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Abstract Probabilities occur in many applications of computer science, such as
communication theory and artificial intelligence. These are critical applications that
require some form of verification to guarantee the quality of their implementations.
Unfortunately, probabilities are also the typical example of a mathematical theory
whose abuses of notations make pencil-and-paper proofs difficult to formalize. In
this paper, we experiment a new formalization of conditional probabilities that we
validate with two applications. First, we formalize the foundational definitions and
theorems of information theory, extending previous work with new lemmas. Second,
we formalize the notion of conditional independence and its properties, paving the
road for a formalization of graphical probabilistic models.

1 Introduction

Probabilities occur in many applications of computer science. One finds them in information
theory to reason about the size of compressed data, in quantitative information flow analysis,
in the analysis of side-channel attacks, etc. They are also omnipresent in artificial intelligence.
These are critical applications that require some form of verification to guarantee the quality of
their implementations.

Unfortunately, pencil-and-paper proofs about probabilities are not easily amenable to for-
malization. The first reason is that it is a difficult topic. The “ideal” approach (in the sense
of “most general”) seems to be to derive the formalization of probabilities from a formalization
of measure theory and Lebesgue integration. Unfortunately, not all proof assistants have such
formalizations available (there is one in HOL [MHT11] and one in Isabelle/HOL [Höl12]). In
fact, most proof assistants do not even have a decent formalization of real analysis, and, more
generally, what is a good formalization of real analysis is still a topic of research [ACR18]. On
the other hand, information theory and artificial intelligence (the computer science topics we
are interested in) are mostly about discrete probabilities, so that a full-fledged formalization
of measure theory and Lebesgue integration looks like a sledgehammer to crack a nut. There
therefore seems to be much value in exploring a mechanization of discrete probabilities that
allows for formal reasoning without this detour. Though arguably a substantial simplification,
this does not provide an immediate solution because probabilities are the typical example of a
mathematical theory where abuses of notations are omnipresent. This is the second reason
why formalization of probabilities is difficult. Indeed, it is not obvious how to recover the terse-
ness of the presentation of information theory or artificial intelligence textbooks. The latter
typically feature many implicit assumptions; the main example is the omission of the underlying
distributions when talking about probabilities, often ruled out as “obvious from context”. But
what is obvious for a human reader is generally not for a proof assistant.
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In this paper, we focus on the problem of formalizing and using conditional probabilities
and joint distributions. Concretely, we extend an existing formalization of information the-
ory [AHS+18] with an “explicit” formalization of conditional probability. We say “explicit”
because the original formalization [AHS+18] was already dealing with conditional probabilities
but given in the form of stochastic matrices, as used to model channels in information theory
(see Sect. 5 for a more precise explanation). To show that our extension is indeed useful, we
validate it with two substantial applications:

• First, we formalize the foundations of information theory. This is not a new topic but we
are able to improve on previous work by formalizing lemmas there were not formalized
before. In fact, we are on the verge of completing the formalization of [CT06, Chapter 2],
which provides the basic definitions of the standard textbook for information theory.

• Second, we formalize the notion of conditional independence. We validate this definition
by proving the so-called graphoid axioms [PP85]. We are not aware of a previous attempt
to formalize the graphoid axioms from the ground up, but they are key to reason about
probabilistic graphical models used in artificial intelligence.

Paper Outline In Sect. 2, we explain how we formalize distributions, joint distributions, and
conditional probabilities. In Sect. 3, we explain our formalization of information theory. In
Sect. 4, we explain our formalization of conditional independence. We review related work in
Sect. 5 and conclude in Sect. 6.

About Notations This paper displays Coq code verbatim. We rely on the MathComp
library whose notations are explained when used for the first time. We enforced a uniform
naming convention for variables. We use A, B, C, D, etc. for finite types. We use a, b, etc. for
elements of resp. A, B, etc. We use E : {set A}, F : {set B}, G : {set C}, H : {set D}, etc. for
events. We use P, Q, etc. to range over distributions. We use X, Y, Z, W, etc. for random variables
with values in A, B, C, D, etc.

2 Formalization of Conditional Probability

2.1 Background: Formalization of Distributions with a Finite Support

We use the following formal definition of distributions with a finite support [AHS14]:

Record dist := mkDist {

pmf :> A -> R+ ;

pmf1 : \rsum_(a in A) pmf a = 1}.

A is a type with a finite number of elements: it has type finType [GMT08]. A -> R+ is the
type of functions with domain A and real, nonnegative outputs. \rsum_(a in A) (where a is a
binder) is a notation for the sum over A. {dist A} is a notation that causes the type inference
to correctly identify A has a finType even when A is a composite finType (e.g., the product of
two finite types A1 * A2).

Given a distribution P : {dist A}, we can formalize an event as a finite set over A (i.e.,
a Boolean predicate over A represented as a list, whose type is denoted {set A} [MT16]) and
compute its probability by summing the individual probabilities of its elements:

Variables (A : finType) (P : {dist A}).

Definition Pr (E : {set A}) := \rsum_(a in E) P a.
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2.2 Joint Distributions

Using the definition of Sect. 2.1, a joint distribution can be represented by a distribution over
a product type such as {dist A * B} or {dist 'rV[A]_n} (where 'rV[A]_n represents the type
of row vectors of size n [MT16]).

Given a joint distribution, we often need to consider marginal distributions. For that pur-
pose, we provide a number of functions.

Joint Distributions over a Product Type Bivar.fst (Bivar for “bivariate”) is the left
marginal built from a joint distribution over a product type. It is defined as follows (using the
distributions from Sect. 2.1):

(* Module Bivar *)

Variables (A B : finType) (P : {dist A * B}).

Definition ml a := \rsum_(x in {: A * B} | x.1 == a) P x.

Lemma ml0 a : 0 <= ml a. Proof. ... Qed.

Lemma ml1 : \rsum_(a in A) ml a = 1. Proof. ... Qed.

Definition fst : dist A := locked (makeDist ml0 ml1).

ml is the probability mass function. Its definition uses a general version of the \rsum notation
that allows for filtering (here, only the x’s that satisfy x.1 == a are considered). {: A * B} is
the product type understood as a finite type. ml0 and ml1 prove that ml forms a distribution.
Finally, fst builds the distribution using the makeDist constructor. locked X is a MathComp
construct to prevent unwanted unfolding/evaluation of X during formal proofs: it needs to
be removed explicitly using specific tactics or lemmas (this contributes to more maintainable
proofs).

Regarding joint distributions over a product type, one might also want to build the right
marginal Bivar.snd (which is of course defined similarly) and the distribution Swap.d that swaps
the left and the right elements.

The following table summarizes the distributions that one might want to build from of a
joint distribution over a product type:

Original distribution Built distribution and its type

P : {dist A * B}

Swap.d P {dist B * A}

Bivar.fst P {dist A}

Bivar.snd P {dist B}

A Zoo of Distributions Similarly to joint distributions over a product type, one might want
to build distributions from joint distributions over a triple of distributions. For example, in the
table below, TripC12.d permutes the first and the second element, while Proj13.d build the
marginal w.r.t. the second element:

Original distribution Built distribution and its type

P : {dist A * B * C}

TripA.d P {dist A * (B * C)}

TripC12.d P {dist (B * A) * C}

TripC23.d P {dist (A * C) * B}

TripC13.d P {dist (C * B) * A}

Proj13.d P {dist A * C}

Proj23.d P {dist B * C}

In Sect. 4, we also deal with distributions made of quadruples of distributions. They are
prefixed with Quad and follow a similar naming convention. See Sect. 4.3.2 for example.
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In the case of multivariate distributions (i.e., distributions of type {dist 'rV[A]_n}), one
might want to build the marginals made of the head or the tail, like Multivar.head_of or
Multivar.tail_of in the table below:

Original distribution Built distribution and its type

P : {dist 'rV[A]_n.+1}

Multivar.to_bivar P {dist A * 'rV[A]_n}

Multivar.head_of P {dist A}

Multivar.tail_of P {dist 'rV[A]_n}

Multivar.belast_last P {dist 'rV[A]_n * A}

P : {dist A * 'rV[A]_n} Multivar.from_bivar P {dist 'rV[A]_n.+1}

P : {dist 'rV[A]_n}
Take.d P i {dist 'rV[A]_i}

Nth.d P i {dist A}

P : {dist 'rV[A]_n.+1 * B} PairTake.d P {dist ('rV[A]_i * A) * B}

See 3.2.3 for an explanation of PairTake.d, other distributions should be self-explanatory.

In the following, we will need to make explicit mention of the distributions above, whereas
they are often implicit in pencil-and-paper proofs.

2.3 Conditional Probability

We use joint distributions to define conditional probabilities.
Given a joint distribution P : {dist A * B} and two events E : {set A} and F : {set B},

the probability of E knowing F (i.e., Pr[E|F ]) is formalized as follows:

Variables (A B : finType) (P : {dist A * B}).

Definition cPr E F := Pr P (setX E F) / Pr (Bivar.snd P) F.

setX E F is the Cartesian product of the sets E and F. Using a pencil-and-paper prose that
mentions explicitly the underlying distributions (what many textbooks do not do), the definition

of cPr P E F would read as PrP [E|F ]
def
= PrP (E,F )

PrP2
(F ) , where P2 represents the right marginal of P .

This is why we use the notation \Pr_P[E | F] for cPr P E F in the Coq scripts.
We formalized a number of lemmas about conditional probabilities, such as Bayes’ theorem,

its general form, etc. We do not provide a complete presentation because their proofs follow
known formal proofs [HT11]. Let us just provide two examples that are used to prove the
graphoid axioms in Appendix A. The proofs of the weak union, contraction, and intersection
axioms use the product rule (i.e., Pr[E,F |G] = Pr[E|F,G] Pr[F |G]), which we state formally as
follows:

Lemma product_rule E F G :

\Pr_P [setX E F | G] = \Pr_(TripA.d P) [E | setX F G] * \Pr_(Proj23.d P) [F | G].

The proof of intersection uses the conditional property of the universal set, i.e., the fact that
Pr[U |A] = 1 where U is the universal set and A is an event with non-zero probability:

Variables (A B : finType) (P : {dist B * A}).

Lemma cPr_1 a : Bivar.snd P a != 0 -> \rsum_(b in B) \Pr_P[[set b] | [set a]] = 1.

In the formal definition, [set x] is a MathComp notation for the singleton set {x}.

3 Application 1: Formalization of Information Theory

As a first application of our formalization of conditional probability and joint distributions, we
formalize the basic elements of information theory. This includes lemmas that (to the best of
our knowledge) were not formalized before (e.g., the chain rule for information).
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3.1 Entropy and Conditional Entropy

3.1.1 Background: Entropy

Entropy is a measure of the uncertainty of a random variable. In [CT06, Sect. 2.1], it is
defined as follows (for a random variable X with alphabet X and probability mass function

p(x)
def
= Pr(X = x)):

H(X) = −
∑
x∈X

p(x) log p(x)

Since the body of the definition uses only distributions, we formalized it as follows in [AHS14]
(Coq notation: `H):

Variables (A : finType) (P : {dist A}).

Definition entropy := - \rsum_(a in A) P a * log (P a).

One may wonder what this definition means if p(a) = 0 for some a. Here we rely on the fact
that Coq assumes all functions (including log) to be total. As a result, the product of 0 with
log 0 is equal to 0, which happens to be what we want here. While Coq uses completed
versions of logarithm and division for instance, assuming both of them to be 0 outside of their
usual definition domains, theorems on specific functions are restricted to their usual definition
domains. For instance x/x = 1 is true only if x 6= 0, cf. lemma cPr_1 (Sect. 2.3).

3.1.2 Conditional Entropy

When it comes to conditional entropy, [CT06] gives a choice of several definitions (of course
all equivalent) using slightly different notions: a more primitive notion of conditional entropy
(which is defined simultaneously), using conditional probabilities, using joint distributions, or
using the expectation of a random variable [CT06, Equations 2.10–2.13]. For example, using
conditional probabilities, the definition of conditional entropy reads as follows:

H(Y |X) = −
∑
x∈X

∑
y∈Y

p(x) Pr[y|x] log Pr[y|x]

Let us use the definition of conditional probability from Sect. 2.3 to write this definition in
Coq. Like for entropy (Sect. 3.1.1), we only care about distributions. We are given a joint
distribution QP : {dist B * A} (to be able to write down the conditional probability Pr[y|x])
from which we compute the marginal P := Bivar.snd QP (so as to be able to write p(x)):

(* Module CondEntropy *)

Variables (A B : finType) (QP : {dist B * A}).

Definition h1 a := - \rsum_(b in B)

\Pr_QP[[set b] | [set a]] * log (\Pr_QP[[set b] | [set a]]).

Let P := Bivar.snd QP.

Definition h := \rsum_(a in A) P a * h1 a.

Let us check the validity of our formal definition with an example of computation and a
(non-trivial) property of conditional entropy.

Computation of Conditional Entropy Let us consider the joint distribution with the
following probability mass function [CT06, Example 2.2.1]:

Definition sample_f : 'I_4 * 'I_4 -> R := [eta (fun=>0) with

(zero,zero) |-> 1/8, (zero,one) |-> 1/16, (zero,two) |-> 1/16, (zero,three) |-> 1/4,

(one,zero) |-> 1/16, (one,one) |-> 1/8, (one,two) |-> 1/16, (one,three) |-> 0,

(two,zero) |-> 1/32, (two,one) |-> 1/32, (two,two) |-> 1/16, (two,three) |-> 0,

(three,zero) |-> 1/32, (three,one) |-> 1/32, (three,two) |-> 1/16, (three,three) |-> 0].
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Since it is nonnegative and sums to 1, it is a distribution:

Lemma sample_f0 : forall x, 0 <= sample_f x. Proof. ... Qed.

Lemma sample_f1 : \rsum_(x in {: 'I_4 * 'I_4}) sample_f x = 1. Proof. ... Qed.

Definition sample_d : {dist 'I_4 * 'I_4} := locked (makeDist sample_f0 sample_f1).

We compute H(X|Y ) where X and Y are random variables whose joint distribution is sample_d.
Using the symbolic computations capabilities of Coq as implemented by tactics such as lra,
we recover the expected the result:

Lemma sample_conditional_entropyE : CondEntropy.h sample_d = 11/8.

“Information Can’t Hurt” One important property of information theory is that condi-
tioning reduces entropy, i.e., H(X|Y ) ≤ H(X) [CT06, Thm 2.6.5]. Using the formal definitions
explained so far, this can be stated in Coq as follows:

Variables (A B : finType) (PQ : {dist A * B}).

Let P := Bivar.fst PQ.

Lemma information_cant_hurt : CondEntropy.h PQ <= `H P.

We provide a succinct Coq proof in Sect. 3.2.1, using the properties of mutual information.

3.1.3 The Chain Rule for Entropy

The chain rule for entropy is stated for n random variables X1, X2, . . . , Xn drawn according
to p(x1, x2, . . . , xn) [CT06, Thm 2.5.1]:

H(X1, . . . , Xn) =

n∑
i=1

H(Xi |Xi−1, . . . , X1)

First, we observe that 0 < n. We reflect this in the formal statement below by consider-
ing n.+1 instead of n. Second, we observe that the pencil-and-paper notation is such that
H(Xi |Xi−1, . . . , X1) = H(X1) when i = 1. This is why, in the formal statement below, we
distinguish the case where i = 1 from the case where 1 < i (which become i = 0 and 0 < i in
Coq where we count from O):

Lemma chain_rule_rV A n (P : {dist 'rV[A]_n.+1}) :

`H P = \rsum_(i < n.+1)

if i == O then

`H (Multivar.head_of P)

else

CondEntropy.h (Swap.d (Multivar.belast_last (Take.d P (lift ord0 i)))).

In the case where i = O, the chain rule returns `H (Multivar.head_of P), i.e., `H P, since P is a
vector with only one element. The case with O < i is a little bit involved. lift ord0 i means
i + 1; it is written with lift so that it has the appropriate type 'I_n.+2, the type of natural
number strictly less than n.+2 [MT16]. The calls to Take.d, Multivar.belast_last, and Swap.d

(see Sect. 2.1) build the product distribution corresponding to (Xi+1, (Xi, . . . , X1)). This may
look a little bit more complicated than what one could expect with lists (instead of (finite-size)
vectors), but since distributions have finite support we cannot easily recast the problem in terms
of “distributions of lists”.

The proof is by induction on n and uses as an intermediate lemma the “chain rule” [CT06,
Thm 2.2.1], which is actually a version of the chain rule for entropy but restricted to three
random variables. One can find this restricted version in related work (e.g., [Mor12]), but we
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are not aware of an existing generalization to n distributions. The formal statement above show
that the need to build a variety of joint distributions makes the generalization not immediate.
It is nevertheless useful, for example to prove the chain rule for information (see Sect. 3.2.3) or
Han’s inequality (see [AHS+18]).

3.2 Mutual Information and Conditional Mutual Information

In this section, we give an overview of our formalization of mutual information, conditional
mutual information, and the chain rule for information. It is technically a bit more involved
than the formalization of conditional entropy in Sect. 3.1, but it uses similar ideas, hence the
shorter presentation.

3.2.1 Mutual Information

Mutual information quantifies the information shared by two random variables. Given two
random variables X and Y with joint probability mass function p(x, y) and marginals p(x) and
p(y), mutual information is defined as I(X ; Y ) = D(p(x, y) || p(x)p(y)) where D(· || ·) is the
Kullback-Leibler distance [CT06, Sect. 2.3] (also called relative entropy). The formal definition
is immediate given that we have already defined in previous work [AHS14] the relative entropy
D(... || ...) and the product distribution `x:

Variables (A B : finType) (PQ : {dist A * B}).

Let P := Bivar.fst PQ.

Let Q := Bivar.snd PQ.

Definition mi := D(PQ || P `x Q).

The notation P `x Q is for the distribution with probability mass function (x, y) 7→ P (x)×Q(x).
It is defined using a more generic construct explained in Sect. 3.3.

This formal definition is equipped with the mandatory lemmas that, among others, provide
a short proof for the “information can’t hurt” property of Sect. 3.1.2:

Lemma information_cant_hurt : CondEntropy.h PQ <= `H P.

Proof. rewrite -subR_ge0 -MutualInfo.miE2; exact: MutualInfo.mi_ge0. Qed.

MutualInfo.miE2 provides an alternative definition of mutual information in terms of entropy
(i.e., I(X ; Y ) = H(X)−H(X |Y ) [CT06, Thm 2.4.1]) and MutualInfo.mi_ge0 establishes that
mutual information is nonnegative [CT06, p. 28].

3.2.2 Conditional Mutual Information

Conditional mutual information quantifies the information shared by two random variables
under the assumption that the result of a third random variable is already known: I(X;Y |Z) =
H(X |Z) −H(X |Y,Z) [CT06, Sect. 2.5]. The formalization is immediate given the definition
of conditional entropy from Sect. 3.1.2:

Variables (A B C : finType) (PQR : {dist A * B * C}).

Definition cmi := CondEntropy.h (Proj13.d PQR) - CondEntropy.h (PairA.d PQR).

3.2.3 The Chain Rule for Information

Mutual information and conditional mutual information satisfy a chain rule [CT06, Thm 2.5.2]:

I(X1, X2, . . . , Xn ; Y ) =
n∑

i=1

I(Xi;Y |Xi−1, . . . , X1)

It is similar to the chain rule for entropy and conditional entropy of Sect. 3.1.3.
For the formal statement, we first prepare the joint distribution X1, X2, . . . , Xn, Y as the

distribution PY of type {dist 'rV[A]_n.+1 * B}:
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Variables (A : finType). Let B := A.

Variables (n : nat) (PY : {dist 'rV[A]_n.+1 * B}).

For the case where i = 1, we take the mutual information of the distribution X1, Y , i.e.,
(PairNth.d PY ord0) (ord0 is the natural number 0 but with the type 'I_n.+1). For the case
where 1 < i, we take the conditional mutual information of the distribution Xi, Y, (Xi−1, . . . , X1),
i.e., TripC23.d (TripC12.d (PairTake.d PY i)):

Let f (i : 'I_n.+1) : {dist A * 'rV[A]_i * B} := TripC12.d (PairTake.d PY i).

Let f23 (i : 'I_n.+1) : {dist A * B * 'rV[A]_i} := TripC23.d (f i).

Lemma chain_rule_information :

MutualInfo.mi PY = \rsum_(i < n.+1)

if i == O then

MutualInfo.mi (PairNth.d PY ord0)

else

cmi (f23 i).

The proof uses the chain rule for entropy of Sect. 3.1.3.

3.3 Convexity of Entropy and Mutual Information

The goal of this section are formal proofs of convexity for entropy and mutual information. We
start by defining convexity.

Let A and B be convex spaces. A function f of type A -> B is convex when it satisfies the
predicate convex_function:

Definition convex_function_at a b (t : prob) := f (a <| t |> b) <= f a <| t |> f b.

Definition convex_function := forall a b (t : prob), convex_function_at f a b t.

The type prob is for reals between 0 and 1; a <| t |> b is a notation for t a + (1 − t) b. Sim-
ilarly, the predicate concave_function is for functions f such that −f is convex. The type of
distributions {dist A} (where A is a finite type) and the type of reals R happen to be convex
spaces. See [AHS+18, file convex.v] for details.

Given the above definitions, we can state the convexity of entropy as follows [CT06, Thm 2.7.3]:

Variable (A : finType).

Hypothesis A_not_empty : 0 < #|A|.

Lemma entropy_concave : concave_function (fun P : {dist A} => `H P).

The proof relies on a convexity property of relative entropy.

The convexity of mutual information requires an additional construct. Let us first recall the
pencil-and-paper statement. Let (X,Y ) be two random variables drawn according to p(x, y) =
p(x) Pr[y|x]. For fixed Pr[y|x], I(X ; Y ) is a concave function of p(x) [CT06, Thm 2.7.4, first
part]. In the formal statement, we represent Pr[y|x] as W : A -> {dist B} (i.e., a stochastic
matrix), and p(x) is given as the parameter P : {dist A}. We build the joint distribution
p(x, y) using the function make_joint defined as follows:

(* Module CDist *)

Variables (A B : finType).

Record t := mkt {P : dist A ; W :> A -> dist B}.

Definition joint_of (x : t) : {dist A * B} := ProdDist.d (P x) (W x).

Definition make_joint (P : dist A) (W : A -> dist B) : {dist A * B} :=

joint_of (mkt P W).
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Given a distribution P and a stochastic matrix W, ProdDist.d builds the “product distribution”
with probability mass function (x, y) 7→ P (x)×Q(x, y). (This explains the product distribution
of Sect. 3.2.1: P `x Q is a notation for ProdDist.d P (fun=> Q).) By construction, the left
marginal of the joint distribution is P, which is one part of the original condition p(x, y) =
p(x) Pr[y|x] and lets us prove the convexity of mutual information:

Variables (A B : finType) (Q : A -> dist B).

Hypothesis B_not_empty : 0 < #|B|.

Lemma mutual_information_concave :

concave_function (fun P => MutualInfo.mi (CDist.make_joint P Q)).

The proof uses the convexity of entropy as an intermediate step.
The convexity of mutual information (as a function of Pr[y|x] for fixed p(x)) [CT06, Thm 2.7.4,

second part] follows along similar lines (see [AHS+18]).

3.4 More Information Theory

We were actually able to formalize more information theory than what we have explained so far.
At the time of this writing, we have almost completed the formalization of [CT06, Chapter 2]:
only the sections about sufficient statistics and Fano’s inequality are left unexplored.

Among theorems that we have not explained are also the chain rule for relative entropy
[CT06, Thm 2.5.3], the independence bound on entropy [CT06, Thm 2.6.6], the definition of
Markov chains, and the data-processing inequality [CT06, Thm 2.8.1].

This work uses and complements our previous work that already provides in Coq several
theorems from [CT06, Chapter 2]: Jensen’s inequality [CT06, Thm 2.6.2] (see [AGS18]), the
log sum inequality [CT06, Thm 2.7.1] (see [AHS14]), and the proof that the nonnegativity of
the second derivative implies convexity [CT06, Thm 2.6.1].

4 Application 2: Formalization of Conditional Independence

As a second application of our formalization of conditional probability and joint distributions,
we formalize conditional independence and we validate this formal definition by establishing the
graphoid axioms.

4.1 Random Variables

Given a distribution P : {dist U}, a random variable over A is defined as a function of type
U -> A, where A is some finite type for the values that the random variable can take:

Definition RV {U : finType} (P : {dist U}) (A : finType) := U -> A.

This is the same definition as [Mor12]. In the following, we {RV P -> A} as a notation for RV P A.
A random variable X : {RV P -> A} induces a distribution over its codomain. This is the

distribution whose probability mass function associates to each element a of A the probability
of the event corresponding to the pre-image of a via X:

Definition f a := Pr P [set i | X i == a].

[set i | X i == a] is a MathComp notation for the set X−1(a). RVar.d X is the formalization
of this probability distribution (it just packs the above probability mass function with the proofs
that it is nonnegative and that the sum over its codomain is 1, like we did in Sect. 2.2; see
[AHS+18] for the the complete Coq definitions and proofs).

In this setting, we observe in particular the following:

• The pencil-and-paper definition P (X = a) becomes Pr (RVar.d X) [set a].
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• We can create random variables by pairing existing random variables:

Variables (U : finType) (P : {dist U}).

Variables (A : finType) (X : {RV P -> A}) (B : finType) (Y : {RV P -> B}).

Definition RV2 : {RV P -> A * B} := fun x => (X x, Y x).

In the following, [% X, Y, .., Z] denotes the iterated pairing of the random variables X,
Y, . . . , Z.

4.2 Conditional Independence

We are concerned with the formalization of the predicate X ⊥ Y |Z, which intuitively means
that X is independent of Y given Z. We first recall the textbook definition [KF09, Definition
2.4].

Let X, Y , and Z be random variables and P be a distribution. X is conditionally inde-
pendent of Y given Z in the distribution P if for all values a, b, and c (belonging resp. to the
codomains of X, Y , and Z), we have:

Pr(X = a, Y = b|Z = c) = Pr(X = a|Z = c) Pr(Y = b|Z = c).

We now move on to the formal definition of conditional independence. First, we give our-
selves a sample space U with a distribution P : {dist U}:

Variables (U : finType) (P : {dist U}).

Second, we declare three random variables X, Y, and Z. Each of these random variables induces
a distribution; let us note Q the resulting joint distribution:

Variables (A B C : finType).

Variables (X : {RV P -> A}) (Y : {RV P -> B}) (Z : {RV P -> C}).

Let Q := RvarDist.d [% X, Y, Z].

Finally, we state the property of conditional independence (Coq notation: X _|_ Y | Z):

Definition cinde_drv := forall a b c,

\Pr_Q[[set (a, b)] | [set c]] =

\Pr_(Proj13.d Q) [[set a] | [set c]] * \Pr_(Proj23.d Q) [[set b] | [set c]].

Let us compare with the pencil-and-paper definition. In Coq, the random variables X, Y,
and Z have not disappeared: they are inside the Q notation. Since we use the definition of
conditional probability from Sect. 2.3, both sides of the equality use different joint distributions
in Coq. It is Q in the left hand-side, whereas the distributions in the right hand-side are
marginals: Proj13.d Q is the marginal of Q w.r.t. Y and Proj23.d Q the marginal of Q w.r.t. X.

4.3 Conditional Independence is a Graphoid

Conditional independence satisfies the graphoid axioms [PP85]:

• Symmetry: X ⊥ Y |Z implies Y ⊥ X |Z.

• Decomposition: X ⊥ Y,W |Z implies X ⊥ Y |Z.

• Weak union: X ⊥ Y,W |Z implies X ⊥ Y |Z,W .

• Contraction: X ⊥W |Z, Y and X ⊥ Y |Z imply X ⊥ Y,W |Z.

• Intersection: X ⊥ Y |Z,W and X ⊥ W |Z, Y imply X ⊥ Y,W |Z for positive distribu-
tions.
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These axioms have an intuitive interpretation. For example, symmetry means that in a state Z
where X says nothing new about Y , then Y says nothing new about X; decomposition means
that if Y , W say nothing new about X, then Y alone does not say anything new about X; etc.

We have proved the graphoid axioms for conditional independence in Coq. We detail
the proofs of symmetry and decomposition in Sections 4.3.1 and 4.3.2; see Appendix A for
information about the proofs of weak union, contraction, and intersection.

4.3.1 The Proof of Symmetry in Coq

Let us recall the pencil-and-paper proof:

Lemma 1 (Symmetry). X ⊥ Y |Z implies Y ⊥ X |Z.

Proof.

P (Y,X|Z) = P (X,Y |Z) (by set-theoretic reasoning)

= P (X|Z)P (Y |Z) (because X ⊥ Y |Z)

= P (Y |Z)P (X|Z) (by commutativity of multiplication)

In Coq, we write the statement “X ⊥ Y |Z implies Y ⊥ X |Z” as follows:

Variable (U : finType) (P : {dist U}).

Variables (A B C : finType) (X : {RV P -> A}) (Y : {RV P -> B}) (Z : {RV P -> C}).

Lemma symmetry : X _|_ Y | Z -> Y _|_ X | Z.

The proof script follows the pencil-and-paper proof:

1 Proof.

2 rewrite /cinde_drv => H b a c.

3 rewrite -setX1 -cPr_TripC12 setX1 TripC12_RV3.

4 rewrite H.

5 rewrite mulRC.

6 by rewrite 2!Proj23_RV3 2!Proj13_RV3.

7 Qed.

At the beginning of the proof, the distributions in the goal and in the hypothesis do not syntac-
tically match: the hypothesis is about the distribution RVar.d [% X, Y, Z] whereas the goal is
about RVar.d [% Y, X, Z]). The purpose of line 3 is to swap the two leading random variables
so as to be able to rewrite with the hypothesis at line 4. We apply the commutativity of multipli-
cation at line 5. At this point, the proof is almost completed: line 6 just identifies semantically-
equal distributions (e.g., Proj23.d (RVar.d [% X, Y, Z]) and Proj13.d (RVar.d [% Y, X, Z])).

4.3.2 The Proof of Decomposition in Coq

Lemma 2 (Decomposition). X ⊥ Y,W |Z implies X ⊥ Y |Z.

Proof. [KF09, Sect. 2.1.4.3]

P (X,Y |Z) =
∑
w

P (X,Y,w|Z) (reasoning by cases)

=
∑
w

P (X|Z)P (Y,w|Z) (by X ⊥ Y,W |Z)

= P (X|Z)
∑
w

P (Y,w|Z) (by distributivity)

= P (X|Z)P (Y |Z) (reasoning by cases)

11



Here follows the proof statement in Coq:

Variables (U : finType) (P : {dist U}) (A B C D : finType).

Variables (X : {RV P -> A}) (Y : {RV P -> B}) (Z : {RV P -> C}) (W : {RV P -> D}).

Lemma decomposition : X _|_ [% Y, W] | Z -> X _|_ Y | Z.

For readability, we insert into the proof script intermediate goals that match the pencil-and-
paper proof:

1 Proof.

2 move=> H; rewrite /cinde_drv => a b c.

3 rewrite Proj13_RV3 Proj23_RV3.

4 transitivity (\rsum_(d <- fin_img W) \Pr_(QuadA23.d Q)[[set (a, (b, d))] | [set c]]).

5 rewrite (reasoning_by_cases_RV2 W); apply eq_bigr => /= d _.

6 by rewrite -2![in RHS]setX1 cPr_QuadA23 -setX1.

7 transitivity (\rsum_(d <- fin_img W)

8 \Pr_(Proj14d Q)[[set a] | [set c]] * \Pr_(Proj234.d Q)[[set (b, d)] | [set c]]).

9 apply eq_bigr => d _.

10 rewrite QuadA23_RV4.

11 rewrite H.

12 by rewrite Proj13_RV3 Proj23_RV3 Proj14_RV4 Proj234_RV4 Proj23_RV3.

13 rewrite -big_distrr /=; congr (_ * _).

14 by rewrite /Proj14d Proj124_RV4 Proj13_RV3.

15 rewrite (reasoning_by_cases_RV2 W); apply eq_bigr => d _.

16 by rewrite Proj234_RV4 Proj23_RV3 setX1.

17 Qed.

Q is a shortcut for the joint distribution corresponding to the quadruple of random variables
[% X, Y, W, Z] (Let Q := RVar.d [% X, Y, W, Z].). The first subgoal appears explicitly at
line 4. fin_img is the (finite) image of a random variable. QuadA23.d Q is the distribution
corresponding to the pairs of random variables [% X, [% Y, W], Z]. Solving the first subgoal
is essentially a matter of reasoning by cases (see line 5). The second subgoal appears explicitly
at line 7. It is essentially solved by using the hypothesis of conditional independence at line 11.
Line 13 is where we use the distributivity of multiplication w.r.t. addition. Line 15 is the
conclusive reasoning by cases. The lines that we have not explained in details are just low-level
manipulations of distributions.

The proofs of weak union, contraction, and intersection are a bit more involved. For example,
weak union uses decomposition and intersection uses contraction. See Appendix A for more
details.

4.4 Application of the Graphoid Axioms

Now that we have proved the graphoid axioms, we can derive most rules to reason formally
about probabilistic models. For example, the chaining rule uses all the semi-graphoid axioms
(i.e., the graphoid axioms except intersection):

Lemma chaining_rule : X _|_ Z | Y /\ [% X, Y] _|_ W | Z -> X _|_ W | Y.

Proof.

case=> ? ?.

suff : X _|_ [% W, Z] | Y by move/decomposition.

apply/cinde_drv_2C/contraction => //.

exact/cinde_drv_3C/symmetry/weak_union/symmetry.

Qed.

See also the mixing rule for another example of derived rule [AHS+18].
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5 Related Work

The theory of conditional probabilities (Bayes’ theorems, etc.) is developed in HOL and applied
to the analysis of the binary asymmetric channel [HT11], but there does not seem to be any
theory of joint distributions in this work. We were able to reproduce the same theory of
conditional probabilities as [HT11] in the setting of Sect. 2.3, except for lemmas involving
countable unions which are not handled by the theory of finite sets of MathComp. Information-
theoretic notions such as entropy, relative entropy, and mutual information are defined in HOL
using a formalization of probability based on measure theory and Lebesgue integration [MHT11],
but there does not seem to be much lemmas about them. There are more information-theoretic
notions (e.g., conditional mutual information information) defined Isabelle/HOL using Lebesgue
integration [Höl12]. Compared to the work above, our work features much more lemmas (all
the chain rules, lemmas about conditional independence, etc.).

Our work uses a Coq library [AHS+18] that comes with a formalization of distributions and
probabilities (including basic lemmas such as the weak law of large numbers) and applications
to information theory. This work already features definitions of conditional entropy and mutual
information but specialized for a setting with one input distribution P and one stochastic
matrix W , which models a channel of communication. In this setting, one starts by defining a
joint distribution J(P,W ) and then uses this distribution to define conditional entropy H(W |P )
and mutual information I(P,W ) (these notations departs from [CT06] but are not uncommon,
see, e.g., [CK11]). We can prove that each entry of W corresponds to a conditional probability
using J(P,W ):

Variables (A B : finType) (W : `Ch_1(A, B)) (P : {dist A}).

Let QP := Swap.d (`J(P, W)).

Lemma WcPr : forall a b, P a != 0 -> W a b = \Pr_QP[[set b] | [set a]].

It follows that H(W |P ) is equal to CondEntropy.h QP and I(P,W ) is equal to MutualInfo.mi QP.
Similarly, in [AG15], we defined aposteriori probabilities using P and W :

PW (x|y)
def
=

P (x)Wn(y|x)∑
x′∈An P (x′)Wn(y|x′)

.

We can now show that PW (x|y) is equal to \Pr_(`J(P, W ``^ n))[[set x]|[set y]] where
`J(P, W ``^ n) is the joint distribution of the nth extension of the channel W . See [AHS+18,
file chap2.v] for details. In other words, the work we present in this paper simplifies and
generalizes our previous work.

There is another formalization of information theory that uses a similar setting [Mor12].
Distributions are defined similarly, which is not surprising because it is natural to use the big
operators of MathComp in this way. The definition of random variable in Sect. 4.1 is the same
definition as [Mor12]. Yet, that work stops at an early stage with the chain rule for entropy
restricted to three variables and the definition of mutual information. Another limitation of
this formalization is that it axiomatizes the logarithm, whereas InfoTheo is compatible with
the logarithm defined in the standard library of Coq.

Our work connects concretely to the semantics of probabilistic programming languages. We
are currently using the InfoTheo library to provide a formal model for a monad combining
probability and nondeterminism [AGNS18]. It happens that such a model requires the notion
of convex spaces that we have developed in Sect. 3.3.

Regarding conditional independence, one can find a formal definition of the graphoid ax-
ioms in Coq/SSReflect [YKS+16] but this work does not seem to provide the underlying
formalization of probabilities; instead, it focuses on a high-level algebraic presentation and its
application.
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File Contents Sections in this paper

InfoTheo files that required extensions for this paper

proba.v
Distributions and probabilities Sect. 2.1
Joint distributions Sect. 2.2

New files that come with this paper

cproba.v Conditional probability Sect. 2.3
chap2.v Information theory Sections 3.1, 3.2, and 3.4
convex.v

Convexity properties Sect. 3.3
convex_dist.v

cinde.v Conditional independence Sect. 4 and Appendix A

Table 1. Overview of the formalization in this paper

The formalization of conditional independence can be tackled in a different way using string
diagrams [CJ18, Proposition 6.10].

6 Conclusion

In this paper, we proposed a formalization of conditional probabilities and joint distributions
validated by two original applications: a formalization of the foundations of information the-
ory and a formalization of conditional independence. Our formalization of information theory
extends previous work with lemmas that were not formalized before (e.g., the chain rule for in-
formation, convexity of entropy). Our second application is (to the best of our knowledge) the
first formal account from the ground up of the graphoid axioms of conditional independence.
The complete formalization is available online as a conservative extension of the InfoTheo
library [AHS+18] (Table 1 summarizes the relevant files).

Using our work, it is now possible to address new challenges in formalization of information
theory and artificial intelligence. Next, we plan to tackle the formalization of Fano’s inequality,
the formalization of Bayesian networks, and more generally formal reasoning about probabilistic
graphical models.
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A Weak Union, Contraction, and Intersection

This appendix provides pencil-and-paper proofs for the weak union, contraction, and intersec-
tion properties of conditional independence that follow the formal proofs in cinde.v [AHS+18].
Note that what we present here is only the tip of the iceberg. Indeed, our formalization starts
from the definition of finite discrete probability theory on top of finite types and real numbers,
rather than a direct axiomatization of conditional independence. This requires proving many
technical lemmas, used internally in these proofs. Moreover, the pencil-and-paper version of
the proof hushes many administrative details of the transformations, which need to be spelled
fully in the formal version.

Lemma 3 (Weak Union). X ⊥ Y,W |Z implies X ⊥ Y |Z,W .

Proof.

P (X,Y |Z,W ) = P (X|Y,Z,W )P (Y |Z,W ) (by the product rule)

= P (X|Z)P (Y |Z,W ) (because X ⊥ Y,W |Z)

= P (X|Z,W )P (Y |Z,W )
(because X ⊥W |Z by decomposition (Lemma 2) from X ⊥ Y,W |Z)

Lemma 4 (Contraction). X ⊥W |Z, Y and X ⊥ Y |Z imply X ⊥ Y,W |Z.

Proof.

P (X,Y,W |Z) = P (X|Y,W,Z)P (Y,W |Z) (by the product rule)

= P (X|Y, Z)P (Y,W |Z) (because X ⊥W |Z, Y )

= P (X|Z)P (Y,W |Z) (because X ⊥ Y |Z)

Lemma 5 (Intersection). X ⊥ Y |Z,W (1) and X ⊥W |Z, Y (2) imply X ⊥ Y,W |Z provided
that the distribution Y,Z,W is positive (3) and the type of the codomain of W is not empty (4).

Proof. It suffices to show X ⊥ Y |Z by contraction (Lemma 4) because we already have (2).
The goal is therefore P (X,Y |Z) = P (X|Z)P (Y |Z) which is proved as follows:

P (X|Z)P (Y |Z) =
∑
w

P (X,w,Z)P (Y |Z) (reasoning by cases)

=
∑
w

P (X,Y |Z)P (w|Z) (see (*) below)

= P (X,Y |Z)
∑
w

P (w|Z) (by distributivity)

= P (X,Y |Z) (conditional probability of the universal set and (4))

Proof of step (*): By (2), (3), and the product rule, we have P (X|Y, Z) = P (X|W,Z, Y ).
By (1), (3), and the product rule, we have P (X|W,Z) = P (X|Y,W,Z).
Therefore we have P (X|Y,Z) = P (X|W,Z).

By (3) and the product rule, we derive P (X,Y |Z)
P (Y |Z) = P (X,W |Z)

P (W |Z) , which implies P (X,Y |Z)P (W |Z) =

P (X,W |Z)P (Y |Z) and
∑

w P (X,Y |Z)P (w|Z) =
∑

w P (X,w|Z)P (Y |Z).
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