
A Certified Verifier for a Fragment of Separation Logic∗

Nicolas Marti† Reynald Affeldt‡

Abstract

Separation logic is an extension of Hoare logic to ver-

ify imperative programs with pointers and mutable data-

structures. Although there exist several implementations

of verifiers for separation logic, none of them has actually

been itself verified. In this paper, we present a verifier

for a fragment of separation logic that is verified inside

the Coq proof assistant. This verifier is implemented as a

Coq tactic by reflection to verify separation logic triples.

Thanks to the extraction facility to OCaml, we can also

derive a certified, stand-alone and efficient verifier for sep-

aration logic.

1 Introduction

Separation logic is an extension of Hoare logic to ver-
ify imperative programs with pointers and mutable
data-structures [4]. There exist several implementa-
tions of verifiers for separation logic [9, 10, 12], but
they all share a common weak point: they are not
themselves verified.

It makes little doubt that a verifier for separation
logic can be verified using, say, a proof assistant. The
real question is: At which price? Indeed, such veri-
fiers are non-trivial pieces of software. They require
manipulation of concepts such as fresh variables, that
are notoriously hard to get right in a proof assistant.
They also rely on decision procedures for arithmetic
that are not necessarily available in a suitable form.

∗This is a revised version of a paper presented at the 9th
JSSST Workshop on Programming and Programming Lan-
guages (http://www.sato.kuis.kyoto-u.ac.jp/ppl2007).

†Department of Computer Science, University of Tokyo
‡Research Center for Information Security (RCIS), Na-

tional Institute of Advanced Industrial Science and Technology
(AIST)

This means at least a non-negligible implementation
work.

In this paper, our contribution is to develop and
verify in the Coq proof assistant [1] a new verifier for
a fragment of separation logic. This verifier can be
used inside Coq as a tactic to prove separation logic
triples. Thanks to the extraction facility of Coq to
OCaml, it can also be used as a certified, stand-alone
and efficient verifier. Though our verifier is not as
versatile as recent verifiers, we believe that our work
provides a good evaluation of the effort required by
formal verification of verifiers for separation logic.

The goal of our verifier is to prove automatically
separation logic triples {P}c{Q}, where c is a com-
mand, and P and Q are assertions of separation logic.
For the assertions, we cannot use the full separation
logic language because the validity is undecidable.
Instead, we deal with a fragment identified in previ-
ous work by other authors [5, 9] as a good candidate
for automation. We extend this language with Pres-
burger arithmetic so as to be able to handle pointer
arithmetic. The only datatypes we provide are singly-
linked lists, but the ideas extend to other recursive
datatypes such as trees. A formal description of sep-
aration logic follows in Sect. 3; our target assertion
language is formally explained in Sect. 4.

The basic design idea of our verifier is to turn sep-
aration logic triples into logical implications between
assertions to be proved automatically. Similarly to
related work [9, 12], this is implemented in three suc-
cessive phases:

1. Verification conditions generator: The input triple
is cut into a list of loop-free triples.

2. Triple transformation: Every loop-free triple is
turned into logical implications between assertions.

3. Entailment: Every implication derived from the
previous phase is proved valid.

1

Besides formal verification of these three phases, an-
other originality of our work is the triple transforma-
tion phase in itself: we appeal to a new proof system
that mixes backward and forward reasoning whereas
related work [9, 12] essentially relies on forward rea-
soning (the advantages of our approach are discussed
in detail in Sect. 9.1). In the rest of this paper, we
explain for each phase of our verifier what it does
and how we prove it correct: the entailment phase in
Sect. 5, the triple transformation phase in Sect. 6, and
the verification conditions generator in Sect. 7. The
resulting verifier amounts to a simple combination
of these three phases, as summarized in Sect. 8. In
Sect. 9, we comment on practical aspects: the size of
generated proof-terms and performance benchmarks
for the derived stand-alone OCaml verifier. Sect. 10
is dedicated to comparison with related work. We
conclude in Sect. 11.

2 About the Coq Proof Assis-

tant

The Coq proof assistant [1] is a tool for formal ver-
ification of software. It provides a typed functional
language to write programs and specifications, and
tactics to build proofs.

In order for the user to build proofs by induc-
tion, Coq automatically proves induction principles
for data structures and predicates defined inductively.
For example, given the following definition of natu-
rals:

Inductive nat : Set := O : nat | S : nat → nat.

Coq automatically proves the well-known induction
principle:

nat_ind : ∀ (P : nat → Prop),
P 0 → (∀ n, P n → P (S n)) → ∀ n, P n

(The standard Coq types Set and Prop establish a
distinction between data structures and predicates.)
Like data structures, predicates also can be defined
by induction. For example, the relation “less than”
is defined the predicate le (noted ≤):

Inductive le (n : nat) : nat → Prop :=
le_n : n ≤ n | le_S : ∀ m, n ≤ m → n ≤ S m.

The constructors of le can be seen as axioms whose
application yields the proof of lemmas. For example,
the proof-term (le_S O O (le_n O)) of type O ≤ S O

is a formal proof of the lemma “0 is less than 1”.
There are basically two ways to prove lemmas in

Coq: successive applications of lemmas, or develop-
ment and verification of a decision procedure as a
Coq function. The latter method is known as reflec-
tion. Its main benefit is that generated proof-terms
are small, because it amounts to computing the re-
turn value of a Coq function1. Let us illustrate the
difference with an example. One can prove inequali-
ties over naturals with Coq native tactics:

Lemma foo : 18 ≤ 30.
repeat (apply le_n || apply le_S).

Qed.

The keywords Lemma and Qed start and end a formal
proof. The tactic apply applies an existing lemma.
Tactics can be combined: repeat repeats a tactic,
“||” executes the tactic on the right or the one on
the left in case of failure. This usage of tactics has the
defect to generate large proof-terms. To solve such
inequalities by reflection, one would first write a Coq
function deciding inequalities and prove it correct:

Fixpoint leq_nat (x y:nat) {struct x} : bool :=
match x with
| O => true
| S x’ => match y with

O => false | S y’ => leq_nat x’ y’ end
end.

Lemma leq_nat_correct : ∀ x y,
leq_nat x y = true → x ≤ y.
...

(The keyword Fixpoint defines recursive functions.)
Using the function leq_nat and its correctness lemma
leq_nat_correct, our lemma can then be proved as
follows:

Lemma foo : 18 ≤ 30.
apply leq_nat_correct; auto.

Qed.

1Another advantage of reflection is that it allows for formal
proof in Coq of the completeness of decision procedures but
we are not concerned with this aspect in this paper.

2

Decision procedures implemented by reflection lead
to short proof-terms. The downside is a more intri-
cate implementation. This is nonetheless a tactic by
reflection that we propose to implement in this paper.

3 Separation Logic in Coq

The Coq tactic we build in this paper (and from
which we will derive our certified verifier) is tailored
to verification of separation logic triples as defined in
our previous work [11]. In this section, we recall the
aspects of our encoding that are necessary to under-
stand the correctness statements in this paper. All
proof scripts we refer to can be found online [13].

3.1 The Programming Language

Separation logic is an extention of Hoare logic with
a native notion of heap and pointers. In separation
logic, the state of a program is a couple of a store
(a map from variables to values) and a heap (a map
from locations to values). There are two commands
to access the heap: lookup (or dereference) and mu-
tation (or destructive update).

The syntax of the programming language in Coq
is defined as follows (file axiomatic.v in [13]):

Inductive cmd : Set :=
| assign : var.v → expr → cmd
| lookup : var.v → expr → cmd
| mutation : expr → expr → cmd
| seq : cmd → cmd → cmd
| ifte : expr_b → cmd → cmd → cmd
...
Notation "x <- e" := (assign x e).
Notation "x ’<-*’ e" := (lookup x e).
Notation "e ’*<-’ f" := (mutation e f).
Notation "c ; d" := (seq c d).
...

The type expr (resp. expr_b) is the type of numerical
(resp. boolean) expressions:

Inductive expr : Set :=
| var_e : var.v → expr
| int_e : val → expr
| add_e : expr → expr → expr
| min_e : expr → expr → expr
...

Inductive expr_b : Set :=
| true_b : expr_b
| eq_b : expr → expr → expr_b
| neg_b : expr_b → expr_b
| and_b : expr_b → expr_b → expr_b
...

Expressions are evaluated for a given store by the
functions eval and eval_b:

Fixpoint eval (e:expr) (s:store.s) : Z := ...
Fixpoint eval_b (e:expr_b) (s:store.s) : bool := ...

Let us explain the operational semantics infor-
mally. The assignment x <- e updates the value of
the variable x with the result of the evaluation of the
expression e in the current state (eval e s, with s

the store of the current state). The lookup x <-* e

updates the value of the variable x with the value
contained inside the cell of location eval e s. The
heap mutation e1 *<- e2 modifies the cell of loca-
tion eval e1 s with the value eval e2 s (heap ac-
cesses fail if the accessed cell is not in the heap).
This operational semantics is formalized as a ternary
predicate exec noted s -- c --> s’ where s is a starting
state, c a progam, and s’ the resulting state (states
are encoded with the option type whose None con-
structor represents error states). See [11] for detailed
explanations.

3.2 The Assertion Language

The assertion language is defined using the standard
Coq predicates. More precisely, an assertion is de-
fined as a function from states to Prop:

Definition assert := store.s → heap.h → Prop.

(The keyword Definition defines macros, and more
generally non-recursive functions.)

This technique of encoding is known as shallow en-
coding. It is a convenient way to encode logical con-
nectives and reason using them. For example, the
classical implication of separation logic can be di-
rectly encoded using the classical implication of Coq:

Definition entails (P Q : assert) : Prop :=
∀ s h, P s h → Q s h.

Notation "P ==> Q" := (entails P Q).

3

There are four constructs specific to separation
logic. The atoms empty (Coq notation: emp) and
mapsto (notation: |->), and the connectives separat-
ing conjunction (notation: **) and separating impli-
cation (notation: -*).

emp holds when the heap is empty:

Definition emp : assert := fun s h => h = heap.emp.

e1 |-> e2 holds when the heap is a single cell con-
taining the value eval e2 s and whose location is
eval e1 s (val2loc is a cast):

Definition mapsto e1 e2 : assert :=
fun s h => ∃ p, val2loc (eval e1 s) = p ∧

h = heap.singleton p (eval e2 s).
Notation "e1 ’|->’ e2" := (mapsto e1 e2).

P ** Q holds when we can split the heap into two
disjoint heaps (disjointness is noted # and union is
noted +++) such that P holds for one of them, and
Q holds for the other.

Definition con (P Q : assert) : assert :=
fun s h => ∃ h1, ∃ h2,

h1 # h2 ∧ h = h1 +++ h2 ∧ P s h1 ∧ Q s h2.
Notation "P ** Q" := (con P Q).

P -* Q holds when Q holds on the current heap ex-
tended with any (disjoint) heap for which P holds:

Definition imp (P Q : assert) : assert :=
fun s h =>
∀ h’, h # h’ ∧ P s h’ → Q s (h +++ h’).

Notation "P -* Q" := (imp P Q).

The separating implication is essential for reasoning
because it captures logically the notion of destructive
update. We will use it as such to give the semantics
of an intermediate language in Sect. 6.1. However, we
do not use it in specifications in this paper because it
talks about not-yet-allocated memory cells and our
target fragment of separation logic does not feature
natively dynamic allocation.

3.3 Separation Logic Triples

The semantics for partial correctness of triples
{P}c{Q} is defined as follows: considering the pro-
gram c, for every initial state for which the precon-
dition P holds, (1) the execution will not raise an

error, and (2) the postcondition Q holds for every
final state. Put formally in Coq:

Definition semax’ (c:cmd) (P Q:assert) : Prop :=
∀ s h,
(P s h → ¬ Some (s, h) -- c --> None) ∧
(∀ s’ h’, P s h →

Some (s, h) -- c --> Some (s’, h’) →
Q s’ h’).

The axiomatic semantics is defined as an induc-
tive predicate whose constructors rephrase Reynolds
axioms [4]:

Inductive semax : assert→ cmd→ assert→ Prop :=
...

Notation "{{ P }} c {{ Q }}" := (semax P c Q).

We formally proved that semax is sound and com-
plete w.r.t. semax’, in other words, using Reynolds’
axioms, we can prove any valid separation logic triple.

4 Target Fragment of Separa-

tion Logic

In this section, we present the fragment of the as-
sertion language of separation logic that our verifier
deals with. This is basically the same fragment as [5],
where it was chosen as a good candidate for automa-
tion because entailment (classical implication of as-
sertions) is decidable. We extend this fragment with
Presburger arithmetic to handle pointer arithmetic.
Since programs never multiply pointers between each
other, we think that this extension suffices to enable
most verifications; the same extension is done in [12].
The only datatype we deal with is singly-linked lists.
We think that the ideas we develop in this paper for
lists extend to other recursive datatypes such as trees,
along the same lines as [9].

4.1 Syntax and Informal Semantics

Formulas of our fragment represent states symboli-
cally. To represent a store symbolically, we use the
language of boolean expressions expr_b introduced
in Sect. 3.1. This gives us enough expressiveness
to write pointer arithmetic formulas. To represent

4

a heap symbolically, we use the following fragment
Sigma of the assertion language of separation logic:

Inductive Sigma : Set :=
| emp : Sigma
| singl : expr → expr → Sigma
| cell : expr → Sigma
| star : Sigma → Sigma → Sigma
| lst : expr → expr → Sigma.

Simply put, this syntax represents the connectives de-
fined in Sect. 3.2: emp represents the empty heap like
the homonym connective defined by shallow encod-
ing; singl is syntax for mapsto; cell e represents a
singleton heap whose contents is unknown; star h h’

is the syntactic separating conjunction (Coq nota-
tion: h ** h’; this is the same notation as the “se-
mantic” separating conjunction in Sect. 3.2; in in-
formal arguments, we will write ⋆ for the separating
conjunction). Note that Sigma does not contain the
separating implication of separation logic. Compared
to the shallow encoding of Sect. 3.2, we add the for-
mula lst e e’ that represents a heap that contains a
singly-linked list whose head has location e and whose
last element points to e’, as illustrated below:

e’

e

To summarize, the syntax of our assertion lan-
guage assrt is defined as a product of expr_b

and Sigma:

Definition Pi := expr_b.
Definition assrt := Pi * Sigma.

In informal arguments, we will write 〈π, σ〉 for asser-
tions.

4.2 Formal Semantics

In the previous section, we have defined the syntax of
formulas in Coq. Their semantics has already been
defined in Sect. 3.2 by a shallow encoding. In this
section, we make the relation between both with a
satisfiability relation. This technique of encoding is
called deep encoding and is typical of tactics by reflec-
tion. Indeed, the latter needs to “parse” the asser-
tion language to prove the validity of formulas, what

is difficult to do when the syntax is not an inductive
type.

The formal semantics of Sigma formulas is a
satisfiability relation between (syntactic) formulas
and states. It is defined by a function Sigma_interp

of type Sigma -> store.s -> heap.h -> Prop where
store.s -> heap.h -> Prop is precisely the type assert

of formulas in our shallow encoding:

Fixpoint Sigma_interp (a : Sigma) : assert :=
match a with
| emp => sep.emp
| singl e1 e2 => fun s h =>
(e1 |-> e2) s h ∧ eval e1 s 6= 0

| cell e => fun s h =>
(∃ v, (e |-> int_e v) s h) ∧ eval e s 6= 0

| s1 ** s2 =>
Sigma_interp s1 ** Sigma_interp s2

| lst e1 e2 => Lst e1 e2
end.

(the formulas from Sect. 3.2 are encapsutaled in a
module sep to avoid naming conflicts) where Lst is
an inductive type of the appropriate type defining
singly-linked lists:

Inductive Lst : expr → expr → assert :=
| Lst_end: ∀ e e’ s h,

eval e s = eval e’ s → sep.emp s h →
Lst e e’ s h

| Lst_next: ∀ e e’ e’’ data s h h1 h2,
h1 # h2 → h = h1 +++ h2 →
eval e s 6= eval e’ s →
eval e s 6= 0 →
eval (e +e nat_e 1) s 6= 0 →
(e |-> e’’ ** (e +e nat_e 1 |-> data)) s h1 →
Lst e’’ e’ s h2 →
Lst e e’ s h.

The semantics of our fragment is finally defined
as the conjunction of the satisfiability relations of
its two components (expr_pi is syntactically equal to
expr_b):

Definition assrt_interp (a : assrt) : assert :=
match a with
(pi, sigm) => fun s h =>
eval_pi pi s = true ∧ Sigma_interp sigm s h

end.

5

4.3 Disjunctions of Assertions

In fact, we further need to extend our assertion lan-
guage to represent disjunctions of assertions. Intu-
itively, this is because loop invariants are usually
written as disjunctions. In informal arguments, we
will write 〈π1, σ1〉 ∨ . . . ∨ 〈πn, σn〉 for disjunctions of
assertions. Adding this disjunction on top of the frag-
ment allows to handle disjunction for the separation
logic part, without multiplying the set of rules neces-
sary to prove entailment and without loss of expres-
sivity. Indeed, all formulas belonging to a fragment
with disjunction inside Sigma have a counterpart in
our fragment. For instance, 〈π, σ1 ⋆ (σ2 ∨ σ3) ⋆ σ4〉
would have the same semantics as 〈π, σ1 ⋆ σ2 ⋆ σ4〉 ∨
〈π, σ1 ⋆σ3 ⋆σ4〉. We encode disjunctions of assertions
by lists:

Definition Assrt := list assrt.

Like for assrt, the semantics of Assrt is defined as a
satisfiability relation, that is simply the disjunction
of the satisfiability relations of the assrt disjuncts
(function Assrt_interp, of type Assrt -> assert).

5 Entailment

In this section, we present a proof system for en-
tailments of assertions defined in the previous sec-
tion. Using this proof system, we implement a
Coq tactic and a function to prove validity for en-
tailment between two formulas of type assrt (files
frag_list_entail.v and expr_b_dp.v in [13]).

5.1 Entailment Proof System

Our proof system enables derivation of entailments
of type assrt -> assrt -> Prop such that the left hand
side (lhs) semantically implies the right hand side
(rhs). In Coq, this proof system takes the form of an
inductive predicate entail. An excerpt in informal
notation is displayed in Fig. 1. Most rules are fairly
intuitive. For example, we can take a look at the
rule coml, that captures the fact that the separating
conjunction is commutative on the left of implication.

We have implemented a tactic (Entail, not ex-
tractable) that iteratively applies the rules of entail

to solve entailments. Here follows an example of such
a goal (see Fig. 2 for an informal account of the proof
built underneath):

Goal entail
(true_b, list e e’ ** e’ |-> e’’ **

cell (e’+1) ** list e’’ 0)
(true_b, list e 0).
unfold e, e’, e’’; Entail.

Qed.

We have proved formally that the entail proof sys-
tem is correct, i.e., that only valid entailments can be
derived:

Lemma entail_soundness : ∀ P Q, entail P Q →
assrt_interp P ==> assrt_interp Q.

We think that the entail proof system is also com-
plete because it contains the rules of the proof sys-
tem of [5], which is complete. An important point
for this proof system to be complete is that it makes
explicit the arithmetic constraints that are deducible
from the Sigma formulas. There are two kinds of such
constraints: (1) by definition of cell and singl, all
cells locations are strictly positive integers (e.g., rule
singl_not_null), and (2) cells on both sides of star

have pairwise different locations (e.g., rule star_neq).

5.2 Entailment Verification Proce-

dure

In this section, we explain the Coq function
entail_fun that proves entailments. Because we ver-
ify it, this function can be used as a tactic by re-
flection. It implements a reasoning similar to the
entail proof system but this is no redundant work:
we will actually use the Entail tactic to prove the
correctness of entail_fun.

5.2.1 Implication Between Heaps

The first building block of the entail_fun function is
a function Sigma_impl that proves the validity of im-
plications between two abstract heaps. This function
iteratively calls the function elim_common_subheap

(Fig. 3), that tries to eliminate, subheap by sub-
heap, the lhs sig1 ** remainder from the rhs sig2.

6

〈π1, σ2 ⋆ σ1〉 ⊢ 〈π, σ〉

〈π1, σ1 ⋆ σ2〉 ⊢ 〈π, σ〉
coml

〈π1 ∧ e1 6= 0, σ1 ⋆ e1 7→ e2〉 ⊢ 〈π2, σ2〉

〈π1, σ1 ⋆ e1 7→ e2〉 ⊢ 〈π2, σ2〉
singl_not_null

π1 → π2

〈π1, emp〉 ⊢ 〈π2, emp〉
tauto

〈π1 ∧ e1 6= e3, σ1 ⋆ e1 7→ e2 ⋆ e3 7→ e4〉 ⊢ 〈π2, σ2〉

〈π1, σ1 ⋆ e1 7→ e2 ⋆ e3 7→ e4〉 ⊢ 〈π2, σ2〉
star_neq

¬ π1

〈π1, emp〉 ⊢ 〈π2, emp〉
incons

π1→e1=e3 π2→e2=e4 〈π1, σ1〉 ⊢ 〈π2, σ2〉

〈π1, σ1 ⋆ lst e1 e2〉 ⊢ 〈π2, σ2 ⋆ lst e3 e4〉
lstsamelst

π1→e1=e3 π1→e2=e4 〈π1, σ1〉 ⊢ 〈π2, σ2〉

〈π1, σ1 ⋆ e1 7→e2〉 ⊢ 〈π2, σ2 ⋆ e3 7→e4〉
star_elim

π1→e1=e3 〈π1, σ1〉 ⊢ 〈π2, σ2〉

〈π1, σ1 ⋆ cell e1〉 ⊢ 〈π2, σ2 ⋆ cell e3〉
star_elim’’

π1→e1=e3

〈π1, σ1 ⋆ cell e4〉 ⊢ 〈π2, σ2 ⋆ lst e2 e4〉

〈π1, σ1 ⋆ cell e4 ⋆ lst e1 e2〉 ⊢ 〈π2, σ2 ⋆ lst e3 e4〉
lstelim

π1→e1=e3 e1 6=e4 e1 6=0
〈π1, σ1〉 ⊢ 〈π2, σ2 ⋆ cell e1+1 ⋆ lst e2 e4〉

〈π1, σ1 ⋆ e1 7→e2〉 ⊢ 〈π2, σ2 ⋆ lst e3 e4〉
lstelim’’’

Figure 1: Excerpt of the entail Proof System

true_b→ true_b

〈true_b, emp〉 ⊢ 〈true_b, emp〉
tauto

〈true_b, lst e’’ 0〉 ⊢ 〈true_b, lst e’’ 0〉
lstsamelst

〈true_b, cell e’+1 ** lst e’’ 0〉 ⊢ 〈true_b, cell e’+1 ** lst e’’ 0〉
star_elim’’

〈true_b, e’ 7→e’’ ** cell e’+1 ** lst e’’ 0〉 ⊢ 〈true_b, lst e’ 0〉
lstelim’’’

〈true_b, lst e e’ ** e’ 7→e’’ ** cell e’+1 ** lst e’’ 0〉 ⊢ 〈true_b, lst e 0〉
lstelim

Figure 2: Example of Entailment: List Composition

This elimination is performed by the function
elim_common_cell (Fig. 3), that tries to remove the
subheap sig from both sig ** remainder and sig’. It
is essentially a case-analysis on both heaps leading to
the application of an entail rule. For example, Fig. 3
shows the case for which the rule lstelim’’’ of the
entail proof system applies.

In fact, Fig. 2 also provides an illustration of what
is achieved by the function Sigma_impl. The in-
termediate abstract heaps happen to be the suc-
cessive results of elimination of common subheaps
by elim_common_cell. For example, here is the result
of the third call:

elim_common_cell true_b (cell e’+1)
(lst e’’ 0) (cell e’+1 ** lst e’’0) =

Some (lst e’’ 0, lst e’’ 0)

5.2.2 Entailments Between Assertions

Above, we explained a function Sigma_impl to prove
the validity of the implication between two abstract
heaps. Here, we explain how to use this function to
verify entailments of assertions.

There are two ways of proving entailments between
assertions (type assrt). The first way is to prove
that the lhs is contradictory (i.e., it implies False);
this corresponds to the application of the rule incons

of the entail proof system. The second way is to
prove the implication between the abstract heaps on
both hand sides (using Sigma_impl) and to prove the
implication between the abstract stores; this corre-
sponds to the application of the rule tauto of the
entail proof system. In order to prove the impli-
cation between abstract stores, we need a function
to decide Presburger arithmetic; for this purpose,
we have certified in Coq a decision procedure based

7

Fixpoint elim_common_subheap
(pi : Pi) (sig1 sig2 remainder : Sigma)
: option (Sigma * Sigma) :=
match sig1 with
| sig11 ** sig12 =>

match elim_common_subheap pi sig11 sig2
(sig12 ** remainder) with

| None => None
| Some (sig11’, sig12’) =>

Some (remove_empty_heap pi
(sig11’ ** sig12), sig12’)

end
| _ => elim_common_cell pi sig1 remainder sig2
end.

Fixpoint elim_common_cell
(pi : Pi) (sig remainder sig’ : Sigma)
: option (Sigma * Sigma) :=
match sig’ with
...
| _ => ...
match (sig, sig’) with
...
(* this case corresponds to the application

of the rule lstelim’’’ *)
| (singl e1 e2, lst e3 e4) =>

if andb (expr_b_dp (pi =b> (e1 == e3)))
(andb (expr_b_dp (pi =b> (e1 =/= e4)))
(expr_b_dp (pi =b> (e1 =/= nat_e 0))))

then Some
(emp, (cell (e1 +e nat_e 1)) ** (lst e2 e4))

else None
...
end

end.

Figure 3: Elimination of Common Subheaps

on Fourier-Motzkin variable elimination (this is ac-
tually the function expr_b_dp that already appears in
Fig. 3).

This reasoning is implemented by the func-
tion assrt_entail_fun that extends beforehand the
lhs of the entailment with arithmetic constraints, as
described at the end of Sect. 5.1.

5.2.3 Entailments Between Disjunctions

Above, we explained a function assrt_entail_fun to
verify entailments of assertions (type assrt). Here,
we explain how to use this function to verify entail-
ments of disjunctions of assertions (type Assrt).

Elimination of Disjunctions in the Lhs To
eliminate disjunctions in the lhs of the entailment
we use the rule elim_lhs_disj (Fig. 4, function
Assrt_entail_Assrt_fun in file frag_list_entail.v).
Thanks to this rule, we can decompose an entailment
between Assrt formulas into a list of entailments be-
tween an assrt formula (on the lhs) and an Assrt for-
mula (on the rhs).

Elimination of Disjunctions in the Rhs The
elimination of disjunctions in the rhs of the
entailment is more subtle. It is possible to
use the rule elim_rhs_disj1 (Fig. 4, function

∧

i
(〈πi, σi〉 ⊢ A)

(
∨

i
〈πi, σi〉

)

⊢ A
elim_lhs_disj

∨

i
(〈π, σ〉 ⊢ 〈πi, σi〉)

〈π, σ〉 ⊢
(
∨

i
〈πi, σi〉

)
elim_rhs_disj1

π →
(
∨

i
πi

)

∧

i
(〈π ∧ πi, σ〉 ⊢ 〈true_b, σi〉)

〈π, σ〉 ⊢
(
∨

i
〈πi, σi〉

)
elim_rhs_disj2

Figure 4: Entailment of Disjunctions of Assertions

orassrt_impl_Assrt1 in file frag_list_entail.v).
But this rule is not sufficient, as illustrated by the
following counter-example:

〈true_b, σ〉 ⊢ 〈y = 0, σ〉 ∨ 〈y 6= 0, σ〉

Such rhs are however important because they are
typical of loop invariants. Indeed, a loop invari-
ant usually consists of a disjunction of all possi-
ble outcomes of the loop condition, and each dis-
junct can only be proved under some hypothesis
about this outcome. To handle these situations, we
use the rule elim_rhs_disj2 (Fig. 4, functions orpi

and orassrt_impl_Assrt2 in file frag_list_entail.v).

8

We are now equipped to explain the function
entail_fun, that proves the validity of entailments.
It takes as input an assrt and an Assrt, uses the
rules from Fig. 4 to eliminate the disjunctions in the
rhs, and finally calls assrt_entail_fun:

Definition entail_fun
(a:assrt) (A:Assrt) (l:list (assrt * assrt))
: result (list (assrt * assrt)) := ...

It returns an option type (constructor Good if ev-
erything is proved). The proof of correctness of
entail_fun boils down to the following lemma:

Lemma entail_fun_correct: ∀ A a l,
entail_fun a A l = Good →
assrt_interp a ==> Assrt_interp A.

We do not think that the entail_fun function is a
complete decision procedure because of the rules for
entailments between disjunctions. However, it is al-
ready useful in practice, as illustrated by the various
non-trivial examples in Sect. 9.

6 Triple Transformation

In the previous section, we saw how to solve entail-
ments of assertions of separation logic. In this sec-
tion, we explain how to transform a loop-free triple
into such an entailment (file frag_list_triple.v

in [13]).

6.1 Language for Weakest-

preconditions

Before explaining the triple transformation, we need
to introduce the type wpAssrt. This type represents
the weakest precondition of a program with respect
to its postcondition:

Inductive wpAssrt : Set :=
| wpElt: Assrt → wpAssrt
| wpSubst: list (var.v * expr)→ wpAssrt→ wpAssrt
| wpLookup: var.v → expr → wpAssrt → wpAssrt
| wpMutation: expr → expr → wpAssrt → wpAssrt
| wpIf: Pi → wpAssrt → wpAssrt → wpAssrt.

The constructor wpElt represents a postcondition
with no program. The wpSubst constructor repre-
sents the weakest precondition of a sequence of as-
signments whose postcondition is itself some weakest
precondition, etc.

The interpretation of this language is computed
by a weakest precondition generator using backward
separation logic axioms from [4]:

Fixpoint wpAssrt_interp (a: wpAssrt) : assert :=
match a with

| wpElt a1 => Assrt_interp a1
| wpSubst l L =>

subst_lst2update_store l (wpAssrt_interp L)
| wpLookup x e L => (fun s h => ∃ e0,

(e |-> e0 ** (e |-> e0 -*
update_store2 x e 0 (wpAssrt_interp L))) s h)

| wpMutation e1 e2 L => (fun s h => ∃ e0,
(e1 |-> e0 ** (e1 |-> e2 -* wpAssrt_interp L)) s h)

| wpIf b L1 L2 => (fun s h =>
(eval_pi b s = true → wpAssrt_interp L1 s h)
∧
(eval_b b s = false → wpAssrt_interp L2 s h))

end.

6.2 Triple Transformation Proof Sys-

tem

Now that we have explained wpAssrt, we can ex-
plain the role of the tritra proof system. It has
type assrt -> wpAssrt -> Prop. Intuitively, the two pa-
rameters form a triple of separation logic: the first
parameter is a assertion of separation logic (a pre-
condition) and the second parameter is a weakest
precondition, or equivalently a program with a post-
condition. The constructors of the tritra proof sys-
tem represent elementary triple transformations. An
excerpt in informal notation is displayed in Fig. 5.

The two rules lookup and mutation are intuitive
because the lookup (resp. mutation) is the leading
command of the program. When lookups and muta-
tions are preceded by assignments, the transforma-
tion rules must take care of captures of variables, as
exemplified by the rule subst_lookup. Despite these
technical difficulties (in particular, the usage of fresh
variables), we managed to prove the soundness of this
proof system inside Coq:

Lemma tritra_soundness : ∀ P Q, tritra P Q →
assrt_interp P ==> wpAssrt_interp Q.

9

〈π1, σ1〉 ⊢ 〈π2[vn/xn] · · · [v1/x1], σ2[vn/xn] · · · [v1/x1]〉

{π1, σ1}x1←v1; · · · ; xn←vn{π2, σ2}
subst

π1→v1=e1 {π1, σ1 ⋆ e1 7→e2}x1←e2; c{π2, σ2}

{π1, σ1 ⋆ e1 7→e2}x1 ←∗ v1; c{π2, σ2}
lookup

{π1, σ1 ⋆ e1 7→e2}x
′←e2; x1←v1; · · · ; xn←vn; x←x′; c{π2, σ2}

π1→e1=e[vn/xn] · · · [v1/x1] fresh x′

{π1, σ1 ⋆ e1 7→e2}x1←v1; · · · ; xn←vn; x←∗ e; c{π2, σ2}
subst_lookup

π1→v1 =e1 {π1, σ1 ⋆ e1 7→v2}c{π2, σ2}

{π1, σ1 ⋆ e1 7→e2}v1 ∗← v2; c{π2, σ2}
mutation

{π1, σ1}e[vn/xn] · · · [v1/x1] ∗← e′[vn/xn] · · · [v1/x1]; x1←v1; · · · ; xn←vn; c{π2, σ2}

{π1, σ1}x1←v1; · · · ; xn←vn; e ∗← e′; c{π2, σ2}
subst_mutation

{π1 ∧ b, σ1}c1{π2, σ2} {π1 ∧ ¬b, σ1}c2{π2, σ2}

{π1, σ1}if b then c1 else c2{π2, σ2}
if

{π1, σ1}if b[vn/xn] · · · [v1/x1] then x1←v1; · · · ; xn←vn; c1 else x1←v1; · · · ; xn←vn; c2{π2, σ2}

{π1, σ1}x1←v1; · · · ; xn←vn; if b then c1 else c2{π2, σ2}
subst_if

Figure 5: Excerpt of the tritra Proof System

6.3 Triple Transformation Procedure

Equipped with the tritra proof system, we can
transform any valid triple {P}c{Q} into a cou-
ple (P, Q′) where Q′ is a wpAssrt of the form
wpElt. The implication P → Q′ (or equivalently
the entailment P ⊢ Q′) can then be solved by
entail_dp. This operation is implemented by the
function tritra_step of type Pi -> Sigma -> wpAssrt ->

option (list ((Pi * Sigma) * wpAssrt)) that tries to
apply tritra rules (at the price of some rewriting
of the precondition) so as to return a list of subgoals.

The function that implements the whole triple
transformation phase is triple_transformation: it re-
cursively calls tritra_step and then entail_fun on
resulting subgoals:

Fixpoint triple_transformation
(P : Assrt) (Q : wpAssrt) { struct P }
: option (list ((Pi * Sigma) * wpAssrt)) := ...

Lemma triple_transformation_correct: ∀ P Q,
triple_transformation P Q = Some nil ->

Assrt_interp P ==> wpAssrt_interp Q.

The triple transformation is complete as long as the
intermediate arithmetic goals it generates fall into
Presburger arithmetic, which is likely in practice
because pointers are never multiplied between each
other. The fact that the triple transformation is
complete simply comes from the fact the rules of
the tritra proof system cover all possible programs.

7 Verification Conditions Gen-

erator

In the previous section, we explained how to prove
loop-free separation logic triples. In this section, we
explain how to turn a separation logic triple whose
loops are annotated with invariants into a list of loop-
free triples (file frag_list_vcg.v in [13]).

The generation of loop-free triples from a separa-
tion logic triple is the role of the verification condi-
tions generator. The main idea of this operation can

10

be explained as follows. Suppose we are given a triple
{P}c1; whileI b do c; c2{Q} where I is an invariant.
To prove this triple, it is sufficient to prove the three
triples {P}c1{I}, {I ∧ b}c{I}, and {I ∧ ¬b}c2{Q}.
Applying this idea repeatedly turns a separation logic
triple into a set of loop-free triples, as implemented
by the following function:

Fixpoint vcg (c:cmd’) (Q:wpAssrt) { struct c }
: option (wpAssrt * (list (Assrt * wpAssrt)))
:= ...

In addition to a list of subgoals, vcg returns the weak-
est precondition of the program (this is the first pro-
jection of the return value in the type above).

The verification of vcg amounts to check that,
under the hypothesis that subgoals can be veri-
fied, the returned condition is indeed a weakest pre-
condition. Recall from Sect. 3.3 that separation
logic triples are noted {{ · }} · {{ · }}; Assrt_interp

and wpAssrt_interp were defined respectively in Sec-
tions 4.3 and 6.1:

Lemma vcg_correct : ∀ c Q Q’ l,
vcg c Q = Some (Q’, l) →
(∀ A L, In (A, L) l →

Assrt_interp A ==> wpAssrt_interp L) →
{{ wpAssrt_interp Q’ }}
proj_cmd c
{{ wpAssrt_interp Q }}.

The verification condition generator is complete, as it
consists in applying the Reynolds axioms for sequence
and loop, which have been proved complete formally
inside of Coq (see Sect. 3.3).

8 Put It All Together

The resulting verification procedure is a Coq function
that takes as input a command c (annotated with
loop invariants), a precondition P, and a postcondi-
tion Q. First, it calls vcg to compute a set of sufficient
subgoals. Then, it calls triple_transformation for
all these subgoals. If all of them can be proved, it
returns Some nil. Otherwise, it returns the list of
unsolved subgoals for information:

Definition bigtoe_fun (c: cmd’) (P Q: Assrt)
: option (list ((Pi * Sigma) * wpAssrt)) :=

match vcg c (wpElt Q) with
| None => None
| Some (Q’, l) =>

match triple_transformation P Q’ with
| Some l’ =>

match triple_transformations l with
| Some l’’ => Some (l’ ++ l’’)
| None => None

end
| None => None

end
end.

The correctness of this tactic amounts to prove
that, if it returns Some nil, then the corresponding
separation logic triple holds:

Lemma bigtoe_fun_correct: ∀ P Q c,
bigtoe_fun c P Q = Some nil →
{{ Assrt_interp P }}
proj_cmd c
{{ Assrt_interp Q }}.

Now, in our formal proofs of Hoare triples, we can
apply this lemma to delegate the proof to the com-
putation of the function bigtoe_fun.

9 Experimental Measurements

In this section, we present a comparison between our
approach and backward/forward reasoning, as well as
a benchmark for our verifier.

9.1 Comparison With Backward and

Forward Reasoning

All previous work on automatic verification of sepa-
ration logic triples use forward reasoning [9, 10, 12].
The main reason is that backward reasoning (using
a standard weakest precondition generator for sep-
aration logic) produces postconditions with separat-
ing implications for which there exists no automatic
prover (as pointed out in [9]). Although decidability
results exist [3, 8, 7], the separating implication is
actually seldom used in specifications of algorithms
(one notable exception is [2]). However, forward rea-
soning has the disadvantage of adding, for each vari-
able modification, a conjunctive clause with possibly

11

a fresh variable. This is not desirable in practice be-
cause decision procedures for Presburger arithmetic
have an exponential complexity w.r.t. the number of
clauses and variables. Our approach based on the
proof system tritra can be shown experimentally to
produce less clauses.

In Fig. 6, we illustrate transformation steps for a
program swapping the values of two cells, using our
approach. The transformations produced by forward
and backward reasoning are displayed in Figures 7
and 8. We can observe that tritra does not add
new connectives or variables, contrary to both back-
ward and forward reasoning. (For the latter, no fresh
variables have been introduced, because the variables
modified by the program do not appear in the pre-
condition.)

In order to measure more precisely differences be-
tween our approach and forward reasoning, we have
implemented, inside of Coq, a proof system similar
to [9] extended with pointer arithmetic (file LSF.v

in [13]). We proved interactively several separation
logic triples, and compared the size of the compiled
proofs terms produced by both approaches. This
comparison was done on three different programs.
swap is the separation logic triple whose transforma-
tion is illustrated in Fig. 6. The init(n) program is
a loop that initializes a given field for n contiguous
occurences of a data-structure. This program makes
use of pointer arithmetic, as the loop iteratively in-
crements the value of the pointer to the current
data-structure, while the data-structures locations
are specified by a multiple of the data-structure’s size
in the pre/postconditions2. Finally, max3 is a pro-
gram that returns the maximum value of three vari-
ables. The results are presented in Table 1, where
the percentages correspond to the overhead of for-
ward reasoning. We can conclude that our approach
produces smaller proof-terms, because the underlying
arithmetic decision procedure (here, the Coq omega)
applies less lemmas to prove the goals.

2As there is no universal quantification in our assertion lan-
guage, the behavior of init(n) is specified for only one ar-
bitrary value, and the programs and pre/postconditions are
computed by Coq functions.

Program tritra forward reasoning

swap 16 20 (+19%)
init (5) 46 69 (+33%)
init (10) 138 225 (+38%)
init (15) 195 320 (+39%)
3max 9.0 7.9 (−14%)

Table 1: Size of Proof-terms files in kbytes

9.2 The Extracted OCaml Verifier

Thanks to the extraction facility of Coq, we can ex-
tract the verification function bigtoe_fun (and its un-
derlying functions and data structures) in the OCaml
language. The certified verifier is in file extracted.ml

in [13]. We use OCaml-yacc to parse the input lan-
guage (files lexer.mll and grammar.mly). The result-
ing verifier can handle three kind of goals: (1) arith-
metic formulas (for which all variables are univer-
sally quantified), (2) entailments between assertions
of Assrt, and (3) separation logic triples. As the ver-
ification functions return a list of unsolved subgoals,
the verifier is able to print these subgoals to help for
the debugging of program specifications.

We measure the performance of the OCaml verifier.
The first version uses a decision procedure for arith-
metic based on variable elimination using the Fourier-
Motzkin theorems (FMVE). This is a decision proce-
dure by reflection that we have implemented for our
verifier (the omega tactic of Coq cannot be used be-
cause it is not implemented by reflection). Of course,
this decision procedure has also been verified in Coq
(file expr_b_dp.v in [13]). The second version uses a
non-certified decision procedure based on the Cooper
algorithm [14]. The reason why we provide this sec-
ond version is that our decision procedure for arith-
metic, though necessary for use inside of Coq, is not
optimized enough to solve large arithmetic subgoals.
A certified implementation of a more efficient decision
procedure (such as the Cooper algorithm) is among
our future work (Chaieb and Nipkow already did this
work in the Isabelle proof assistant [6]). Table 2 sum-
marizes the measurements (hardware: Pentium IV
2.4GHz with 1GB of RAM).

12

〈true_b, x 7→vy**y 7→vx〉 ⊢ 〈true_b, x 7→vy**y 7→vx〉

{〈true_b, x 7→vy**y 7→vx〉}t2’ <- vy; t1 <- vx; t2 <- t2’{〈true_b, x 7→vy**y 7→vx〉}
subst_elt

{〈true_b, x 7→vy**y 7→vy〉}y *<- vx; t2’ <- vy; t1 <- vx; t2 <- t2’{〈true_b, x 7→vy**y 7→vx〉}
mutation

{〈true_b, x 7→vy**y 7→vy〉}t2’ <- vy; t1 <- vx; t2 <- t2’; y *<- t1{〈true_b, x 7→vy**y 7→vx〉}
subst_mutation

{〈true_b, x 7→vx**y 7→vy〉}x *<- vy; t2’ <- vy; t1 <- vx; t2 <- t2’; y *<- t1{〈true_b, x 7→vy**y 7→vx〉}
mutation

{〈true_b, x 7→vx**y 7→vy〉}t2’ <- vy; t1 <- vx; t2 <- t2’; x *<- t2; y *<- t1{〈true_b, x 7→vy**y 7→vx〉}
subst_mutation

{〈true_b, x 7→vx**y 7→vy〉}t1 <- vx; t2 <-* y; x *<- t2; y *<- t1{〈true_b, x 7→vy**y 7→vx〉}
subst_lookup

{〈true_b, x 7→vx**y 7→vy〉}t1 <-* x; t2 <-* y; x *<- t2; y *<- t1{〈true_b, x 7→vy**y 7→vx〉}
lookup

Figure 6: Swap of Cells using our Proof System

〈t1 = vx∧t2 = vy, x 7→t2**y 7→t1〉 ⊢ 〈true_b, x 7→vy**y 7→vx〉

{〈t1 = vx∧t2 = vy, x 7→t2**y 7→vy〉}y *<- t1{〈true_b, x 7→vy**y 7→vx〉}

{〈t1 = vx∧t2 = vy, x 7→vx**y 7→vy〉}x *<- t2; y *<- t1{〈true_b, x 7→vy**y 7→vx〉}

{〈t1 = vx, x 7→vx**y 7→vy〉}t2 <-* y; x *<- t2; y *<- t1{〈true_b, x 7→vy**y 7→vx〉}

{〈true_b, x 7→vx**y 7→vy〉}t1 <-* x; t2 <-* y; x *<- t2; y *<- t1{〈true_b, x 7→vy**y 7→vx〉}

Figure 7: Swap of Cells using Forward Reasoning

Program FMVE Cooper

Reverse list 0.240 s 0.111 s
List traversal 0.160 s 0.085 s
List append 147.593 s 0.660 s
Insert head 0.009 s 0.108 s
Insert tail unknown 2.580 s

Table 2: Execution Time

Here follows a brief description of the benchmark
programs: Reverse list is an in-place reversal of a
list as the one described in [4], List traversal is a
program that iteratively explores each element of a
list, List append appends two lists, and Insert head

(resp. Insert tail) inserts an element at the head
(resp. tail) of a list.

The extracted verifier using the Cooper algorithm
is available for download and testing through a Web
interface, see [13].

10 Related Work

Our main contribution w.r.t. related work is to pro-
vide a certified automatic verifier for separation logic
triples.

Berdine et al. have developed Smallfoot, a tool for
checking separation logic specifications [9]. It uses
symbolic, forward execution to produce verification
conditions, and a decision procedure to prove them.
Although Smallfoot is automatic (even for recursive
and concurrent procedures), the assertion language
does not allow to deal with pointer arithmetic.

Calcagno et al. have proposed an extension of
Smallfoot to verify automatically memory alloca-
tors [10]. More precisely, the assertion language is
extended with: arithmetic, advanced data-structures
(lists with variable-size arrays), and abstract inter-
pretation, allowing to compute automatically loop in-
variants. A prototype has been developed and used
on several examples, such as the Kernighan allocator.

A verifier for separation logic with user-defined
data-structure has been proposed in [12]. This ver-
ifier uses folding/unfolding of data-structures defini-
tions to prove entailments. A prototype has been de-
veloped and used for verification of several functions

13

〈true_b, x 7→vx**y 7→vy〉 ⊢ ∃v4, x 7→v4**(x 7→v4−*(∃v3, y 7→v3**(y 7→v3−*(∃v2, . . .))))

{〈true_b, x 7→vx**y 7→vy〉}t1 <-* x{∃v3, y 7→v3**(y 7→v3−*(∃v2, x 7→v2**(x 7→t1−*(∃v1, . . .))))}

{〈true_b, x 7→vx**y 7→vy〉}t1 <-* x; t2 <-* y{∃v2, x 7→v2**(x 7→t2−*(∃v1, . . .))}

{〈true_b, x 7→vx**y 7→vy〉}t1 <-* x; t2 <-* y; x *<- t2{∃v1, y 7→v1**(y 7→t1−*〈true_b, x 7→vy**y 7→vx〉)}

{〈true_b, x 7→vx**y 7→vy〉}t1 <-* x; t2 <-* y; x *<- t2; y *<- t1{〈true_b, x 7→vy**y 7→vx〉}

Figure 8: Swap of Cells using Backward Reasoning

with advanced invariants.
We believe that the algorithms implemented in

these last two work are so complex that verification
in Coq would be an order of magnitude harder than
the work presented in this paper.

11 Conclusion

In this paper, we presented a verification procedure
for a fragment of separation logic together with its
verification in the Coq proof assistant. This verifi-
cation procedure can be used both as a Coq tactic
by reflection and as a stand-alone, certified and ef-
ficient verifier thanks to Coq extraction in OCaml.
Our verifier is in many ways comparable to Small-
foot, the first automatic verifier for separation logic
triples. Thus, we think that our work gives a good
idea of the effort required to certify a state-of-the-art
verifier for separation logic.

As for future work, we are interested in extending
our fragment with commands for allocation of fresh
memory and arrays.

References

[1] The LogiCal Project, INRIA. The Coq Proof As-
sistant. http://coq.inria.fr.

[2] H. Yang. An example of local reasoning in BI
pointer logic: the Schorr-Waite graph marking
algorithm. In 1st Work. on Semantics, Pro-
gram Analysis, and Computing Environments For
Memory Management (SPACE 2001).

[3] C. Calcagno, H. Yang and P. W. O’Hearn. Com-
putability and Complexity Results for a Spatial
Assertion Language for Data Structures. In 21st

Int. Conf. on Foundations of Software Technol-
ogy and Theoretical Computer Science (FSTTCS
2001), LNCS vol. 2001, p. 108–119, Springer.

[4] J. C. Reynolds. Separation Logic: A Logic
for Shared Mutable Data Structures. In 17th
IEEE Symp. on Logic in Computer Science (LICS
2002), p. 55–74.

[5] J. Berdine, C. Calcagno and P. W. O’Hearn. A
Decidable Fragment of Separation Logic. In 24th
Int. Conf. on Foundations of Software Technol-
ogy and Theoretical Computer Science (FSTTCS
2004), LNCS vol. 3328, p. 97–109, Springer.

[6] A. Chaieb and T. Nipkow. Verifying and Reflect-
ing Quantifier Elimination for Presburger Arith-
metic. In 12th Int. Conf. on Logic for Pro-
gramming, Artificial Intelligence, and Reason-
ing (LPAR 2005), LNCS vol. 3835, p. 367–380,
Springer.

[7] D. Galmiche and D. Méry. Characterizing Prov-
ability in BI’s Pointer Logic through Resource
Graphs. In 12th Int. Conf. on Logic for Pro-
gramming, Artificial Intelligence, and Reason-
ing (LPAR 2005), LNCS vol. 3835, p. 459–473,
Springer.

[8] C. Calcagno, P. Gardner and M. Hague. From
Separation Logic to First-Order Logic. In 8th
Int. Conf. on Foundations of Software Science
and Computational Structures (FOSSACS 2005),
LNCS vol. 3441, p. 395–409, Springer.

[9] J. Berdine, C. Calcagno and P. W. O’Hearn.
Symbolic Execution with Separation Logic. In
3rd Asian Symp. on Programming Languages and
Systems (APLAS 2005), LNCS vol. 3780, p. 52–
68, Springer.

14

[10] C. Calcagno, D. Distefano, P. W. O’Hearn and
H. Yang. Beyond Reachability: Shape Abstrac-
tion in the Presence of Pointer Arithmetic. In
13th Int. Symp. on Static Analysis (SAS 2006),
LNCS vol. 4134, p. 182–203, Springer.

[11] N. Marti, R. Affeldt and A. Yonezawa. Formal
Verification of the Heap Manager of an Operating
System using Separation Logic. In 8th Int. Conf.
on Formal Engineering Methods (ICFEM 2006),
LNCS vol. 4260, p. 400–419, Springer.

[12] H. H. Nguyen, C. David, S. Qin and W. Chin.
Automated Verification of Shape and Size Prop-
erties via Separation Logic. In 8th Int. Conf.
on Verification, Model Checking, and Abstract
Interpretation (VMCAI 2007), LNCS vol. 4349,
Springer.

[13] R. Affeldt and N. Marti. Separation Logic in
Coq. http://www.nongnu.org/seplog/.

[14] J. Harrison. Cooper’s Algorithm for Pres-
burger Arithmetic. http://www.cl.cam.ac.uk/
∼jrh13/atp.

15

