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Reasoning with Conditional Probabilities and

Joint Distributions in Coq

Reynald Affeldt Jacques Garrigue Takafumi Saikawa

Probabilities occur in many applications of computer science, such as communication theory and artificial

intelligence. These are critical applications that require some form of verification to guarantee the quality of

their implementations. Unfortunately, probabilities are also the typical example of a mathematical theory

whose abuses of notations make pencil-and-paper proofs difficult to formalize. In this paper, we experiment

a new formalization of conditional probabilities that we validate with two applications. First, we formalize

the foundational definitions and theorems of information theory, extending previous work with new lem-

mas. Second, we formalize the notion of conditional independence and its properties, paving the road for a

formalization of graphical probabilistic models.

1 Introduction

Probabilities occur in many applications of com-

puter science. One finds them in information the-

ory to reason about the size of compressed data, in

quantitative information flow analysis, in the anal-

ysis of side-channel attacks, etc. They are also om-

nipresent in artificial intelligence. These are critical

applications that require some form of verification

to guarantee the quality of their implementations.

Formal verification using proof-assistants has

emerged as a trustful technique to guarantee the

correctness of important mathematical theorems

(e.g., [12]), as well as the correctness of critical
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computer software (e.g., [17]). Regarding more

specifically mathematics, formal verification (here-

after, we also say formalization) consists in turn-

ing a proof from a textbook or a scientific pa-

per (hereafter, we refer to such proofs as “pencil-

and-paper proofs”) into the language of the proof-

assistant. The latter is a software mechanization

of some mathematical foundations, such as set the-

ory, higher-order logic, or type theory (as it is the

case for the Coq proof-assistant). The success of

this transcription guarantees that the original proof

was indeed correct but it requires a lot of proof-

engineering : make explicit all assumptions (in par-

ticular hidden ones), build libraries of intermediate

definitions and lemmas, find abstractions to reduce

complexity, etc.

Pencil-and-paper proofs about probabilities are

in particular not easily amenable to formal ver-

ification. The first reason is that probabilities

deal with a wide range of mathematics (from com-

binatorics to real analysis), but, as of today, no

proof-assistant has enough libraries to bring the

practitioner the same flexibility as pencil-and-paper
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proofs. The “ideal” approach (in the sense of

the most faithful to the original pencil-and-paper

proof) seems to be to derive the formalization of

probabilities from a formalization of measure the-

ory and Lebesgue integration. Unfortunately, not

all proof assistants have such formalizations avail-

able (at the time of this writing, this is work in

progress for Coq). There is one in HOL [19] and

one in Isabelle/HOL [14], but these proof-assistants

are lacking the theories for combinatorics and ma-

nipulation of iterated operators provided by the

MathComp library of the Coq proof-assistant.

Actually, one could even say that what is a good

formalization of real analysis is still a topic of re-

search (see for example [1]). The “ideal” approach

thus seems out of reach for now but, on the other

hand, many applications of information theory tar-

get the manipulation of data in computers (like in

artificial intelligence) which are always finite. Such

applications can be verified by formalizing the finite

part of probability and information theory, so that,

in our case, a full-fledged formalization of measure

theory and Lebesgue integration would look like

a sledgehammer to crack a nut. There therefore

seems to be much value in exploring a mechaniza-

tion of discrete probabilities that allows for formal

reasoning without this detour. Though arguably a

substantial simplification, this does not provide an

immediate solution. The second reason why for-

malization of probabilities is difficult is that prob-

abilities are the typical example of a mathematical

theory where abuses of notations are omnipresent.

Indeed, it is not obvious how to recover in the for-

malization the terseness of the presentation of in-

formation theory or artificial intelligence textbooks.

The latter typically feature many implicit assump-

tions; the main example is the omission of the un-

derlying distributions when talking about probabil-

ities, often ruled out as “obvious from context”. In

the formalization, we have to fill in all such implicit

assumptions. Though this could be done explic-

itly by the user, we could also program the proof-

assistant to automatically do that. Our formaliza-

tion includes instances of such automation.

In this paper, we focus on the problem of formal-

izing and using conditional probabilities and joint

distributions. Concretely, we extend an existing

formalization of information theory [7] with an “ex-

plicit” formalization of conditional probability. We

say “explicit” because the previous work [7] we ex-

tend was already dealing with conditional probabil-

ities but given in the form of stochastic matrices, as

used to model channels in information theory (see

Sect. 5 for a more precise explanation). To show

that our extension is indeed useful, we validate it

with two substantial applications:

• First, we formalize the foundations of infor-

mation theory. This is not a new topic but we

are able to improve on previous work by for-

malizing lemmas there were not formalized be-

fore. In fact, we are on the verge of completing

the formalization of [Chapter 2 of [9]], which

provides the basic definitions of the standard

textbook for information theory.

• Second, we formalize the notion of conditional

independence. We validate this definition by

proving the so-called graphoid axioms [21]. We

are not aware of a previous attempt to formal-

ize the graphoid axioms from the ground up,

but they are key to reason about probabilistic

graphical models used in artificial intelligence.

Paper Outline

In Sect. 2, we explain how we formalize distri-

butions, joint distributions, and conditional proba-

bilities. In Sect. 3, we explain our formalization of

information theory. In Sect. 4, we explain our for-

malization of conditional independence. We review

related work in Sect. 5 and conclude in Sect. 6.
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About Notations

This paper displays Coq code verbatim. We

rely on the MathComp library whose notations

are explained when used for the first time. We en-

forced a uniform naming convention for variables.

We use A, B, C, D, etc. for finite types. We use

a, b, etc. for elements of resp. A, B, etc. We use

E : {set A}, F : {set B}, G : {set C}, H : {set D},

etc. for events. We use P, Q, etc. to range over distri-

butions. We use X, Y, Z, W, etc. for random variables

with values in A, B, C, D, resp.

2 Formalization of Conditional Proba-

bility

2. 1 Background: Formalization of Finite

Distributions

We define a finite distribution as a function f

from a finite set A to the set R+ of nonnegative

real numbers, such that the sum of the values of f

equals 1. The formal definition in Coq is as follows

(it comes from previous work [6]):
(* Module FDist *)

Record t := mk {

f :> A -> R+ ;

_ : \sum_(a in A) f a == 1}.

The type A has type finType, it is a type with a

finite number of elements [11]. The type A -> R+

is for functions with domain A and real, nonnega-

tive outputs. The notation \sum_(a in A) (where

a is a binder) is for the sum over A. Hereafter,

the notation {fdist A} causes the type inference to

correctly identify A as a finType even when A is a

composite finType (e.g., the product of two finite

types A1 * A2).

Given a distribution P : {fdist A}, we can for-

malize an event as a finite set E over A (i.e., a

Boolean predicate over A represented as a list,

whose type is denoted {set A} [18]) and compute

its probability by summing the individual proba-

bilities of its elements:
Variables (A : finType) (P : {fdist A}).

Definition Pr (E : {set A}) :=

\sum_(a in E) P a.

2. 2 Joint Distributions

Using the definition of Sect. 2. 1, a joint dis-

tribution can be represented by a distribution

over a product type such as {fdist A * B} or

{fdist 'rV[A]_n} (where 'rV[A]_n represents the

type of row vectors of size n [18]).

Given a joint distribution, we often need to con-

sider marginal distributions. For that purpose, it

is useful to consider probability monad.

2. 2. 1 The Map Distribution from the

Probability Monad

We compute most marginal distributions using

the map distribution. Given a distribution P of

type {fdist A} and a function g of type A -> B,

the map distribution is the distribution of type

{fdist B} with probability mass function b 7→∑
a∈A
g a=b

P a. In practice, this distribution is defined

using the probability monad with unit FDist1.d and

bind operator FDistBind.d [4]:
(* Module FDistMap. *)

Variables (A B : finType)

(p : {fdist A}) (g : A -> B).

Definition d : {fdist B} :=

FDistBind.d p (fun a => FDist1.d (g a)).

As hinted at by the comment, this definition oc-

curs inside the module FDistMap, which we use as a

namespace; hence, the distribution d hereafter ap-

pears as FDistMap.d.

2. 2. 2 Joint Distributions over a Product

Type

Given a joint distribution over a product type,

Bivar.fst (Bivar for “bivariate”) builds the left

marginal. It is defined as follows:
(* Module Bivar *)

Variables (A B : finType) (P : {fdist A * B}).

Definition fst : {fdist A} := FDistMap.d fst P.

Regarding joint distributions over a product

type, one might also want to build the right

marginal Bivar.snd (which is of course defined sim-
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ilarly) and the distribution Swap.d that swaps the

left and the right elements.

Table 1 summarizes the distributions that one

might want to build from of a joint distribution

over a product type.

Similarly to joint distributions over a product

type, one might want to build distributions from

joint distributions over a triple of distributions. For

example, in Table 2, TripC12.d permutes the first

and the second element, while Proj13.d build the

marginal w.r.t. the second element. In Sect. 4, we

also deal with distributions made of quadruples of

distributions but rarely enough so that we do not

introduce specific definitions for them.

In the case of multivariate distributions (i.e.,

distributions of type {fdist 'rV[A]_n}), one might

want to build the marginals made of the head or

the tail, like Multivar.head_of or Multivar.tail_of

in Table 3. In the same table, Multivar.belast_last

is a distribution over the pairs formed by, on

one side, all the elements but the last, and on

the other side, the last element. The function

Nth.d builds a marginal from any index and Take.d

builds a marginal with a prefix. PairNth.d builds

a marginal from a distribution over a product type

and any index. PairTake.d operates a more com-

plicated rearrangement (intuitively, a combination

of Take.d, Nth.d, and Bivar.snd). Finally, PairNth.d

and PairTake.d will find theirs use when stating the

chain rule for information in Sect. 3. 2. 3.

In the following, we will need to make explicit

mention of the distributions above, whereas they

are often implicit in pencil-and-paper proofs.

2. 3 Conditional Probability

We use joint distributions to define conditional

probabilities.

Given a joint distribution P : {fdist A * B} and

two events E : {set A} and F : {set B}, the prob-

ability of E knowing F (i.e., Pr[E|F ]) is formalized

as follows:
Variables (A B : finType) (P : {fdist A * B}).

Definition cPr E F :=

Pr P (setX E F) / Pr (Bivar.snd P) F.

The set setX E F is the Cartesian product of the

sets E and F. Using a pencil-and-paper prose that

mentions explicitly the underlying distributions

(what many textbooks do not do), the definition

of cPr P E F would read as PrP [E|F ]
def
= PrP (E×F )

PrP2
(F )

,

where P2 represents the right marginal of P . This is

why we use the notation \Pr_P[E | F] for cPr P E F

in the Coq scripts.

We formalized a number of lemmas about con-

ditional probabilities, such as Bayes’ theorem, its

general form, etc. We do not provide a complete

presentation because their proofs follow known for-

mal proofs [13]. Let us just provide two exam-

ples that are used to prove the graphoid axioms.

The proofs of most of the graphoid axioms (see

Sect. 4) use the product rule (i.e., Pr[E × F |G] =

Pr[E|F × G] Pr[F |G]), which we state formally as

follows:
Lemma product_rule E F G :

\Pr_P [setX E F | G] =

\Pr_(TripA.d P) [E | setX F G] *

\Pr_(Proj23.d P) [F | G].

The proof of intersection uses the conditional

property of the universal set, i.e., the fact that

Pr[U |A] = 1 where U is the universal set and A

is an event with non-zero probability:
Variables (A B : finType) (P : {fdist A * B}).

Lemma cPr_1 a : Bivar.snd P a != 0 ->

\sum_(b in B)

\Pr_(Swap.d P)[[set b] | [set a]] = 1.

In the formal definition, [set x] is a MathComp

notation for the singleton set {x}.

3 Application 1: Formalization of In-

formation Theory

As a first application of our formalization of con-

ditional probability and joint distributions, we for-

malize the basic elements of information theory.

This includes lemmas that (to the best of our
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Table 1 Distributions using the product type

Original distribution Built distribution and its type

P : {fdist A * B}

Swap.d P {fdist B * A}

Bivar.fst P {fdist A}

Bivar.snd P {fdist B}

Table 2 Distribution using triples

Original distribution Built distribution and its type

P : {fdist A * B * C}

TripA.d P {fdist A * (B * C)}

TripC12.d P {fdist (B * A) * C}

TripC23.d P {fdist (A * C) * B}

TripC13.d P {fdist (C * B) * A}

Proj13.d P {fdist A * C}

Proj23.d P {fdist B * C}

Table 3 Distributions using vectors

Original distribution Built distribution and its type

P : {fdist 'rV[A]_n.+1}
Multivar.head_of P {fdist A}

Multivar.tail_of P {fdist 'rV[A]_n}

Multivar.belast_last P {fdist 'rV[A]_n * A}

P : {fdist 'rV[A]_n}
Nth.d P i {fdist A}

Take.d P i {fdist 'rV[A]_i}

P : {fdist 'rV[A]_n * B} PairNth.d P i {fdist A * B}

P : {fdist 'rV[A]_n.+1 * B} PairTake.d P {fdist ('rV[A]_i * A) * B}

knowledge) were not formalized before (e.g., the

chain rule for information).

3. 1 Entropy and Conditional Entropy

3. 1. 1 Background: Entropy

Entropy is a measure of the uncertainty of a ran-

dom variable. In [Sect. 2.1 of [9]], it is defined as

follows (for a random variable X with alphabet X
and probability mass function p(x)

def
= Pr(X = x)):

H(X) = −
∑
x∈X

p(x) log p(x)

Since the body of the definition uses only distribu-

tions, we formalized it as follows in [6] (Coq nota-

tion: `H):
Variables (A : finType) (P : {fdist A}).

Definition entropy :=

- \sum_(a in A) P a * log (P a).

One may wonder what this definition means if

P a = 0 for some a. Here we rely on the fact that

Coq assumes all functions (including log) to be

total. As a result, the product of 0 with log 0 is

equal to 0, which happens to be what we want here.

While Coq uses completed versions of logarithm

and division for instance, assuming both of them to

be 0 outside of their usual definition domains, the-

orems on specific functions are restricted to their

usual definition domains. For instance x/x = 1 is

true only if x 6= 0, cf. lemma cPr_1 (Sect. 2. 3).

3. 1. 2 Conditional Entropy

When it comes to conditional entropy, the stan-

dard textbook [9] gives a choice of several defini-

tions (of course all equivalent) using slightly dif-
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ferent notions: a more primitive notion of condi-

tional entropy (which is defined simultaneously),

using conditional probabilities, using joint distri-

butions, or using the expectation of a random vari-

able [Equations 2.10–2.13 of [9]]. For example, us-

ing conditional probabilities, the definition of con-

ditional entropy reads as follows:

H(Y |X) = −
∑
x∈X

∑
y∈Y

p(x) Pr[y|x] log Pr[y|x]

Let us use the definition of conditional proba-

bility from Sect. 2. 3 to write this definition in

Coq. Like for entropy (Sect. 3. 1. 1), we only care

about distributions. We are given a joint distribu-

tion QP : {fdist B * A} (to be able to write down

the conditional probability Pr[y|x]) from which we

compute the marginal P := Bivar.snd QP (so as to

be able to write p(x)):
(* Module CondEntropy *)

Variables (A B : finType) (QP : {fdist B * A}).

Definition h1 a := - \sum_(b in B)

\Pr_QP[[set b] | [set a]] *

log (\Pr_QP[[set b] | [set a]]).

Let P := Bivar.snd QP.

Definition h := \sum_(a in A) P a * h1 a.

Let us check the validity of our formal definition

with an example of computation and a (non-trivial)

property of conditional entropy.

3. 1. 2. 1 Computation of Conditional En-

tropy

Let us consider the joint distribution with the

following probability mass function [Example 2.2.1

of [9]]:
(* Module conditional_entropy_example. *)

Definition f : 'I_4 * 'I_4 -> R :=

[eta (fun=>0) with

(zero,zero) |-> 1/8, (zero,one) |-> 1/16,

(zero,two) |-> 1/16, (zero,three) |-> 1/4,

(one,zero) |-> 1/16, (one,one) |-> 1/8,

(one,two) |-> 1/16, (one,three) |-> 0,

(two,zero) |-> 1/32, (two,one) |-> 1/32,

(two,two) |-> 1/16, (two,three) |-> 0,

(three,zero) |-> 1/32, (three,one) |-> 1/32,

(three,two) |-> 1/16, (three,three) |-> 0].

Since it is nonnegative and sums to 1, it is a distri-

bution:
Lemma f0 : forall x, 0 <= f x.

Proof. ... Qed.

Lemma f1 :

\sum_(x in {: 'I_4 * 'I_4}) f x = 1.

Proof. ... Qed.

Definition d : {fdist 'I_4 * 'I_4} :=

FDist.make f0 f1.

The constructor FDist.make is a variant of the

constructor FDist.mk of Sect. 2. 1. We compute

H(X|Y ) where X and Y are random variables

whose joint distribution is d. Using the symbolic

computations capabilities of Coq as implemented

by tactics such as lra, we recover the expected re-

sult:
Lemma conditional_entropyE :

CondEntropy.h d = 11/8.

3. 1. 2. 2 “Information Can’t Hurt”

One important property of information theory is

that conditioning reduces entropy, i.e., H(X|Y ) ≤
H(X) [Thm 2.6.5 of [9]]. Using the formal defini-

tions explained so far, this can be stated in Coq as

follows:
Variables (A B : finType) (PQ : {fdist A * B}).

Let P := Bivar.fst PQ.

Lemma information_cant_hurt :

CondEntropy.h PQ <= `H P.

We provide a succinct Coq proof in Sect. 3. 2. 1,

using the properties of mutual information.

3. 1. 3 The Chain Rule for Entropy

The chain rule for entropy is stated for n ran-

dom variables X1, X2, . . . , Xn drawn according to

p(x1, x2, . . . , xn) [Thm 2.5.1 of [9]]:

H(X1, . . . , Xn) =

n∑
i=1

H(Xi |Xi−1, . . . , X1)

First, we observe that 0 < n. We reflect this in

the formal statement below by considering n.+1 in-

stead of n. Second, we observe that the pencil-and-

paper notation is such that H(Xi |Xi−1, . . . , X1) =

H(X1) when i = 1. This is why, in the formal state-

ment below, we distinguish the case where i = 1

from the case where 1 < i (which become i = 0

and 0 < i in Coq where we count from O):
Lemma chain_rule_rV

A n (P : {fdist 'rV[A]_n.+1}) :

`H P = \sum_(i < n.+1)

if i == O then
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`H (Multivar.head_of P)

else

CondEntropy.h (Swap.d (Multivar.belast_last

(Take.d P (lift ord0 i)))).

In the case where i = O, the chain rule returns

`H (Multivar.head_of P), which is equal to `H P

since P is a vector with only one element. The case

with O < i is a little bit involved. The expression

lift ord0 i means i+ 1; it is written with lift so

that it has the appropriate type 'I_n.+2, the type

of natural number strictly less than n.+2 [18]. The

calls to Take.d, Multivar.belast_last, and Swap.d

(see Tables 1 and 3) build the product distribution

corresponding to (Xi+1, (Xi, . . . , X1)). This may

look a little bit more complicated than what one

could expect with lists (instead of (finite-size) vec-

tors), but since distributions have finite support we

cannot easily recast the problem in terms of “dis-

tributions of lists”.

The proof is by induction on n and uses as an

intermediate lemma the “chain rule” [Thm 2.2.1 of

[9]], which is actually a version of the chain rule

for entropy but restricted to three random vari-

ables. One can find this restricted version in re-

lated work (e.g., [20]), but we are not aware of an

existing generalization to n distributions. The for-

mal statement above shows that the need to build

a variety of joint distributions makes the general-

ization not immediate. It is nevertheless useful, for

example to prove the chain rule for information (see

Sect. 3. 2. 3) or Han’s inequality (see [7]).

3. 2 Mutual Information and Conditional

Mutual Information

In this section, we give an overview of our formal-

ization of mutual information, conditional mutual

information, and the chain rule for information. It

is technically a bit more involved than the formal-

ization of conditional entropy in Sect. 3. 1, but it

uses similar ideas, hence the shorter presentation.

3. 2. 1 Mutual Information

Mutual information quantifies the information

shared by two random variables. Given two

random variables X and Y with joint probabil-

ity mass function p(x, y) and marginals p(x) and

p(y), mutual information is defined as I(X ; Y ) =

D(p(x, y) || p(x)p(y)) where D(· || ·) is the Kullback-

Leibler distance [Sect. 2.3 of [9]] (also called relative

entropy). The formal definition is immediate given

that we have already defined in previous work [6]

the relative entropy D(... || ...) and the product

distribution `x:
Variables (A B : finType) (PQ : {fdist A * B}).

Let P := Bivar.fst PQ.

Let Q := Bivar.snd PQ.

Definition mi := D(PQ || P `x Q).

The notation P `x Q is for the distribution with

probability mass function (x, y) 7→ P (x)×Q(x). It

is defined using a more generic construct (where the

second projection may depend on the first one) that

will be better explained in the context of Sect. 3. 3.

This formal definition is equipped with the

mandatory lemmas that, among others, provide a

short proof for the “information can’t hurt” prop-

erty of Sect. 3. 1. 2:
Lemma information_cant_hurt :

CondEntropy.h PQ <= `H P.

Proof.

rewrite -subR_ge0 -MutualInfo.miE;

exact: MutualInfo.mi_ge0.

Qed.

MutualInfo.miE provides an alternative definition

of mutual information in terms of entropy (i.e.,

I(X ; Y ) = H(X) − H(X |Y ) [Thm 2.4.1 of [9]])

and MutualInfo.mi_ge0 establishes that mutual in-

formation is nonnegative [p. 28 of [9]].

3. 2. 2 Conditional Mutual Information

Conditional mutual information quantifies the in-

formation shared by two random variables under

the assumption that the result of a third random

variable is already known: I(X;Y |Z) = H(X |Z)−
H(X |Y,Z) [Sect. 2.5 of [9]]. The formalization is

immediate given the definition of conditional en-
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tropy from Sect. 3. 1. 2:
Variables (A B C : finType)

(PQR : {fdist A * B * C}).

Definition cmi :=

CondEntropy.h (Proj13.d PQR) -

CondEntropy.h (PairA.d PQR).

3. 2. 3 The Chain Rule for Information

Mutual information and conditional mutual in-

formation satisfy a chain rule [Thm 2.5.2 of [9]]:

I(X1, X2, . . . , Xn ; Y ) =

n∑
i=1

I(Xi;Y |Xi−1, . . . , X1)

It looks similar to the chain rule for entropy and

conditional entropy of Sect. 3. 1. 3.

For the formal statement, we first prepare the

joint distribution X1, X2, . . . , Xn, Y as the distri-

bution PY of type {fdist 'rV[A]_n.+1 * B}:
Variables (A : finType). Let B := A.

Variables (n : nat)

(PY : {fdist 'rV[A]_n.+1 * B}).

For the case where i = 1, we take the mu-

tual information of the distribution X1, Y , i.e.,

(PairNth.d PY ord0) (ord0 is the natural number 0

but with the type 'I_n.+1). For the case where 1 <

i, we take the conditional mutual information of

the distribution Xi, Y, (Xi−1, . . . , X1), i.e., the dis-

tribution TripC23.d (TripC12.d (PairTake.d PY i))

that we build as the function f23:
Let f (i : 'I_n.+1) : {fdist A * 'rV[A]_i * B} :=

TripC12.d (PairTake.d PY i).

Let f23 (i : 'I_n.+1) : {fdist A * B * 'rV[A]_i} :=

TripC23.d (f i).

Lemma chain_rule_information :

MutualInfo.mi PY = \sum_(i < n.+1)

if i == O then

MutualInfo.mi (PairNth.d PY ord0)

else

cmi (f23 i).

The proof uses the chain rule for entropy of

Sect. 3. 1. 3.

3. 3 Convexity of Entropy and Mutual In-

formation

The goals of this section are formal proofs of con-

vexity for entropy and mutual information. We

start by defining convexity using the notion of con-

vex space [15].

Let A and B be convex spaces. A function f of

type A -> B is convex when it satisfies the predi-

cate convex_function:
Definition convex_function_at a b (p : prob) :=

f (a <| p |> b) <= f a <| p |> f b.

Definition convex_function :=

forall a b (p : prob),

convex_function_at f a b p.

The type prob is for reals between 0 and 1;

a <| p |> b is a notation for p×a+(1−p)×b. Sim-

ilarly, the predicate concave_function is for func-

tions f such that −f is convex. The above defini-

tion applies to the type of finite distributions and

to the type of Coq reals R which both happen to

be convex spaces; in particular, to indicate to the

type system of Coq that finite distributions over A

are to be seen as forming a convex space, we use

the type fdist_convType A instead of {fdist A}. We

do not explain here in details the formalization of

convex spaces, it is the object of a forthcoming pub-

lication, in the meantime all the details are in the

Coq formalization [file convex_choice.v of [7]].

Given the above definitions, we can state the con-

vexity of entropy as follows [Thm 2.7.3 of [9]]:
Variable (A : finType).

Hypothesis A_not_empty : 0 < #|A|.

Lemma entropy_concave : concave_function

(fun P : fdist_convType A => `H P).

The proof relies on a convexity property of relative

entropy.

The convexity of mutual information requires

an additional construct. Let us first recall the

pencil-and-paper statement. Let (X,Y ) be two

random variables drawn according to p(x, y) =

p(x) Pr[y|x]. For fixed Pr[y|x], I(X ; Y ) is a con-

cave function of p(x) [first part of Thm 2.7.4 of [9]].

In the formal statement, we represent Pr[y|x] as

W : A -> {fdist B} (i.e., a stochastic matrix), and

p(x) is given as the parameter P : {fdist A}. We

build the joint distribution p(x, y) using the func-

tion make_joint defined as follows:
(* Module CFDist *)



Vol. 0 No. 0 1983 9

Variables (A B : finType).

Record t :=

mkt {P : {fdist A} ; W :> A -> {fdist B}}.

Definition joint_of (x : t) : {fdist A * B} :=

ProdDist.d (P x) (W x).

Definition make_joint (P : dist A)

(W : A -> dist B) : {fdist A * B} :=

joint_of (mkt P W).

Given a distribution P and a stochastic ma-

trix W, ProdDist.d builds the “product distribution”

with probability mass function (x, y) 7→ P (x) ×
Q(x, y). (This explains the product distribution

of Sect. 3. 2. 1: P `x Q is actually a notation for

ProdDist.d P (fun=> Q).) By construction, the left

marginal of the joint distribution is P, which is one

part of the original condition (specifically the con-

dition p(x, y) = p(x) Pr[y|x]) and lets us prove the

concavity of mutual information (when its second

argument is blocked):
Variables (A B : finType) (Q : A -> {fdist B}).

Hypothesis B_not_empty : 0 < #|B|.

Lemma mutual_information_concave :

concave_function

(fun P : fdist_convType A =>

MutualInfo.mi (CFDist.make_joint P Q)).

The proof uses the convexity of entropy as an in-

termediate step.

The convexity of mutual information (as a func-

tion of Pr[y|x] for fixed p(x)) [second part of

Thm 2.7.4 of [9]] follows along similar lines (see [7]).

3. 4 More Information Theory

We were actually able to formalize more infor-

mation theory than what we have explained so far.

At the time of this writing, we have almost com-

pleted the formalization of [Chapter 2 of [9]]: only

the sections about sufficient statistics and Fano’s

inequality are left unexplored.

Among theorems that we have not explained are

also the chain rule for relative entropy [Thm 2.5.3 of

[9]], the independence bound on entropy [Thm 2.6.6

of [9]], the definition of Markov chains, and the

data-processing inequality [Thm 2.8.1 of [9]].

This work uses and complements our previous

work that already provides in Coq several theo-

rems from [Chapter 2 of [9]]: Jensen’s inequality

[Thm 2.6.2 of [9]] (see [5]), the log sum inequal-

ity [Thm 2.7.1 of [9]] (see [6]), and the proof that

the nonnegativity of the second derivative implies

convexity [Thm 2.6.1 of [9]].

4 Application 2: Formalization of Con-

ditional Independence

As a second application of our formalization of

conditional probability and joint distributions, we

formalize conditional independence and we validate

this formal definition by establishing the graphoid

axioms.

4. 1 Random Variables

Given a distribution P : {fdist U}, a random

variable over A is defined as a function of type

U -> A, where A is expected to be some finite type†1

for the values that the random variable can take:
Definition RV {U : finType} (P : {fdist U})

(A : eqType) := U -> A.

This is the same definition as Moreira [20]. In

the following, we use {RV P -> A} as a notation for

RV P A.

A random variable X : {RV P -> A} induces a dis-

tribution over its codomain. This is the distribu-

tion whose probability mass function associates to

each element a of A the probability of the event

corresponding to the pre-image of a via X, i.e.,

FDistMap.d X P (see Sect. 2. 2. 1). We introduce

the Coq notation \Pr[X = a] corresponding to the

probability Pr (FDistMap.d X P) [set a], and more

generally the Coq notation \Pr[X = a | Y = b] for
\Pr_(FDistMap.d [% X, Y] P)[[set a] | [set b]].

Recall the notation for conditional probability from

Sect. 2. 3. The complete Coq definitions and proofs

are available online [files proba.v and cinde.v of

†1 This is not enforced by the definition that only

requires a type with a decidable equality but this

is required by most useful lemmas.



10 コンピュータソフトウェア

[7]].

In this setting, we observe in particular that we

can create random variables by pairing existing ran-

dom variables:
Variables (U : finType) (P : {fdist U}).

Variables (A : finType) (X : {RV P -> A})

(B : finType) (Y : {RV P -> B}).

Definition RV2 : {RV P -> A * B} :=

fun x => (X x, Y x).

In the following, [% X, Y, ..., Z] denotes the iter-

ated pairing of the random variables X, Y, . . . , Z.

4. 2 Conditional Independence

We are concerned with the formalization of the

predicate X ⊥ Y |Z, which intuitively means that

X is independent of Y given Z. We first recall the

textbook definition.

Definition 1 (Conditional Independence [Defini-

tion 2.4 of [16]]). Let X, Y , and Z be random vari-

ables and P be a distribution. X is conditionally

independent of Y given Z in the distribution P if

for all values a, b, and c (belonging resp. to the

codomains of X, Y , and Z), we have:

Pr(X = a, Y = b|Z = c) =

Pr(X = a|Z = c) Pr(Y = b|Z = c).

We now move on to the formal definition of con-

ditional independence. First, we give ourselves a

sample space U with a distribution P : {fdist U}:
Variables (U : finType) (P : {fdist U}).

Second, we declare three random variables X, Y,

and Z:
Variables (A B C : finType).

Variables (X : {RV P -> A}) (Y : {RV P -> B})

(Z : {RV P -> C}).

Finally, we state the property of conditional inde-

pendence (Coq notation: X _|_ Y | Z):
Definition cinde_drv := forall a b c,

\Pr[ [% X, Y] = (a, b) | Z = c ] =

\Pr[ X = a | Z = c ] * \Pr[ Y = b | Z = c].

Comparison with the pencil-and-paper definition is

immediate. The fact that each probability appear-

ing in this definition relies on different distributions

can still be guessed by the reader from the occur-

rences of the random variables X, Y, Z, but more-

over it is now possible to unfold formal definitions

to discover explicitly that, say, distributions in the

right hand-side are marginals of the distribution in

the left hand-side. One goal of our formalization is

however to provide enough definitions and lemmas

to avoid doing unfolding and keeping formal proofs

as simple as possible.

4. 3 Conditional Independence is a Graphoid

Conditional independence satisfies the graphoid

axioms [21]:

• Symmetry: X ⊥ Y |Z implies Y ⊥ X |Z.

• Decomposition: X ⊥ Y,W |Z implies X ⊥
Y |Z.

• Weak union: X ⊥ Y,W |Z implies X ⊥
Y |Z,W .

• Contraction: X ⊥ W |Z, Y and X ⊥ Y |Z
imply X ⊥ Y,W |Z.

• Intersection: X ⊥ Y |Z,W and X ⊥ W |Z, Y
imply X ⊥ Y,W |Z for positive distributions.

These axioms have an intuitive interpretation. For

example, symmetry means that in a state Z where

X says nothing new about Y , then Y says nothing

new about X; decomposition means that if Y , W

say nothing new about X, then Y alone does not

say anything new about X; etc.

We have proved that the graphoid axioms for

conditional independence are satisfied by the con-

struction of finite discrete probability theory on top

of finite types and real numbers seen in Sect. 2. 1.

We detail the formal proofs below, pencil-and-

paper proofs have been reconstructed from [16] [22].

The full script is available online [file cinde.v of

[7]].

4. 3. 1 The Proof of Symmetry in Coq

Let us recall the pencil-and-paper proof:

Lemma 1 (Symmetry). X ⊥ Y |Z implies Y ⊥
X |Z.
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Proof.

P (Y,X|Z) = P (X,Y |Z)

(by set-theoretic reasoning)

= P (X|Z)P (Y |Z)

(because X ⊥ Y |Z)

= P (Y |Z)P (X|Z)

(by commutativity of multiplication)

In Coq, we write the statement “X ⊥ Y |Z im-

plies Y ⊥ X |Z” as follows:
Variable (U : finType) (P : {fdist U}).

Variables (A B C : finType) (X : {RV P -> A})

(Y : {RV P -> B}) (Z : {RV P -> C}).

Lemma symmetry : X _|_ Y | Z -> Y _|_ X | Z.

The proof script follows the pencil-and-paper

proof:
1 Lemma symmetry : X _|_ Y | Z -> Y _|_ X | Z.

2 Proof.

3 move=> H b a c.

4 rewrite RV_Pr_lC.

5 rewrite H.

6 by rewrite mulRC.

7 Qed.

At the beginning of the proof, there is no syntac-

tic match between the random variables in the hy-

pothesis and in the goal: the hypothesis is about

the random variables [% X, Y, Z] whereas the goal

is about [% Y, X, Z]. The purpose of line 4 is to

swap the two leading random variables so as to be

able to rewrite with the hypothesis at line 5. We

apply the commutativity of multiplication at line 6,

which completes the proof.

4. 3. 2 The Proof of Decomposition in Coq

The proof of decomposition is more involved than

symmetry; it relies in particular on “reasoning by

cases”, i.e., P (X|Y ) =
∑

z P (X, z|Y ), which be-

comes in our formalization:
Lemma reasoning_by_cases E F :

\Pr[ X \in E | Y \in F ] =

\sum_(z <- fin_img Z)

\Pr[ [% X, Z] \in setX E [set z] | Y \in F ].

where E and F are two events and fin_img is the

(finite) image of a random variable. The notation

\Pr[X \in E | Y \in F] stands for

\Pr_(FDistMap.d [% X, Y] P)[E | F]

and comes as a slight generalization of the notation

introduced in Sect. 4. 1.

Lemma 2 (Decomposition). X ⊥ Y,W |Z implies

X ⊥ Y |Z.

Proof. [Sect. 2.1.4.3 of [16]]

P (X,Y |Z) =
∑
w

P (X,Y,w|Z)

(reasoning by cases)

=
∑
w

P (X|Z)P (Y,w|Z)

(by X ⊥ Y,W |Z)

= P (X|Z)
∑
w

P (Y,w|Z)

(by distributivity)

= P (X|Z)P (Y |Z)

(reasoning by cases)

Here follows the proof statement in Coq:
Variables (U : finType) (P : {fdist U})

(A B C D : finType).

Variables (X : {RV P -> A}) (Y : {RV P -> B})

(Z : {RV P -> C}) (W : {RV P -> D}).

Lemma decomposition :

X _|_ [% Y, W] | Z -> X _|_ Y | Z.

Figure 1 displays a proof script that proved de-

composition. Although it is not necessary (and

actually lengthen the proof artificially), we have

added transitivity steps to easy comparison with

the pencil-and-paper proof. The first subgoal ap-

pears explicitly at line 4. Solving it is essentially

a matter of reasoning by cases (see line 5). The

second subgoal appears explicitly at line 7. It is

essentially solved by using the hypothesis of condi-

tional independence at line 9. Line 10 is where we

use the distributivity of multiplication w.r.t. addi-

tion. Line 11 is the conclusive reasoning by cases.

The lines that we have not explained in details are

just trivial manipulations of random variables and

finites sets. For example, RV_Pr_lA is a lemma to re-

arrange random variables appearing in conditional

probabilities by appealing to their associativity.
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1 Lemma decomposition : X _|_ [% Y, W] | Z -> X _|_ Y | Z.

2 Proof.

3 move=> H a b c.

4 transitivity (\sum_(d <- fin_img W) \Pr[ [% X, [% Y, W]] = (a, (b, d)) | Z = c]).

5 rewrite (reasoning_by_cases W); apply eq_bigr => /= d _.

6 by rewrite RV_Pr_lA setX1.

7 transitivity (\sum_(d <- fin_img W)

8 \Pr[ X = a | Z = c] * \Pr[ [% Y, W] = (b, d) | Z = c]).

9 by apply eq_bigr => d _; rewrite H.

10 rewrite -big_distrr /=; congr (_ * _).

11 rewrite (reasoning_by_cases W); apply eq_bigr => d _.

12 by rewrite setX1.

13 Qed.

Figure 1 Proof script for the lemma decomposition

4. 3. 3 The Proof of Weak Union in Coq

The pencil-and-paper proof of weak union is

shorter than decomposition, but uses it as an in-

termediate step.

Lemma 3 (Weak Union). X ⊥ Y,W |Z implies

X ⊥ Y |Z,W .

Proof.

P (X,Y |Z,W ) = P (X|Y,Z,W )P (Y |Z,W )

(by the product rule)

= P (X|Z)P (Y |Z,W )

(because X ⊥ Y,W |Z)

= P (X|Z,W )P (Y |Z,W )

The last step is because X ⊥ W |Z by decomposi-

tion (Lemma 2) from X ⊥ Y,W |Z.

Here follows the proof statement in Coq:
Variables (U : finType) (P : {fdist U})

(A B C D : finType).

Variables (X : {RV P -> A}) (Y : {RV P -> B})

(Z : {RV P -> C}) (W : {RV P -> D}).

Lemma weak_union :

X _|_ [% Y, W] | Z -> X _|_ Y | [% Z, W].

See Fig. 2 for the complete proof script. The first

step appears at line 4 and is completed by applica-

tion of the product rule at line 6. Note that this is

a variant of the product rule presented in Sect. 2. 3:

it is specialized to random variables. The second

step appears at line 7 and is completed by using

the conditional independence hypothesis at line 11.

The use of decomposition can be observed at line 14

(where the lemma cinde_drv_2C just operates a re-

ordering of random variables) and is followed by an-

other use of the conditional independence hypoth-

esis at line 15.

The proof script is maybe longer than what one

could expect given the previous examples. This

is because of corner cases with null probabilities,

that are often ignored in pencil-and-paper proofs.

Here they come from the application of the lemma

cindeP, which establishes

X ⊥ Y |Z → P (X|Y,Z) = P (X|Z)

under the hypothesis that P (Y,Z) 6= 0.

4. 3. 4 The Proof of Contraction in Coq

The proof of contraction uses that same ideas as

previous proofs:

Lemma 4 (Contraction). X ⊥ W |Z, Y and X ⊥
Y |Z imply X ⊥ Y,W |Z.

Proof.

P (X,Y,W |Z) = P (X|Y,W,Z)P (Y,W |Z)

(by the product rule)

= P (X|Y,Z)P (Y,W |Z)

(because X ⊥ W |Z, Y )

= P (X|Z)P (Y,W |Z)

(because X ⊥ Y |Z)

We display the formal proofs of contraction in

Fig. 3 for the sake of completeness but without fur-

ther comments since it uses the same ingredients as
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1 Lemma weak_union : X _|_ [% Y, W] | Z -> X _|_ Y | [% Z, W].

2 Proof.

3 move=> H a b [c d].

4 transitivity (\Pr[ X = a | [% Y, Z, W] = (b, c, d)] *

5 \Pr[ Y = b | [% Z, W] = (c, d)]).

6 by rewrite RV_product_rule RV_Pr_rA.

7 transitivity (\Pr[ X = a | Z = c] * \Pr[ Y = b | [% Z, W] = (c, d)]).

8 rewrite RV_Pr_rAC.

9 case/boolP : (\Pr[ [% Y, W, Z] = (b, d, c)] == 0) => [/eqP|] H0.

10 - by rewrite [X in _ * X = _ * X]RV_cPrE RV_Pr_A RV_Pr_AC H0 div0R !mulR0.

11 - by rewrite (cindeP _ H).

12 case/boolP : (\Pr[ [% Z, W] = (c, d) ] == 0) => [/eqP|] ?.

13 - by rewrite [X in _ * X = _ * X]RV_cPrE RV_Pr_domin_snd ?(div0R,mulR0).

14 - have {H}H : X _|_ W | Z by move/cinde_drv_2C : H; apply decomposition.

15 by rewrite [in X in _ = X * _]RV_Pr_rC (cindeP _ H) // RV_Pr_C.

16 Qed.

Figure 2 Proof script for the lemma weak_union

Fig. 2.

4. 3. 5 The Proof of Intersection in Coq

The proof of intersection is the most involved of

all graphoid axioms. In particular, intersection uses

contraction, and reasoning by cases and the prod-

uct rule as intermediate steps.

Lemma 5 (Intersection). X ⊥ Y |Z,W (1) and

X ⊥ W |Z, Y (2) imply X ⊥ Y,W |Z provided that

the distribution Y,Z,W is positive (3) and the type

of the codomain of W is not empty (4).

Proof. It suffices to show X ⊥ Y |Z by contraction

(Lemma 4) because we already have (2).

The goal is therefore P (X,Y |Z) = P (X|Z)P (Y |Z)

which is proved as follows:

P (X|Z)P (Y |Z) =
∑
w

P (X,w,Z)P (Y |Z)

(reasoning by cases)

=
∑
w

P (X,Y |Z)P (w|Z)

(see (*) below)

= P (X,Y |Z)
∑
w

P (w|Z)

(by distributivity)

= P (X,Y |Z)

The last step is by conditional probability of the

universal set (Sect. 2. 3) and (4).

Proof of step (*): By (2), (3), and the product

rule, we have P (X|Y,Z) = P (X|W,Z, Y ).

By (1), (3), and the product rule, we have

P (X|W,Z) = P (X|Y,W,Z).

Therefore we have P (X|Y,Z) = P (X|W,Z).

By (3) and the product rule, we derive
P (X,Y |Z)

P (Y |Z)
=

P (X,W |Z)

P (W |Z)
,

which implies

P (X,Y |Z)P (W |Z) = P (X,W |Z)P (Y |Z)

and∑
w

P (X,Y |Z)P (w|Z) =
∑
w

P (X,w|Z)P (Y |Z).

The longer proof of intersection naturally trans-

lated into a longer proof script that we partially

display in Fig. 4. Its structure is however still

readable. The first step using contraction appears

at line 4. It is a “it suffices to” step that is con-

veniently represented by the suff tactic of SSRe-

flect. The other steps of the main proof appear

respectively at line 6 (reasoning by cases), line 10

((*) step, lines 9 and 27 (distributivity), and af-

ter line 27 for the conclusion. The technicalities of

the (*) step have been omitted but can be found

online [file cinde.v of [7]].
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1 Lemma contraction : X _|_ W | [% Z, Y] -> X _|_ Y | Z -> X _|_ [% Y, W] | Z.

2 Proof.

3 move=> H1 H2 a [b d] c.

4 rewrite RV_product_rule.

5 transitivity (\Pr[X = a | [% Y, Z] = (b, c)] * \Pr[[% Y, W] = (b, d) | Z = c]).

6 rewrite -RV_Pr_rA [in X in X * _ = _]RV_Pr_rC -RV_Pr_rA.

7 case/boolP : (\Pr[ [% W, [% Z, Y]] = (d, (c, b))] == 0) => [/eqP|] H0.

8 rewrite [in X in _ * X = _ * X]RV_cPrE.

9 by rewrite -RV_Pr_A RV_Pr_C -RV_Pr_A H0 div0R !mulR0.

10 by rewrite (cindeP _ H1) // RV_Pr_rC.

11 case/boolP : (\Pr[ [% Y, Z] = (b, c) ] == 0) => [/eqP|] H0.

12 - rewrite [X in _ * X = _ * X]RV_cPrE.

13 by rewrite RV_Pr_AC RV_Pr_domin_fst ?div0R ?mulR0.

14 - by rewrite (cindeP _ H2).

15 Qed.

Figure 3 Proof script for the lemma contraction

4. 4 Application of the Graphoid Axioms

Now that we have proved the graphoid axioms,

we can derive most rules to reason formally about

probabilistic models. For example, the chaining

rule uses all the semi-graphoid axioms (i.e., the

graphoid axioms except intersection):
Lemma chaining_rule :

X _|_ Z | Y /\ [% X, Y] _|_ W | Z ->

X _|_ W | Y.

Proof.

case=> ? ?.

suff : X _|_ [% W, Z] | Y by move/decomposition.

apply/cinde_drv_2C/contraction => //.

exact/cinde_drv_3C/symmetry/weak_union/symmetry.

Qed.

The lemmas cinde_drv_XC operate mere reorderings

of random variables (we already saw the lemma

cinde_drv_2C in Sect. 4. 3. 3).

See also the mixing rule for another example of

derived rule [file cinde.v of [7]].

5 Related Work

The theory of conditional probabilities (Bayes’

theorems, etc.) is developed in HOL and applied

to the analysis of the binary asymmetric chan-

nel [13], but there does not seem to be any theory

of joint distributions in this work. We were able

to reproduce the same theory of conditional prob-

abilities as [13] in the setting of Sect. 2. 3, except

for lemmas involving countable unions which are

not handled by the theory of finite sets of Math-

Comp. Information-theoretic notions such as en-

tropy, relative entropy, and mutual information are

defined in HOL using a formalization of probabil-

ity based on measure theory and Lebesgue inte-

gration [19], but there does not seem to be much

lemmas about them. There are more information-

theoretic notions (e.g., conditional mutual infor-

mation information) defined Isabelle/HOL using

Lebesgue integration [14]. Compared to the work

above, our work features much more lemmas (all

the chain rules, lemmas about conditional indepen-

dence, etc.).

Our work uses a Coq library [7] that comes with

a formalization of distributions and probabilities

(including basic lemmas such as the weak law of

large numbers) and applications to information the-

ory. This work already features definitions of condi-

tional entropy and mutual information but special-

ized for a setting with one input distribution P and

one stochastic matrixW , which models a channel of

communication. In this setting, one starts by defin-

ing a joint distribution J(P,W ) and then uses this

distribution to define conditional entropy H(W |P )

and mutual information I(P,W ) (these notations

departs from [9] but are not uncommon, see, e.g.,

[10]). We can prove that each entry of W corre-
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1 Lemma intersection : X _|_ Y | [% Z, W] -> X _|_ W | [% Z, Y] -> X _|_ [% Y, W] | Z.

2 Proof.

3 move=> H1 H2.

4 suff : X _|_ Y | Z by apply contraction.

5 move=> a b c; apply/esym.

6 rewrite [in X in X * _ = _](reasoning_by_cases W).

7 evar (h : D -> R); rewrite (eq_bigr h); last first.

8 move=> d _; rewrite setX1 /h; reflexivity.

9 rewrite {}/h big_distrl /=.

10 have <- : \sum_(d <- fin_img W)

11 \Pr[ [% X, Y] = (a, b) | Z = c] * \Pr[ W = d | Z = c] =

12 \sum_(d <- fin_img W)

13 \Pr[ [% X, W] = (a, d) | Z = c] * \Pr[ Y = b | Z = c].

14 suff H : forall d, \Pr[ [% X, Y] = (a, b) | Z = c] / \Pr[ Y = b | Z = c ] =

15 \Pr[ [% X, W] = (a, d) | Z = c] / \Pr[ W = d | Z = c ].

16 ... (* by using properties of positive distributions *)

17 suff H : forall d, \Pr[ X = a | [% Y, Z] = (b, c)] =

18 \Pr[ X = a | [% W, Z] = (d, c)].

19 ... (* by using the product rule *)

20 have {H2}H2 : forall d, \Pr[ X = a | [% Y, Z] = (b, c)] =

21 \Pr[ X = a | [% W, Z, Y] = (d, c, b)].

22 ... (* by using the product rule and the second conditional independence hypothesis *)

23 have {H1}H1 : forall d, \Pr[ X = a | [% W, Z] = (d, c)] =

24 \Pr[ X = a | [% Y, W, Z] = (b, d, c)].

25 ... (* by using the product rule and the first conditional independence hypothesis *)

26 by move=> d; rewrite {H2}(H2 d) {}H1 RV_Pr_rC RV_Pr_rA.

27 rewrite -big_distrr /= cPr_1_RV ?mulR1 //.

28 move: (P0 b c D_not_empty); apply: contra.

29 by rewrite RV_Pr_AC => /eqP/(RV_Pr_domin_snd [% Y, W] (b, D_not_empty)) ->.

30 Qed.

Figure 4 Partial proof script for the lemma intersection

(see [file cinde.v of [7]] for the complete proof script)

sponds to a conditional probability using J(P,W ):
Variables (A B : finType) (W : `Ch_1(A, B))

(P : {fdist A}).

Let QP := Swap.d (`J(P, W)).

Lemma WcPr : forall a b, P a != 0 ->

W a b = \Pr_QP[[set b] | [set a]].

It follows thatH(W |P ) is equal to CondEntropy.h QP

and I(P,W ) is equal to MutualInfo.mi QP. Simi-

larly, in [2], we defined aposteriori probabilities us-

ing P and W :

PW (x|y) def
=

P (x)Wn(y|x)∑
x′∈An P (x′)Wn(y|x′)

.

We can now show that PW (x|y) is equal

to \Pr_(`J(P, W ``^ n))[[set x]|[set y]] where

`J(P, W ``^ n) is the joint distribution of the nth

extension of the channel W . See [file chap2.v of

[7]] for details. In other words, the work we present

in this paper simplifies and generalizes our previous

work.

There is another formalization of information

theory that uses a similar setting [20]. Distribu-

tions are defined similarly, which is not surprising

because it is natural to use the big operators of

MathComp in this way. The definition of random

variable in Sect. 4. 1 is the same definition as [20].

Yet, that work stops at an early stage with the

chain rule for entropy restricted to three variables

and the definition of mutual information. Another

limitation of this formalization is that it axioma-

tizes the logarithm, whereas InfoTheo is compat-

ible with the logarithm defined in the standard li-

brary of Coq.

Our work connects concretely to the semantics

of probabilistic programming languages. We are
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currently using the InfoTheo library to provide a

formal model for a monad combining probability

and nondeterminism [3]. It happens that such a

model requires the notion of convex spaces that we

have developed in Sect. 3. 3.

Regarding conditional independence, one can

find a formal definition of the graphoid axioms in

Coq/SSReflect [23] but this work does not seem

to provide the underlying formalization of proba-

bilities; instead, it focuses on a high-level algebraic

presentation and its application.

The formalization of conditional independence

can be tackled in a different way using string di-

agrams [Proposition 6.10 of [8]].

6 Conclusion

In this paper, we proposed a formalization of con-

ditional probabilities and joint distributions vali-

dated by two original applications: a formalization

of the foundations of information theory and a for-

malization of conditional independence. Our for-

malization of information theory extends previous

work with lemmas that were not formalized before

(e.g., the chain rule for information, convexity of

entropy). Our second application is (to the best of

our knowledge) the first formal account from the

ground up of the graphoid axioms of conditional

independence. The complete formalization is avail-

able online as a conservative extension of the In-

foTheo library [7] (Table 4 summarizes the rele-

vant files).

Using our work, it is now possible to address

new challenges in formalization of information the-

ory and artificial intelligence. Next, we plan to

tackle the formalization of Fano’s inequality, the

formalization of Bayesian networks, and more gen-

erally formal reasoning about probabilistic graphi-

cal models.
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Checked Proof of the Odd Order Theorem. In 4th

International Conference on Interactive Theorem

Proving (ITP 2013), Rennes, France, July 22–26,

2013, volume 7998 of Lecture Notes in Computer

Science, pages 163–179. Springer, 2013.

[13] O. Hasan and S. Tahar. Reasoning about condi-

tional probabilities in a higher-order-logic theorem

prover. Journal of Applied Logic, 9(1):23–40, 2011.

[14] J. Hölzl. Construction and Stochastic Appli-

cations of Measure Spaces in Higher-Order Logic.

PhD thesis, Technische Universität München Insti-

tut für Informatik, 2012.

[15] B. Jacobs. Convexity, Duality and Effects.

In Theoretical Computer Science, volume 323 of

IFIP Advances in Information and Communication

Technology, pages 1–19. Springer, 2010.

[16] D. Koller and N. Friedman. Probabilistic Graph-

ical Models: Principles and Techniques. MIT Press,

2009.

[17] X. Leroy. Formal verification of a realistic com-

piler. Communications of the ACM, 52(7):107–115.

ACM, 2009.

[18] A. Mahboubi and E. Tassi. Mathematical Com-

ponents. Available at: https://math-comp.github.

io/mcb/ (last access: 2019/09/29), 2016. With con-

tributions by Y. Bertot and G. Gonthier. Version of

2018/08/11.

[19] T. Mhamdi, O. Hasan, and S. Tahar. Formaliza-

tion of entropy measures in HOL. In 2nd Interna-

tional Conference on Interactive Theorem Proving

(ITP 2011), Berg en Dal, The Netherlands, August

22–25, 2011, volume 6898 of Lecture Notes in Com-

puter Science, pages 233–248. Springer, 2011.

[20] D. A. C. V. Moreira. Finite probabil-

ity distributions in Coq. Master’s thesis, Uni-

versidade do Minho, Escola de Engenharia, 01

2012. http://mei.di.uminho.pt/sites/default/

files/dissertacoes//eeum_di_dissertacao_pg16019.

pdf (last access: 2019/09/29).

[21] J. Pearl and A. Paz. GRAPHOIDS: A graph-

based logic for reasoning about relevance relations.

Technical Report R-53 850038, UCLA Computer

Science Department, Dec 1985.

[22] StackExchange. What does the decompo-

sition, weak union and contraction rule mean

for conditional probability and what are their

proofs? https://math.stackexchange.com/

questions/855002/what-does-the-decomposition-

weak-union-and-contraction-rule-mean-for-conditiona

(last access: 2019/06/13)

[23] R. Yamaguchi, K. Kin, S. Shimoyama, M. Hagi-

wara, M. Yamamoto, and J. Wang. Formalization of

the conditional independence using Coq/SSReflect.

Technical Reports of Mathematical Sciences, Chiba

University, 29:1–40, Department of Mathematics

and Informatics Graduate School of Science, Chiba

University, Japan, 2016. In Japanese.


