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Abstract— Because of the increasing complexity of mathemat-
ical proofs, there is a growing interest in formalization using
proof-assistants. In this paper, we explain new formal proofs
of standard lemmas in data compression (Jensen’s and Kraft’s
inequalities) as well as concrete applications (to the analysis of
compression methods and Shannon-Fano codes). We explain in
particular how one turns the paper proof into formal terms and
the relation between the informal proof and the formal one. These
formalizations come as an extension to an existing formal library
for information theory and error-correcting codes.

I. MOTIVATION AND CONTENTS

A proof-assistant is a piece of software to check mathemati-
cal proofs written in formal logic. A formal logic is essentially
a minimum set of non-contradictory axioms. Most proof-
assistants use (variants of) type theory, whose expressiveness
is equivalent to set theory. In a proof-assistant, the only trusted
part is the checking algorithm: all formal proofs need to be
checked to integrate a formal library. However, it requires
much expertise to turn a paper proof into formal logic and such
experiments are mostly discussed in dedicated conferences.

In the past years, we have been working on the formalization
of information theory and error-correcting codes for the COQ
proof-assistant [10] using the MATHCOMP library [11]. The
result is another library (called INFOTHEO [13]) that made
it possible to verify Shannon’s theorems [4], [5], as well as
error-correcting codes [6], [8].

Our goal is now to turn the INFOTHEO library into a
practical tool. To achieve this goal, we are now involved in the
following activities: enrich the library with new lemmas, make
it easier to use already-formalized results to prove new ones,
and publicize the whole library to potential users. These are the
three goals of this paper. Concretely, in this paper, we provide
new formal proofs of standard lemmas in data compression
(namely, Jensen’s and Kraft’s inequalities), work out concrete
applications (analysis of compression methods and Shannon-
Fano codes), and explain our results so as to be understood
by readers who may not be familiar with proof-assistants.

The only effort that we require from our readers is to
cope with the syntax of formal logic (as implemented by
the COQ proof-assistant). It is not difficult to decipher formal
statements, especially when one already has the corresponding
mathematical background. Indeed, modern parsing technolo-
gies allow for familiar LATEX-like notations. In contrast, we do
not expect the reader to read the details of proof scripts (the
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sequence of commands that symbolically manipulate formal
statements to prove a goal) but we display them to show how
(well) they match paper proofs.

II. JENSEN’S INEQUALITY AND ANALYSIS OF
COMPRESSION METHODS

A. Jensen’s Inequality, Informally

Jensen’s inequality is essentially a generalization of concav-
ity for a finite set of points. Concavity of a real function f
can be stated as:

∀a, b > 0
af(x) + bf(y)

a+ b
≤ f

(
ax+ by

a+ b

)
.

Jensen’s inequality is a consequence of concavity, and can be
stated as:

∀a1, . . . , an > 0

∑
aif(xi)∑
ai

≤ f
(∑

aixi∑
ai

)
.

B. Jensen’s Inequality, Formally

While the above definition gives the gist of Jensen’s in-
equality, when formalizing it is important both to use simple
definitions (with few variables and conditions), and to make
sure that the proven theorem can be applied in a wide range of
situations. As we want it to apply to locally concave functions,
we start by defining intervals, as convex subsets of R.
Definition convex_interval (D:R -> Prop) := forall x y t,

D x -> D y -> 0 <= t <= 1 -> D (t * x + (1-t) * y).
Record interval := mkInterval {

mem_interval :> R -> Prop;
interval_convex : convex_interval mem_interval }.

We then define concavity, using intervals as predicates.
Definition concave_leq (f : R -> R) (x y t : R) :=

t * f x + (1 - t) * f y <= f (t * x + (1 - t) * y).
Definition concave_in (D : interval) (f : R -> R) :=

forall x y t : R, D x -> D y -> 0 <= t <= 1 ->
concave_leq f x y t.

When stating Jensen’s inequality, we replace the points and
weights by a function r and a distribution X, both defined over
a finite domain A.
Variables (f : R -> R) (D : interval).
Hypothesis concave_f : concave_in D f.
Variable A : finType.
Theorem jensen_dist_concave (r : A -> R) (X : dist A) :

(forall x, D (r x)) ->
\rsum_(a in A) f (r a) * X a
<= f (\rsum_(a in A) r a * X a).

Using a distribution tells us that the weights are non-negative,
and their sum is 1, in the same way as interval brings its



invariant. This theorem is proved by induction on the size
of the support of the distribution (i.e., the a’s of A such that
X a 6= 0) [2, Thm. 2.6.2]. Formally, we follow this approach
by first defining such an induction principle, and using it to
structure the proof, which as a result is only about 60 lines
long. Note that the original proof used a binary distribution as
base case, but it is simpler and more general to use a trivial
unary distribution (i.e., X a = 1 for a single a ∈ A).

C. Application: Analysis of Compression Methods

A simple application of Jensen’s inequality is comparing the
zero-order entropy of strings to that of their concatenation.

Let NsS be the number of occurrences of the letter s in the
string S. The zero-order empirical entropy of a string S of
length n = |S| over the alphabet Σ = {s1, . . . , sσ} is defined
using the Shannon entropy of its observed probabilities [9,
Sec. 2.3.2]:

H0(S) = H
(〈

Ns1S
n
, . . . ,

NsσS
n

〉)
=
∑
s∈Σ

NsS
n

log
n

NsS
.

This leads to the simple formula: nH0(S) =
∑
s∈Σ

NsS log
n

NsS
.

If we consider two strings S1 and S2, of lengths n1 and n2

and their concatenation S of length n = n1 + n2, we have

n1H0(S1) + n2H0(S2) =
∑
s∈Σ

NsS1
log

n1

NsS1

+ NsS2
log

n2

NsS2

≤
∑
s∈Σ

(NsS1
+ NsS2

) log
n1 + n2

NsS1
+ NsS2

= nH0(S),

where the inequality is obtained by applying Jensen at each s
with parameters ai = NsSi , xi = ni

NsSi
, f = log [9, Sec. 2.8].

To make the example more convincing, we will apply it to
the concatenation S of ` strings Si (of length ni). Namely,∑̀
i=1

niH0(Si) ≤ nH0(S), or in COQ’s language:

Variable A : finType.
Definition nHs (s : seq A) :=
\rsum_(a in A) if N(a|s) == 0%nat then 0 else

N(a|s) * log (size s / N(a|s)).
Theorem concats_entropy (ss : seq (seq A)) :
\rsum_(s <- ss) nHs s <= nHs (flatten ss).

Here, nHS is the formalization of the function S 7→ |S|H0(S).
We represent strings as sequences of symbols from an alpha-
bet A. The length of a sequence s is size s. N(a|s) is a notation
for Nas. \rsum_(a in A) stands for the iterated sum1 ∑

a∈A.
In the formal statement, we represent the ` strings Si as a
sequence of sequences ss, so that we sum directly over ss

instead of the indices {1, . . . , `}, and concatenate the strings
using the flatten operation on this sequence.

Like we saw in the informal definition above, nHs is related
to the entropy of the symbol distribution as follows:
Lemma szHs_is_nHs (s : seq A) (H : size s != O) :
size s * `H (@num_occ_dist s H) = nHs s.

1Note that definitions may contain implicit coercions: size or N(a|s) are
natural numbers, but the arithmetic operators expect real numbers, so that a
coercion from N to R is added. It can also be written explicitly as n%:R.

The formal proof of concats_entropy is shown in Fig. 1.
Rather than just seeing it as an artefact, we will try to show
how close it is to a paper proof. Some of the theorems used for
transformations are given in Fig. 2. The proof goes through
the following steps, which are marked in the script.

1) Expand definitions and inverse the order of the summa-
tions (exchange_big), so that the goal becomes:∑

s∈Σ

∑̀
i=1

if NsSi = 0 then 0 else NsSi log
|Si|
NsSi

≤
∑
s∈Σ

if NsS = 0 then 0 else NsS log
|S|
NsS

2) Show that it is sufficient to prove the inequalities for
each s, removing strings which contain no occurrences
of s (for simplicity of the indexing, let us pretend that
the `′ first strings contain occurrences, the formal proof
does a reordering).

`′∑
i=1

NsSi log
|Si|
NsSi
≤

 `′∑
i=1

NsSi

 log
|S|∑`′

i=1 N
s
Si

Note that |S| on the right-hand side still contains the
lengths of the ommitted strings. This proof makes re-
peated use of bigID and big1 to separate and remove
those strings in other sums.

3) Prove the inequality `′∑
i=1

NsSi

 log

∑`′

i=1 |Si|∑`′

i=1 N
s
Si

≤

 `′∑
i=1

NsSi

 log

∑`
i=1 |Si|∑`′

i=1 N
s
Si

using the monotonicity of log. Here the reasoning mostly
involves real arithmetic, with the need to prove many
side conditions on lemmas. In the formal proof, to
conclude we need to work with the concrete indexing,
which uses a filtered sequence rather than `′.

4) Define the distribution d and the point function r as:

d(i) =
NsSi∑`′

i=1 N
s
Si

r(i) =
|Si|
NsSi

and prove that r(i) is strictly positive. In the script,
seq_nat_dist builds a distribution from a non-zero sum-
mation of natural numbers, in_tuple turns a sequence
into a tuple, which is just a fixed-length sequence, and
tnth extracts its ith element.

5) Use these proofs and the concavity of log to apply
jensen_dist_concave. This gives:
`′∑
i=1

(
log
|Si|
NsSi

)
NsSi∑`′

i=1 |Si|
≤ log

 `′∑
i=1

|Si|
NsSi

NsSi∑`′

i=1 N
s
Si

 .

The formal proof uses big_tnth to convert from
summing using numerical indices, as required by
jensen_dist_concave, to summing directly on the ele-
ments of the sequence, which is the preferred approach
throughout this proof. We choose not to distinguish both
versions in the mathematical notation.

6) Multiply both sides by
∑`′

i=1 N
s
Si

, and use distribution
laws and algebraic laws to obtain:



Theorem concats_entropy ss :
\rsum_(s <- ss) nHs s <= nHs (flatten ss).

Proof.
rewrite exchange_big /nHs /=.
Goal as in (1)

(* Move to per-symbol inequalities *)
apply ler_rsum=> a _.
(* Remove strings containing no occurrences *)
rewrite (bigID (fun s => N(a|s) == O)) /=.
rewrite big1; last by move=> i ->.
rewrite num_occ_flatten add0R.
rewrite [in X in _ <= X]

(bigID (fun s => N(a|s) == O)).
rewrite [in X in _ <= X]big1 //= ?add0n;
last by move=> s /eqP.

rewrite (eq_bigr
(fun s => log (size s / N(a|s)) * N(a|s)));
last by move=> s /negbTE ->; rewrite mulRC.

rewrite -big_filter -[in X in _ <= X]big_filter.
(* ss' contains only strings with occurrences *)
set ss' := [seq s <- ss | N(a|s) != O].
Goal as in (2), using ss'

case/boolP: (ss' == [::]) => Hss'.
by rewrite (eqP Hss') !big_nil eqxx.

have Hnum s : s \in ss' -> (N(a|s) > 0)%nat.
by rewrite /ss' mem_filter lt0n => /andP [->].

have Hnum': 0 < N(a|flatten ss').
apply /ltR0n; destruct ss' => //=.
rewrite /num_occ count_cat ltn_addr //.
by rewrite Hnum // in_cons eqxx.

have Hsz: 0 < size (flatten ss').
apply (ltR_leR_trans Hnum').
by apply /le_INR /leP /count_size.

apply (Rle_trans _ ((\sum_(i <- ss') N(a|i))%:R
* log (size (flatten ss') /

\sum_(i <- ss') N(a|i)))); last first.
(* Compensate for removed strings *)
case: ifP => Hsum.
by rewrite (eqP Hsum) mul0R.

Goal as in (3)
apply leR_wpmul2l => //.
apply Log_increasing_le => //.
apply/mulR_gt0 => //.
apply/invR_gt0/ltR0n.
by rewrite lt0n Hsum.

apply leR_wpmul2r.
apply /Rlt_le /invR_gt0 /ltR0n.
by rewrite lt0n Hsum.

apply /le_INR /leP.
size (flatten ss') <= size (flatten ss)
rewrite !size_flatten !sumn_big_addn.
rewrite !big_map big_filter.
rewrite [in X in (_ <= X)%nat]
(bigID (fun s => N(a|s) == O)) /=.

by apply leq_addl.
(* (4) Prepare to use jensen_dist_concave *)
have Htotal := esym (num_occ_flatten a ss').
rewrite big_tnth in Htotal.
have Hnum2 : N(a|flatten ss') != O.
rewrite -lt0n -ltR0n'; exact/ltRP.

set d := seq_nat_dist Htotal Hnum2.
set r := fun i =>
(size (tnth (in_tuple ss') i))
/ N(a|tnth (in_tuple ss') i).
Here d and r are as in (4)

have Hr: forall i, Rpos_interval (r i).
rewrite /r /= => i.
apply Rlt_mult_inv_pos; apply /ltR0n.

apply (@leq_trans N(a|tnth (in_tuple ss') i)).
by rewrite Hnum // mem_tnth.

by apply count_size.
by apply /Hnum /mem_tnth.

(* (5) Apply Jensen *)
move: (jensen_dist_concave log_concave d Hr).
rewrite /d /r /=.
rewrite -(big_tnth _ _ _ xpredT
(fun s => log (size s / N(a|s))

* (N(a|s) / N(a|flatten ss')))).
rewrite -(big_tnth _ _ _ xpredT
(fun s => size s / N(a|s)

* (N(a|s) / N(a|flatten ss')))).
(* (6) Transform the statement to match the goal *)
Premise is as in (5), goal as in (6)

move/(@leR_wpmul2r N(a|flatten ss') _ _ (leR0n _)).
rewrite !big_distrl /=.
rewrite (eq_bigr
(fun i => log (size i / N(a|i)) * N(a|i)));
last first.
move=> i _; rewrite !mulRA -mulRA mulVR ?mulR1 //.
exact/eqP/gtR_eqF.

move/Rle_trans; apply. (* LHS matches *)
rewrite mulRC -num_occ_flatten big_filter.
rewrite (eq_bigr
(fun i => size i * / N(a|flatten ss')));
last first.
move=> i Hi; rewrite !mulRA -(mulRA _ (/ _)).
by rewrite mulVR ?mulR1 // INR_eq0'.

rewrite -big_filter -/ss' -big_distrl.
rewrite -big_morph_plus_INR /=.
by rewrite size_flatten sumn_big_addn big_map.
Qed.

Fig. 1. Proof for the zero-degree entropy of a concatenation of strings.

eq_bigr g : (∀i ∈ I, f(i) = g(i))→
∑
i∈I f(i) =

∑
i∈I g(i)

exchange_big :
∑
i∈I

∑
j∈J f(i, j) =

∑
j∈J

∑
i∈I f(i, j)

bigID P :
∑
i∈I f(i) =

∑
i∈{i∈I|P (i)} f(i) +

∑
i∈{i∈I|¬P (i)} f(i)

big1 : (∀i ∈ I, f(i) = 0)→
∑
i∈I f(i) = 0

big_distrl :
(∑

i∈I f(i)
)
· c =

∑
i∈I f(i) · c

leq_rsum : (∀i ∈ I, f(i) ≤ g(i))→
∑
i∈I f(i) ≤

∑
i∈I g(i)

Fig. 2. Some theorems concerning summations.

`′∑
i=1

NsSi log
|Si|
NsSi
≤

 `′∑
i=1

NsSi

 log

∑`′

i=1 |Si|∑`′

i=1 N
s
Si

which lets us conclude combining (3) and (5). The
machine proof contains some extra transformations at
this stage, using morphisms to turn a sum on natural
numbers into a sum of real numbers for instance.

While a paper proof would usually ignore many of these
steps, we think that they are important, as there might be
hidden subtleties. The need of special handling for NsSi = 0,
which in turn caused the addition of step (3), overlooked in
[9, Sec. 2.8], was actually discovered doing the formal proof.

III. KRAFT’S INEQUALITY AND SHANNON-FANO CODES

A. Formal Definition of Codes and Prefix Codes

A code is essentially a set of codewords that we formalize as
lists of elements (type seq T below). The code itself becomes a

sequence of codewords (type seq (seq T)) without duplicates
(i.e., it is uniq):
Record code_set := CodeSet {

codeset :> seq (seq T) ; _ : uniq codeset }.

This formal definition is fine because it will let us recover
the expected properties. Yet, it distinguishes codes with a
different ordering of codewords. Of course, properties can be
established modulo ordering, but it could be more practical to
define codes using sets of codewords. This enhancement is not
immediate for technical reasons; we defer it to future work.

A prefix code is a code s.t. no codeword is a prefix of any
other. We define the prefix relation by comparing the head
symbols of codewords (the function take n below extracts the
n leading elements of a list). The property of being a prefix
code follows (˜˜ is the logical negation):
Definition prefix a b := a == take (size a) b.
Definition prefix_code (C : code_set T) :=

forall c c', c \in C -> c' \in C -> c != c' ->
˜˜ prefix c c'.

Example of Code: Let us consider a sorted list ` of n natural
numbers and a finite alphabet T . For all j ∈ [0, n − 1], we
define the following natural numbers: wj =

∑
i<j |T |`j−`i .

Let (x)b be the representation of the natural number x in
base b. For each wj , we construct the list of symbols σj by
prepending `j−|(wj)|T || 0’s to (wj)|T |. The σj’s form a code
because the function j 7→ σj is injective. Let us call ACode

the resulting code. We omit its formal definition in this paper
(see [13]) but we will use it in the proof script of Kraft’s
inequality (Sec. III-C3).



B. Kraft’s Inequality, Informally
Kraft’s inequality is a necessary and sufficient condition for

the existence of a prefix code. It says that, given the lengths
`0, . . . , `n−1, there exists a prefix code with n codewords Ci
s.t. |Ci| = `i iff

∑
i<n |T |−`i ≤ 1, where T is the alphabet

for the codewords.
To prove the direct part, let `max be the largest length. Then:∑

i<n

|T |`max−`i =
∑
i<n

|{x|prefix Ci x}| (III.1)

=

∣∣∣∣∣⋃
i<n

{x|prefix Ci x}

∣∣∣∣∣ (III.2)

≤ |T |`max . (III.3)

In particular, the equality (III.1)–(III.2) holds thanks to the
prefix property. See Sec. III-C2 for a complete formal proof.

Conversely, suppose that we are given a sorted list ` of n
lengths that satisfies the Kraft condition (for some alphabet T ).
Then the code of Sec. III-A can be proved to be prefix. The
proof is by contradiction [1]. Let us assume ab absurdo that
this code is not prefix. Then one can find j and k s.t. j < k
and σj is a prefix of σk. Let r = wk

|T |`k−`j
. We can establish a

contradiction by showing that both r ≥ wj+1 and r−1 < wj
hold. See Sec. III-C3 for the (formal) details.

C. Kraft’s Inequality, Formally
1) The Kraft Condition: The formalization of the Kraft

condition is direct using elements of the MATHCOMP library:
Definition kraft_cond (T : finType) (l : seq nat) :=
let n := size l in
(\sum_(i < n) #|T|%:R ˆ- l``_i <= (1 : R))%R.

#|T| is a notation for the cardinal of T. ˆ- is the inverse of the
exponent. l``_i is a notation for `i.

2) Kraft’s Inequality (direct part): We display the script
corresponding to the (first part of the) informal proof of
Sec. III-B. The intermediate steps appear in the form of
comments that match the informal proof:
Lemma prefix_implies_kraft_cond : prefix_code C ->
0 < #|T| -> kraft_cond R T (map size C).

Proof.
move=> prefixC T_gt0; rewrite /kraft_cond size_map -/n.

at this point, the goal is
∑
i<n |T |

−`i ≤ 1

have /ler_pmul2l <- : ((0 : R) < #|T|%:R ˆ+ lmax)%R.
by rewrite exprn_gt0 // ltr0n.

rewrite mulr1 big_distrr /=. the goal is
∑
i<n

|T |`max

|T |`i
≤ |T |`max

rewrite (eq_bigr (fun i : 'I_n => #|suffixes C``_i|%:R)%R); last first.
move=> i _; rewrite card_suffixes; last by apply/nthP; exists i.
rewrite natrX exprB // ?(nth_map [::]) //.
by apply/leq_lmax/nthP; exists i.
by rewrite unitfE pnatr_eq0 -lt0n.

the goal is now
∑
i<n |{x|prefix Ci x}| ≤ |T |`max, Eqn (III.1)

apply (@ler_trans _ (#|\bigcup_(i < n) suffixes (C ``_ i)|%:R)%R).
rewrite -sum1_card.
rewrite partition_disjoint_bigcup /=.
rewrite natr_sum ler_sum // => i _.
by rewrite sum1_card.

move=> i j ij.
rewrite -setI_eq0 disjoint_suffixes //.
by apply/nthP; exists i.
by apply/nthP; exists j.
by rewrite nth_uniq //; case: C.

the goal is
∣∣⋃

i<n{x|prefix Ci x}
∣∣ ≤ |T |`max, step (III.2)-(III.3)

by rewrite -natrX -card_tuple ler_nat max_card.
Qed.

3) Kraft’s Inequality (converse part): We now complete the
informal proof of the converse of Kraft’s inequality (started in
Sec. III-B) and provide a complete proof script. We were left
with two subgoals. r = wk

|T |`k−`j
≥ wj+1 is proved as follows:

r =
∑
i<k

|T |`j |T |−`i (III.4)

= wj +
∑
j≤i<k

|T |`j |T |−`i (III.5)

≥ wj + 1. (III.6)

Here follows the proof for r − 1 < wj :

r − 1 =
wk

|T |`k−`j
− 1 (by definition) (III.7)

=
wj |T |`k−`j + wk mod |T |`k−`j

|T |`k−`j
− 1 (III.8)

< wj . (III.9)

The fact that σj is a prefix of σk is used in the step (III.7)–
(III.8). These two subgoals respectively correspond to the
subgoals have H1 and have H2 below:
Lemma kraft_implies_prefix : kraft_cond R T l ->
exists C : code_set T, prefix_code C.

Proof.
move=> H; exists (ACode _ l_n sorted_l).
apply nnpp_prefix.
move=> /(if_not_prefix l_neq0 H) /existsP[j /existsP[ k /andP[jk pre]]].
at this point, the goal is ∀j, k.i < k → ¬prefix σj σk
pose r := ((w k)%:R / #|T|%:Rˆ+(l``_k - l``_j) : R)%R.

let r = wk/|T |`k−`j

have H1 : (r >= (w j)%:R + (1 : R))%R. here we prove r ≥ wj + 1

pose r' := (\sum_(i < k) #|T|%:R ˆ+ l``_j * #|T|%:R ˆ- l``_i : R)%R.

let r′ =
∑
i<k |T |

`j |T |−`i

have -> : r = r'. here we prove r = r′, see Eqn (III.4)
rewrite /r /r' natr_sum big_distrl /=; apply/eq_bigr => i _.
have ? : (#|T|%:R ˆ+ (l ``_ k - l ``_ j) : R)%R \is a GRing.unit.
by rewrite unitfE expf_eq0 card_ord pnatr_eq0 andbF.

apply: (@mulIr _ (#|T|%:R ˆ+ (l``_k - l``_j))%R) => //.
rewrite natrX -mulrA mulVr // mulr1 exprB; last 2 first.
by rewrite nth_of_sorted // ltnW //= l_n.
by rewrite unitfE pnatr_eq0 card_ord.

rewrite exprB; last 2 first.
by rewrite nth_of_sorted // ltnW //= l_n.
by rewrite unitfE pnatr_eq0 card_ord.

rewrite mulrCA mulrAC mulrV // ?mul1r //.
by rewrite unitfE -natrX pnatr_eq0 expn_eq0 card_ord.

pose u := (\sum_(j<=i<k) #|T|%:R ˆ+ l``_j * #|T|%:R ˆ- l``_i : R)%R.

let u =
∑
j≤i<k |T |

`j |T |−`i

have -> : (r' = (w j)%:R + u :> R)%R. r′ = wj + u, Eqn (III.5)

pose f := (fun i : nat => #|T|%:Rˆ+l``_j * #|T|%:Rˆ-l``_i : R)%R.
case/boolP : (j == ord0) => j0.
rewrite /u (eqP j0) wE0 add0r big_mkord /r'.
apply/eq_bigr => i _; by rewrite (eqP j0).

rewrite /r' /u -(big_mkord xpredT f)%R natr_sum.
rewrite (eq_bigr (fun i : 'I__ => f i)); last first.
move=> i _; rewrite natrX exprB //.
by rewrite nth_of_sorted // ltnW //= l_n.
by rewrite unitfE pnatr_eq0 card_ord.

by rewrite -(big_mkord xpredT f)%R -big_cat_nat //= ltnW.
rewrite ler_add //.
at this point, the subgoal is 1 ≤ u, for the step (III.5)-(III.6)

rewrite /u -(@prednK k); last by rewrite (leq_ltn_trans _ jk).
rewrite big_nat_recl; last by move/(leq_sub2r 1) : jk; rewrite !subn1.
rewrite divrr ?unitfE -?natrX ?pnatr_eq0 ?expn_eq0 ?card_ord //.
rewrite ler_addl sumr_ge0 // => i _.
by rewrite natrX divr_ge0 // exprn_ge0 // ?card_ord ?ler0n.

have H2 : (r - 1 < (w j)%:R)%R. here we prove r − 1 < wj
have /(congr1 (fun x => x%:R : R)%R) : w k =
w j * #|T| ˆ (l``_k - l``_j) + w k %% #|T| ˆ (l``_k - l``_j).



we prove wk = wj |T |`k−`j + wk mod |T |`k−`j , leading to (III.8)

have := prefix_modn pre.
do 2 rewrite nat_of_ary_cat nat_of_ary_nseq0 mul0n add0n ary_of_natK.
by rewrite !size_cat !size_nseq !subnK // size_ary_of_nat // -/t
-(card_ord t) (w_sub l_n sorted_l H).

rewrite natrD => /(congr1 (fun x => x / #|T|%:Rˆ+(l``_k - l``_j)))%R.
rewrite -/r mulrDl natrM natrX mulrK; last first.
by rewrite unitfE expf_eq0 card_ord pnatr_eq0 andbF.

move=> wkE.
have : ((w k %% #|T| ˆ (l``_k - l``_j))%:R /

#|T|%:R ˆ+ (l``_k - l``_j) < (1 : R))%R.

here we prove (wk mod |T |`k−`j )/|T |`k−`j < 1, leading to (III.9)
rewrite ltr_pdivr_mulr; [|by rewrite -natrX ltr0n expn_gt0 card_ord].
by rewrite mul1r -natrX ltr_nat ltn_mod expn_gt0 card_ord.

by rewrite {}wkE ltr_sub_addl addrC ltr_add2r.
by rewrite ltr_subl_addl addrC ltrNge H1 in H2.
Qed.

D. Application: Shannon-Fano Codes

Let us assume a source that emits symbols from an alpha-
bet A with probability Pr. A Shannon-Fano code is such that
each symbol a is mapped to a codeword of length

⌈
log 1

Pr[a]

⌉
.

This definition requires to make explicit the encoding function
from A to the codewords as a type Encoding.t:
(* Module Encoding *)
Record t (A T : finType) := mk {
f :> {ffun A -> seq T}; f_inj : injective f }.

Let P be a distribution over A. Formally, a Shannon-Fano code
is an encoding function that satisfies the following predicate:
Definition is_shannon_fano (f : Encoding.t A T) :=
forall a, size (f a) =

Zabs_nat (ceil (Log #|T|%:R (1 / P a))).

(Zabs_nat takes the absolute value of an integer.)
We can show that the list of codewords generated by a

Shannon-Fano code satisfies the Kraft condition2:
Variable (f : Encoding.t A T).
Let sizes := [seq (size \o f) a| a in A].
Lemma shannon_fano_is_kraft :
is_shannon_fano P f -> kraft_condR T sizes.

In consequence, the construction of Sec. III-A provides a way
to construct a (prefix) Shannon-Fano code.

For the sake of completeness, we establish formally the fact
that Shannon-Fano codes are sub-optimal. It suffices to show
that the average code length is less than H(Pr) + 1:
Lemma shannon_fano_suboptimal :
is_shannon_fano P f -> average P f < `H P + 1.

Here, the average code length of f is defined as follows:
Definition average :=
\rsum_(x in A) P x * (size (f x))%:R.

IV. RELATED WORK

There already exist several examples of formal proofs
about data compression. Shannon’s source coding theorems
have been formalized in the COQ proof-assistant [4], [5], the
algorithmic aspects (but not the information-theoretic aspects)
of Huffman codes have been formalized in Isabelle/HOL [3].
These examples are larger than the ones discussed in this paper
but our work still improves on previous work: our proof of

2kraft_condR is an ad-hoc instantiation of kraft_cond from Sec. III-C1
with the type of real numbers. It is ad-hoc because, even though the definition
from Sec. III-C1 is generic, COQ reals have not yet been integrated into the
MATHCOMP library.

Kraft’s inequality covers alphabets of any size (the proof of
Kraft’s inequality in [7] is for the binary case), our proof of
Jensen’s inequality covers partial functions (the proof in [12]
is for total functions). One could argue that these are minor
improvements but they are moreover integrated within the
same library for formal verification of information theory and
error-correcting codes [13], allowing for further applications.

V. CONCLUSION AND FUTURE WORK

We provided new formalizations about data compression
(Jensen’s and Kraft’s inequalities) as well as two concrete
applications (analysis of string compression and Shannon-Fano
codes). We tailored our technical explanations for a reader
who is not proficient neither in formal logic nor with proof-
assistants, by explaining in particular how one gets from the
paper proof to a formal proof. Our hope is to improve the
usability of our library for formalization of information theory
and error-correcting codes.

Proof scripts are available online [13]. The files relevant
to this paper are: jensen.v (Sec. II-B), string_entropy.v
(Sec. II-C), kraft.v (Sec. III-C), and shannon_fano.v
(Sec. III-D). There were also several technical improvements
to the INFOTHEO library (mostly about the interface with
COQ’s standard library for real analysis).

We plan a number of technical improvements: support for
a version of the MATHCOMP library with well-integrated
real numbers, better formal definitions of codes and encoding
functions. We will then generalize results (for example from
Kraft’s inequality to Kraft-McMillan’s) to tackle other codes.
The resulting formal theory of data compression should be
large enough to help us verify software implementations of
compact data structures [9, Chap. 2].
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