
Supporting Objects in Run-Time
Bytecode Specialization

Reynald Affeldt, Hidehiko Masuhara, Eijiro Sumii, Akinori Yonezawa

University of Tokyo

1

Run-Time Specialization (RTS)
RTS optimizes program code at run-time

More precisely:

static input + original code RTS
−−→ residual code

Typical applications:

• computations done:

– repeatedly with similar inputs

– with an unfortunate timing

• input not available at compile-time

2

Motivation
Optimize object-oriented (OO) programs by RTS

OO programs are typically slower than imperative programs:

• they are more generic

• object-orientation is costly

RTS is well adapted:

• specialization trades genericity for performance

• it is a general optimization technique

• RTS has proved to be efficient for several languages

3

Contributions
Design and implement RTS for an OO language, namely Java:

• efficient residual code regarding OO overheads

– elimination of dynamic allocation

– elimination of memory accesses
(including destructive updates)

– elimination of virtual dispatches

• better automation of the specialization process

– as few annotations by the user as possible

• correctness statement

We hope it can lead ultimately to:

• a system easier to use

• favoring extensive residual code reuse

4

Outline

1. Effectiveness of OO Specialization

2. Potential Problems with Objects

3. Techniques for Correctness and Efficiency

4. Generalization and Formalization

5. Preliminary Experiments

6. Conclusion and Future Work

5

Complex Arithmetic
A class for complex numbers:

class Complex {

float re, im;

Complex mul (Complex z) {

return new Complex (...);

}

Complex add (Complex c) {

return new Complex (...);

}

}

A complex function:

// f(z, c) = z · z + c

Complex f (Complex z, Complex c) {

Complex prod = z.mul (z);

return prod.add (c);

}

6

Original, To-Be Optimized Application
Computation of an array of complex numbers:

for (int i = 0; i < n; n++) {

c[i] = f (a[i], b[i]);

}

Assume that a[i] happens to be always i

⇒ Optimization by specialization of f w.r.t. its first argument

7

Off-Line Specialization

z static, c dynamic

Complex f (Complex z, Complex c) {

Complex prod = z.mul (z);

return prod.add (c);

}

Complex mul (Complex z) {

return new Complex

(re ∗ z.re − im ∗ z.im,

re ∗ z.im + im ∗ z.re);

}

Complex add (Complex c) {

return new Complex

(re + c.re, im + c.im);

}

z = i

// fres(c) = −1 + c

Complex f res (Complex c) {

return new Complex

(−1 + c.re, 0 + c.im);

}

The residual code features:

• less calculations

• less object creations

• less method calls

⇒ OO specialization is effective

8

Outline

1. Effectiveness of OO Specialization

2. Potential Problems with Objects

3. Techniques for Correctness and Efficiency

4. Generalization and Formalization

5. Preliminary Experiments

6. Conclusion and Future Work

9

One-Dimensional Geometry
A class for one-dimensional points:

class Point {

int x = 0;

void update (int a) { x = x + a; }

static Point make (int s, int d) {

Point p = new Point ();

p.update (s);

p.update (d);

p.update (s);

return p;

}

}

10

Original Application
Computation of two one-dimensional points:

int u = Console.getInt ();

Point a = Point. make (u, 7);

Point b = Point. make (u, 11);

int v = a.x + b.x;

int w = a == b;

⇒ Specialization of make w.r.t. u

11

Naive and Incorrect Off-Line
Specialization

s static, d dynamic

static Point make (int s , int d) {

Point p = new Point ();

p.update (s);

p.update (d);

p.update (s);

return p;

}

s = 42

static Point make res (int d) {

_p.update (d);

_p.update (42);

return _p;

}

(p is the point created during
specialization; we say it is stored
in the specialization store)

12

Problems with Objects
The original application cannot be simply rewritten:

int u = Console.getInt ();

Point a = Point. make (u, 7);

Point b = Point. make (u, 11);

int v = a.x + b.x; // 91 + 95

int w = a == b; // false

int u = Console.getInt ();

Point a = make res (7);

Point b = make res (11);

int v = a.x + b.x; // 144 + 144

int w = a == b; // true

Original cause: Application, specializer and residual code share
the same heap

13

Approaches
Immediate approaches:

• perform over-specialization

• require annotations by the user

• enforce residualization

⇒ None is satisfactory

Our approach:

• as few annotations as possible

• efficiency achieved by improving specialization rules

14

Outline

1. Effectiveness of OO Specialization

2. Potential Problems with Objects

3. Techniques for Correctness and Efficiency

4. Generalization and Formalization

5. Preliminary Experiments

6. Conclusion and Future Work

15

About Specialization Rules (1/2)
Main idea:
distinguish operations in terms of staticness

For instance, memory accesses as in statements of the form:

lhs = p.x;

• if p.x, then the memory access can be evaluated during
specialization

• if p.x, then the memory access must be residualized during
specialization

But in general, this static/dynamic dichotomy is not sufficient

16

About Specialization Rules (2/2)
Key idea:
distinguish operations in terms of visibility

For instance, (static) object creations as in statements of the
form:

lhs = new class name(. . .);

or (static) destructive updates as in statements of the form:

p.x = rhs;

• if visible, residualization and evaluation during specialization

• if invisible, evaluation during specialization

17

“If Visible, Residualization and Evaluation”
s static, d dynamic

static Point make (int s , int d) {

Point p = new
VIS Point ();

p.update (s);

p.update (d);

p.update (s);

return p;

}

s = 42

static Point make res (int d) {

Point p = new Point ();

p.x = 42 + d;

p.x = p.x + 42;

return p;

}

• Enforced residualization guarantees correctness

• Evaluation during specialization enables efficient residual code

18

“If Invisible, Evaluation” (1/2)
Extraction of small segments:

Set set = new Set ();

for (int i = 0; i < n; i++) {

if (areClose (a[i], b[i]))

set.add (new Segment (a[i], b[i]));

}

Assume that a[i] happens to be always 42

⇒ Optimization by specialization of areClose w.r.t. it first
argument

19

“If Invisible, Evaluation” (2/2)

s static, d dynamic

boolean areClose (int s, int d) {

Point a = new
INVIS Point ();

Point b = new
INVIS Point ();

a.update (s);

b.update (d);

return a.distance (b) < 10;

}

s = 42

boolean areClose res (int d) {

_b.update (d);

return _a.distance (_b) < 10;

}

(b and a are the points
stored in the specialization
store)

• Reuse of objects yield more efficient residual code

• Specialization of destructive updates does not infringe
correctness

20

Outline

1. Effectiveness of OO Specialization

2. Potential Problems with Objects

3. Techniques for Correctness and Efficiency

4. Generalization and Formalization

5. Preliminary Experiments

6. Conclusion and Future Work

21

Correctness Statement for RTS
Two components:

1. valid code replacement :
the residual code may substitute for the original code
whenever the static input is used

2. valid specialization usage :
RTS may happen
as soon as the static input is available

22

Valid Code Replacement
Mix equation (reminder):

t = f (s , d); t = f s (d);

23

Valid Code Replacement
Mix equation (extended with heaps):

(t, Ht) = f (s, Hs , d, Hd); (t, Ht) = fs,Hs
(d, Hd);

⇒ Describe arguments and results in terms of:

• heap equivalence (including a notion of reachability)

• additional requirements for the values of references

– because of reference lifting

– because references can be compared

(see the paper for more details)

24

Valid Code Replacement
Example:

Point a = Point. make (s, d); Point a’ = make res (d);

Condition on arguments:
s is expected to be indeed 42

Condition on results:
Points a and a’ must have the same coordinate

Additional requirement:
a and a’ must be fresh references

25

Valid Specialization Usage
Informally:

statement1;

f_s = spec (f, s);

statement2;

statement3;

t = f s (d);

statement1;

statement2;

f_s = spec (f, s);

statement3;

t = f s (d);

⇒ Specify the interactions between specialization and the
application:

• specialization cannot break the semantics of the application

• the application cannot break the semantics of specialization

26

Valid Specialization Usage
Example:

statement1;

make_res = spec (make, s);

statement2;

statement3;

Point a = Point. make res (d);

statement1;

statement2;

make_res = spec (make, s);

statement3;

Point a’ = make res (d);

Condition on the interaction:
spec cannot perform visible side-effects

27

Outline

1. Effectiveness of OO Specialization

2. Potential Problems with Objects

3. Techniques for Correctness and Efficiency

4. Generalization and Formalization

5. Preliminary Experiments

6. Conclusion and Future Work

28

Implementation Strategy
Based on Masuhara and Yonezawa’s BCS:

• RTS for the Java bytecode language

• end-to-end bytecode-level approach:

– type-based binding-time analysis

– cogen-by-hand approach

– run-time code generation

Extended to:

• an OO subset of the Java bytecode language

• new rules for binding-time analysis and code generation

• interface with compile-time analyses

29

Implementation Overview

Residual code

Original code

Original
application

Rewritten
applicationBinding−time

specification

BCS

Specializer

Binding−timeCompile−time

Specializer

Code generator
generator

Annotated
method

analysisanalyses

Off−line Run−time

Results

values
Dynamic

values
Static

Original code

30

Performance Measurements
Test Programs:

Object-oriented version of standard applications:

• Power function

• Mandelbrot sets drawer

• Ray tracer

Environment for Experiments:

Standard virtual machines with Just-in-time compilation

31

Power Function
Speed-up raise / raise res

Recursive Iterative

UltraSparc Hotspot (Sun 1.3) 5.4 1.5

Intel x86 Hotspot (Sun 1.3) 1.9 1.3

Intel x86 Classic (IBM 1.3) 5.9 4.4

Mandelbrot Sets Drawer
Speed-up eval / eval res

UltraSparc Hotspot (Sun 1.3) 1.07

Intel x86 Hotspot (Sun 1.3) 0.95

Intel x86 Classic (IBM 1.3) 1.05

32

Ray Tracer

Speed-up Overhead (ms)

closest / Specialization JIT

closest res Subject Residual

method code

UltraSparc Hotspot (Sun 1.3) 1.18 10 196 200

Intel x86 Hotspot (Sun 1.3) 1.25 7 115 100

Intel x86 Classic (IBM 1.3) 1.26 6 208 557

Break-even points

No JIT overhead JIT overhead

Hotspot (Sun 1.3) 5,646 ∼ 138,421 < 0 ∼ 9,755

Classic (IBM 1.3) 277,582 174,939

33

Measurements’ Summary
Speed-ups are comparable to related work:

• compile-time specialization for Java

• run-time specialization for C++

The environment for experiments complicates interpretation:

• unfriendly environment:

– dynamic compilation → more overhead

– small time window → less optimizations

• overlapping optimizations

• behavior hard to predict

34

Outline

1. Effectiveness of OO Specialization

2. Potential Problems with Objects

3. Techniques for Correctness and Efficiency

4. Generalization and Formalization

5. Preliminary Experiments

6. Conclusion and Future Work

35

Related Work:
Compile-time Techniques

Compile-time specialization for C:

• C-Mix [Andersen93]

• Tempo [Consel & Noël96]

Specialization and object-orientation:

• Elimination of virtual dispatches [Lea90, Dean et al.94]

• Partial evaluation formalization and implementation
[Schultz99-01]

Partial evaluation during interpretation:

• Correctness and experiments [Asai01]

36

Related Work:
Run-time Techniques

Run-time specialization for imperative languages:

• Tempo [Consel & Noël96]

• DyC [Grant et al.97]

• BCS [Masuhara & Yonezawa01]

Run-time specialization for object-oriented languages:

• C++ [Fujinami98]

• Specialization classes [Volanschi et al.97]

37

Conclusion
Design RTS for an OO subset of Java:

• efficient residual code regarding OO operations

• better automation of the specialization process

• correctness statement

Experimental implementation:

• end-to-end bytecode-level approach

• effective in practice (e.g., 26% speed-up for a ray tracer)

38

Future Work
Complete the implementation:

• access modifiers, constructors, . . .

Increase effectiveness:

• selective inlining

• allow visible side-effects during specialization

Reuse of objects in the specialization store as presented here:

• is not thread-safe

• may withhold many objects

Formal proof of correctness

39

