures, [2,

lemma radon_nikodym_sigma_finite] for the general-

ization of mu to a σ-finite measure, and [2, theorem

Radon_Nikodym0] for the final statement where nu is

a charge. In particular, this last step makes use

of the Jordan decomposition of a charge into a dif-

ference of two measures (this is where we use the

construction measure_of_charge from Sect. 3. 1. 2).

4. 4 Properties of the Radon-Nikodým

Derivative

We can go on proving the basic properties

of the Radon-Nikodým derivative (formally de-

fined in Sect. 4. 1), such as linearity (see lemmas

Radon_Nikodym_cscale and Radon_Nikodym_cadd in [2,

file charge.v]) or the “chain rule”, i.e., dν/dλ
a.e.
=

dν/dµ · dµ/dλ with ν � µ � λ, whose formaliza-

tion we now explain.

To prove the chain rule, we first formalize a

lemma akin to a change of variables (or to in-

tegration by substitution):
∫
E
f(d ν) =

∫
E
f ·

dν/dµ(dµ) with ν � µ and f a ν-integrable func-

tion:
Context d (T : measurableType d) (R : realType).

Variables (nu : {finite_measure set T -> \bar R})

(mu : {sigma_finite_measure set T -> \bar R}).

Hypothesis numu : nu `<< mu.

Lemma Radon_Nikodym_change_of_variables f E :

measurable E -> nu.-integrable E f ->

\int[mu]_(x in E) (f x *

('d (charge_of_finite_measure nu) '/d mu) x) =

\int[nu]_(x in E) f x.

The proof is by using the monotone convergence

theorem [3, Sect. 6].

The chain rule can be proved using the above

lemma for changes of variables:
Context d (T : measurableType d) (R : realType).

Variables (nu : {charge set T -> \bar R})

(la : {sigma_finite_measure set T -> \bar R})

(mu : {finite_measure set T -> \bar R}).

Lemma Radon_Nikodym_chain_rule :

nu `<< mu -> mu `<< la ->

ae_eq la [set: T] ('d nu '/d la)

('d nu '/d mu \*

'd (charge_of_finite_measure mu) '/d la).

Equality holds almost-everywhere, the predicate

ae_eq mu D f g states almost-everywhere equality

between two functions and is a simple wrapper for

the more generic notation {ae mu, forall x, P x}

from MathComp-Analysis [3, Sect. 6.5]. The no-

tation \* is for point-wise multiplication of two

functions. See [2, file charge.v] for more details

about the formalization of the chain rule.

5 The Lebesgue-Stieltjes Measure

This section documents the construction of the

Lebesgue-Stieltjes measure. As we explained in

Sect. 1. 2, this is one important construction to

prove the Fundamental Theorem of Calculus and

in probability theory in general where it corre-

sponds to distribution functions. Given a non-

decreasing right-continuous real function f , the

Lebesgue-Stieltjes measure Λf is the measure such

that the length of an interval ]a, b] is f(b) − f(a).

This generalizes the Lebesgue measure, which is the

special case where f is taken to be the identity func-

tion.

We start by recalling results from previous

work [3]: generic lemmas for measure construction

in Sect. 5. 1 and the semiring of sets of open-closed

intervals in Sect. 5. 2. We then define the length of

open-closed intervals in Sect. 5. 3 and explain the

properties of this length function. Among these

properties, we explain σ-subadditivity in detail in

Sect. 5. 4. We conclude by building the Lebesgue-

Stieltjes measure by extension in Sect. 5. 5.

5. 1 Measure Extension in MathComp-

Analysis

A standard way to construct measures (over a σ-

algebra) is by extension of a measure over a semir-

ing of sets (to produce a measure over the σ-algebra

generated by the semiring of sets). To perform such

a measure extension, MathComp-Analysis pro-
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vides a generic construction whose main element is

a definition measure_extension.

The definition measure_extension is an outer mea-

sure (notation ...^*) from a measure mu over a

semiring of sets T :
Context d (T : semiRingOfSetsType d)

(R : realType).

Variable mu : {measure set T -> \bar R}.

Let I := [the measurableType _ of

salgebraType (@measurable _ T)].

Definition measure_extension : set I -> \bar R

:= mu^*.

The type I is the σ-algebra generated from the

semiring of sets T. The notation [the aType of b]

is a Hierarchy-Builder notation to infer explic-

itly the type aType from b provided that b has in-

deed been shown to be an instance of aType. The

formalization of generated σ-algebras is explained

in [3, Sect. 3.3] and the formalization of outer mea-

sures is explained in [3, Sect. 4.1].

To construct a measure over a semiring of sets

it suffices to construct a content (Sect. 2. 1) over

the semiring of sets and to show that it is σ-

subadditive. Indeed, MathComp-Analysis pro-

vides the proof of a generic lemma that estab-

lishes that a σ-subadditive content is actually a

σ-additive measure. It is easier to construct a

measure by extension rather than by a direct con-

struction in part because it is easier to prove

σ-subadditivity rather than σ-additivity directly.

The Measure Extension theorem of MathComp-

Analysis has already been used to construct the

Lebesgue measure in [3, Sect. 5].

5. 2 The Semiring of Sets of Open-closed

Intervals from MathComp-Analysis

The construction of the Lebesgue-Stieltjes mea-

sure by extension starts by defining the semiring of

sets of open-closed intervals. This step is shared by

the construction of the Lebesgue measure and the

contents of this paragraph are therefore borrowed

from previous work [3, Sect. 5.1]. Let ocitv be the

set of such intervals:
Variable R : realType.

Definition ocitv_type : Type := R.

Definition ocitv :=

[set `]x.1, x.2]%classic | x in [set: R * R]].

The delimiter %classic corresponds to a notation

scope where intervals are interpreted as the corre-

sponding set; strictly speaking, ocitv is therefore

a set of sets. The notation to define sets by com-

prehension and the notation for intervals have been

introduced in Sect. 2. 2. 2.

This set forms a semiring of sets because it

contains the empty set set0 (proof ocitv0), it is

closed under finite intersection (proof ocitvI), and

it is “closed under finite difference” (see Sect. 2)

(proof ocitvD). We use these proofs to declare a

Hierarchy-Builder instance of semiring of sets

attached to the identifier ocitv_type
�7:

HB.instance Definition _ :=

@isSemiRingOfSets.Build

(ocitv_display R) ocitv_type

(Pointed.class R)

ocitv ocitv0 ocitvI ocitvD.

5. 3 The Length of Intervals and its Prop-

erties

We define the length of an interval (in the sense

of the Lebesgue-Stieltjes measure) and prove its

properties. Recall that the Lebesgue-Stieltjes mea-

sure is parameterized by a non-decreasing, right-

continuous real function; since the goal is to pro-

duce a measure, and thus an extended real-valued

function, we need to embed the real function f us-

ing:
Definition er_map T T' (f : T -> T')

(x : \bar T) : \bar T' :=

match x with

| r%:E => (f r)%:E

| +oo => +oo

| -oo => -oo

end.

For the sake of generality, the length of an interval

is defined over arbitrary sets for which we take the

hull using Rhull (see [2, file normedtype.v]):
Let g : \bar R -> \bar R := er_map f.

Definition wlength (A : set (ocitv_type R))

: \bar R :=

let i := Rhull A in g i.2 - g i.1.

Let us introduce the type cumulative R of non-

decreasing, right-continuous real functions. Pro-

vided that f is non-decreasing, the function wlength

�7 The occurrence of Pointed.class R in the decla-

ration of this instance is a technicality that can

be ignored by the reader. It is necessary with ver-

sions of MathComp-Analysis using MathComp

version 1; its need disappears with MathComp

version 2. A version of MathComp-Analysis

compatible with MathComp version 2 is sched-

uled for release in January 2024.



14 コンピュータソフトウェア

is non-negative:
Lemma wlength_ge0

(f : cumulative R) (I : set (ocitv_type R)) :

(0 <= wlength f I)%E.

The function wlength is also semi-additive (f is not

required to be cumulative here):
Lemma wlength_semi_additive (f : R -> R) :

semi_additive (wlength f).

As a consequence, wlength f is a content when f is

cumulative:
HB.instance Definition _ (f : cumulative R) :=

isContent.Build _ _ R (wlength f)

(wlength_ge0 f) (wlength_semi_additive f).

The function isContent.Build is the constructor as-

sociated with the structure Content (Fig. 1). In

addition, wlength f is a σ-subadditive when f is cu-

mulative:
Lemma wlength_sigma_sub_additive

(f : cumulative R) :

sigma_sub_additive (wlength f).

As a consequence, it is also a measure:
HB.instance Definition _ (f : cumulative R) :=

Content_SubSigmaAdditive_isMeasure.Build _ _ _

(wlength f) (wlength_sigma_sub_additive f).

To build the measure, we use here the function

Content_SubSigmaAdditive_isMeasure.Build which is

associated with an interface that extends a con-

tent to a measure with the proof that it is σ-

subadditive [3, Sect. 5.2].

Among the properties above, the proof that

wlength is σ-subadditive is actually where the math-

ematical difficulty lies, we therefore detail this proof

in the next section.

5. 4 Proof of the σ-subadditivity of the

Length of Intervals

We give an overview of the proof of the σ-

subadditivity of the wlength function, illustrated

with intermediate goals as displayed by Coq

when running the proof script from MathComp-

Analysis. Our goal in this section is to show

that, aesthetics aside, following the proof in Coq

is not much different from following the proof on

paper. See [2, lemma wlength_sigma_sub_additive]

for the complete formalization. Before explaining

the proof in Sect. 5. 4. 2, we state an intermediate

lemma in Sect. 5. 4. 1.

5. 4. 1 Intermediate Lemma

The proof of σ-subadditivity of wlength uses the

following intermediate lemma.

Lemma 5.1. Let f be a cumulative function. Let

D be a finite set of natural numbers and a, b be two

sequences of real numbers such that ai ≤ bi for any

i ∈ D. Then, for any two real numbers a0, b0, we

have that

]a0, b0] ⊆
∪
i∈D

]ai, bi]

implies

f(b0)− f(a0) ≤
∑
i∈D

f(bi)− f(ai).

See lemma wlength_content_sub_fsum [2, file

lebesgue_stieltjes_measure.v] for a formal state-

ment and a formal proof.

5. 4. 2 Proof Overview

We are interested in proving the statement

wlength_sigma_sub_additive from Sect. 5. 3. This

amounts to prove that, given a cumulative func-

tion f, for any open-closed interval I and for any

sequence of open-closed intervals An, we have that

I ⊆
∪
n

An

implies

wlengthf (I) ≤
∑
n

wlengthf (An) ,

which appears in Coq as:

============================

I `<=` \bigcup_n A n ->

(wlength f I <= \sum_(n <oo) wlength f (A n))%E

The notation \sum_(n <oo) h n, where h is an ex-

tended real numbers-valued function, combines the

iterated operators of MathComp (Sect. 2. 2. 1)

with the notion of limits of MathComp-Analysis

(Sect. 2. 2. 2) to implement enumerable sums (see

[3, Sect. 2.1]). The notation \bigcup_n A n corre-

sponds to an enumerable union.

Let I be ]a1, a2]. Assuming a1 < a2 (otherwise

this is trivial), we are led to prove:

============================

((f a.2 - f a.1)%:E <=

\sum_(n <oo) wlength f (A n))%E

Recall from Sect. 2. 2. 2 that %:E is for injecting real

numbers into the set of extended real numbers.

Let An by ]bn1, bn2] for all n. Without loss of

generality (we omit the proof which is technical),

we can assume that for all n, bn1 ≤ bn2.

The proof goes on by using the “epsilon trick”.

First, we introduce a positive ε by using the follow-

ing equivalence (lemma lee_addgt0Pr):

∀x, y ∈ R. x ≤ y ↔ ∀ε > 0, x ≤ y + ε.

This changes the goal to ∀ε > 0, f(a2) − f(a1) ≤
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n wlengthf (An) + ε which appears in Coq as:

e : {posnum R}

============================

((f a.2 - f a.1)%:E <=

\sum_(n <oo) wlength f (A n) + (e%:num)%:E)%E

See Sect. 2. 2. 2 for the type {posnum R}. Second, we

perform some arithmetic manipulations and apply

a generic lemma (namely, epsilon_trick):

∀Ai, ε ∈ R≥0.
∑
i

(
Ai +

ε

2i+1

)
≤

∑
i

Ai + ε.

This changes the goal to

f(a2)− f(a1)−
ε

2
≤

∑
i

(
wlengthf (Ai) +

ε/2

2i+1

)
(1)

which appears in Coq as:

e : {posnum R}

============================

((f a.2 - f a.1)%:E + (- (e%:num / 2))%:E <=

\sum_(i <oo) (wlength f (A i) +

(e%:num / 2 / (2 ^ i.+1)%:R)%:E))%E

As explained in Sect. 2. 2. 1, the notation %:R is to

inject natural numbers into the set of real numbers.

Using the right continuity of f, we can find c and

Di’s such that:

• f(a1 + c) ≤ f(a1) + ε/2, and

• ∀i, f(bi2 +Di) ≤ f(bi2) +
ε/2

2i+1 .

Moreover, we have

[a1 +
c

2
, a2] ⊆

∪
i

]bi1, bi2 +Di[.

Since the left-hand side of this inclusion is com-

pact and since the right-hand side is an enumerable

union of open intervals, we can find a finite number

of indices X such that

[a1 +
c

2
, a2] ⊆

∪
i∈X

]bi1, bi2 +Di[.

This is the Borel-Lebesgue property that is pro-

vided to us by MathComp-Analysis.

We use this last fact to prove the equation (1) by

transitivity. Concretely, we use the value B equal

to∑
i∈X

(wlengthf (]bi1, bi2]) + f(bi2 +Di)− f(bi2)) .

On the one hand, we prove

f(a2)− f(a1)−
ε

2
≤ B,

which appears in Coq as

============================

((f a.2 - f a.1 - e%:num / 2)%:E <= B)%E

The proof is as follows:

f(a2)− f(a1)−
ε

2
≤ f(a2)− f

(
a1 +

c

2

)
(2)

≤
∑
i∈X

(f(bi2 +Di)− f(bi1))

(3)

≤ B (4)

The step (3) uses the Lemma 5.1.

On the other hand, we prove

B ≤
∑
i

(
wlengthf (Ai) +

ε/2

2i+1

)
which appears in Coq as

============================

(B <=

\sum_(i <oo) (wlength f (A i) +

(e%:num / 2 / (2 ^ i.+1)%:R)%:E))%E

The proof is as follows:

B =
∑
i∈X

(
wlengthf (]bi1, bi2]) (5)

+ f(bi2 +Di)− f(bi2)
)

≤
∑
i∈X

(
wlengthf (Ai) +

ε/2

2i+1

)
(6)

≤
∑
i

(
wlengthf (Ai) +

ε/2

2i+1

)
(7)

This completes the proof of the σ-subadditivity of

the function wlength.

5. 5 Construction of the Lebesgue-Stieltjes

Measure

Since wlength is a measure on the semiring

of sets of open-closed intervals, we can use

the definition measure_extension from MathComp-

Analysis (Sect. 5. 1) to define the Lebesgue-

Stieltjes measure:
Definition lebesgue_stieltjes_measure

(f : cumulative R) :=

measure_extension

[the measure _ _ of wlength f].

This construction provides a measure that applies

to a σ-algebra generated from open-closed intervals.

If we use for the f function the identity function,

we recover the Lebesgue measure as a special case,

see [2, file lebesgue_measure.v].

6 Related Work

To the best of our knowledge, the formalizations

explained in this paper (charges, Hahn decomposi-

tion theorem, Radon-Nikodým theorem, Lebesgue-

Stieltjes measure) have never been carried out in

the Coq proof assistant. However, similar results
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can be found in other proof assistants such as Is-

abelle/HOL, HOL, and Lean (we do not know of

such proofs in Agda, PVS, or Mizar).

Isabelle/HOL has had an extensive formalization

of measure and integration theory since 2011 start-

ing with seminal work by Hölzl et al. [24]. With

the contents of this paper, MathComp-Analysis

now covers the same material as [24] and some

aspects of our work are even a bit more gen-

eral. In particular, to the best of our understand-

ing, the Radon-Nikodým theorem in [24] is spe-

cialized to non-negative measures: [24] does not

mention charges or signed measures and the Is-

abelle/HOL scripts available online [25] indicates

that Radon-Nikodým derivatives are non-negative

extended real-valued functions. However, it should

be said that signed measures and the Hahn decom-

position theorem have recently been added to the

Isabelle Archive of Formal Proofs [16] as an inde-

pendent development, i.e., it is not used to prove

the Radon-Nikodým theorem. Our formalization

of the Lebesgue-Stieltjes measure in Coq is also a

generalization compared to [24]. Yet, Avigad et al.

did formalize the Lebesgue-Stieltjes measure in Is-

abelle/HOL along their formalization of the Central

Limit Theorem [7]. They briefly explain in prose

the main difficulty of applying the Carathéodory

extension theorem for that purpose [7, Sect. 3.8].

In comparison, we provide more technical and con-

crete details in the context of a dependently type

theory in Sect. 5. 4.

One can also find the Radon-Nikodým theorem

in the HOL proof assistant [31]. In [31], the Radon-

Nikodým theorem is stated for finite measures, the

last version of the scripts available online [14] in-

dicates that it has been extended to σ-finite mea-

sures, however neither indicates a generalization to

charges. Mhamdi et al. [31] point at other applica-

tions of the Radon-Nikodým theorem such as the

formalization of the Kullback-Leibler divergence.

The mathlib library [37] of the Lean proof assis-

tant also has an extensive formalization of mea-

sure theory in which one can find the Radon-

Nikodým theorem (as advertised in this blog en-

try [39]) and the Lebesgue-Stieltjes measure (which

is documented by the proof scripts). Regarding the

Lebesgue-Stieltjes measure, to the best of our un-

derstanding, it is not constructed directly using a

measure extension theorem, contrary to the con-

struction we explain in Sect. 5 (see also [3, Sect. 7.1]

which compares the construction of the Lebesgue

measure betweenMathComp-Analysis and math-

lib). The formalization of charges we propose in

Sect. 3. 1 is also different: our definition blends into

a hierarchy of structures (Fig. 1) whereas math-

lib defines a signed measure as an instance of a

vector measure [37, file VectorMeasure.lean]. Fi-

nally, we formalize a proof using the Hahn de-

composition theorem about charges whereas math-

lib’s proof uses Lebesgue’s decomposition theorem.

Since it is possible to prove Lebesgue’s decomposi-

tion theorem using the Hahn decomposition theo-

rem, no generality seems lost.

The formalization of the Fundamental Theorem

of Calculus that we have been using as a motivat-

ing example has already been explored in Coq [17].

This is however a version using the Riemann in-

tegral of continuous functions and a constructive

proof while we are dealing with the Lebesgue in-

tegral. Other formalizations of the Fundamental

Theorem of Calculus are listed in the “Formaliz-

ing 100 Theorems” list [38] but to the best of our

understanding none is dealing with absolutely con-

tinuous functions.

7 Conclusion

In this paper, we have extended the measure the-

ory of MathComp-Analysis with new formaliza-

tions of standard constructions (charges and the

Lebesgue-Stieltjes measure) and standard theorems

(Hahn decomposition and Radon-Nikodým theo-

rems). We have chosen to formalize these con-

structions and theorems because they are useful to

deal with the semantics of probabilistic programs

and to formalize mathematics in general. To the

best of our knowledge, this is the first time that

they are proved in the Coq proof assistant. We fo-

cused our explanations on how we turn pencil-and-

paper proofs into proof scripts, emphasizing the

main technical choices that let us formalize without

departing from the mathematical literature and ex-

plaining the reusable parts of our formalization, in

particular the hierarchy of charges and measures.

These additions are now available as reusable lem-

mas in MathComp-Analysis [2].

Our next step is to formalize the Fundamental

Theorem of Calculus of Sect. 1. 2 using the Radon-

Nikodým theorem and the Lebesgue-Stieltjes mea-
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sure. Our plan is to follow the approach of [9,

Sect. 3]. Note that there are other approaches to

prove the Fundamental Theorem of Calculus for the

Lebesgue integral that do not rely on the Radon-

Nikodým theorem (e.g., [32]—which actually shares

similarities with [9]). In relation with this goal,

more formal theories are needed about absolute

continuity and bounded variation. An important

point is to connect the definitions of absolute con-

tinuity for functions and the one of domination for

measures with the following lemma: a function f

is absolutely continuous (footnote �1) if and only

if the Lebesgue-Stieltjes measure associated with f

is absolutely continuous w.r.t. the Lebesgue mea-

sure (footnote �6). Section 1. 2 highlighted the need

to show that the Radon-Nikodým derivative coin-

cides with the usual derivative. We can use the

Lebesgue differentiation theorem for this purpose.

It says that when f : R → R is a function that is

integrable in a neighborhood of x, then

lim
r→0

1

Λ[x− r/2, x+ r/2]

∫ x+r/2

t=x−r/2

f(t)(dΛ) = f(x).

From this theorem, we can show that a Radon-

Nikodým derivative fRN is the derivative f ′ as fol-

lows:

fRN(x) = lim
r→0

1

r

∫ x+r/2

t=x−r/2

fRN(t)(dΛ)

= lim
r→0

f(x+ r/2)− f(x− r/2)

r
= f ′(x).

We are currently investigating the formalization of

the elements explained above using MathComp-

Analysis.
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