
On Construction of a Library of
Formally Verified Low-level Arithmetic Functions∗

Reynald Affeldt
National Institute of Advanced Industrial Science and Technology

Central 2, 1-1-1, Umezono, Tsukuba, Ibaraki, Japan
reynald.affeldt at aist.go.jp

ABSTRACT
Most information security infrastructures rely on crypto-
graphy, which is usually implemented with low-level arith-
metic functions. The formal verification of these functions
therefore becomes a prerequisite to firmly assess any secu-
rity property. We propose an approach for the construction
of a library of formally verified low-level arithmetic func-
tions that can be used to implement realistic cryptographic
schemes in a trustful way. For that purpose, we introduce
a formalization of data structures for signed multi-precision
arithmetic and we experiment it with formal verification of
basic functions, using Separation logic. Because this direct
style of formal verification leads to technically involved spec-
ifications, we also propose for larger functions to show a for-
mal simulation relation between pseudo-code and assembly.
This is illustrated with the binary extended gcd algorithm.
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1. INTRODUCTION
Most information security infrastructures rely on crypto-

graphy, which is usually implemented with arithmetic func-
tions, themselves implemented with low-level languages for
performance reasons. The formal verification of these low-
level arithmetic functions therefore becomes a prerequisite
to firmly assess any security property.

We propose an approach for the construction of a library
of formally verified low-level arithmetic functions that can be
used to implement realistic cryptographic schemes in a trust-
ful way. There exist experiments about formal verification of
low-level unsigned multi-precision arithmetic (e.g., [7, 8, 14]
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for assembly using proof-assistants) and verification of high-
level multi-precision arithmetic (e.g., [15] for a subset of Ada
using, among other tools, the Isabelle/HOL proof-assistant).
To the best of our knowledge, no comprehensive effort for
a fully formalized library of low-level multi-precision arith-
metic has ever been undertaken, in particular encompassing
signed multi-precision arithmetic. In this paper, we aim at
formally verifying in the Coq proof-assistant [11] a usable
set of arithmetic functions written in assembly. We build
on top of [14] that provides a framework for formal verifi-
cation of SmartMIPS [4] (a MIPS variant for smartcards)
programs using Separation logic [5] (an extension of Hoare
logic to deal with pointers), together with several functions
for unsigned multi-precision arithmetic.

Our first contribution is the formalization of data struc-
tures (Sect. 2) and the verification of basic functions (Sect. 3)
for signed multi-precision arithmetic. Because experience
showed that it leads to good performance, we choose to
mimic the data structure used in the GNU Multi-Precision
Arithmetic Library (GMP) [12]. In order to make an effec-
tive use of [14], we choose a layered approach where signed
arithmetic is implemented on top of unsigned arithmetic.
We experiment this formalization with several basic func-
tions, including the formal verification of signed multi-precision
subtraction. Here, verification is carried out in direct-style,
i.e., by providing a Hoare triple (pre/post conditions) and
applying Hoare rules, resorting to the frame rule of Separa-
tion logic for code composition.

The problem with this direct-style formal verification is
that it leads to technically involved specifications. In par-
ticular, the verification of functions that call several other
functions generates large intermediate subgoals that are dif-
ficult to manipulate formally, and ultimately this makes for
specifications that are difficult to read. On the other hand,
arithmetic functions are traditionally specified by pseudo-
code (e.g., [3]). This is however at the price of some im-
precision. Besides inaccuracies due to the absence of formal
definitions (it is not rare to find wrong corner cases and ini-
tialization issues, see the errata of [3] for examples) that are
in general eventually spotted and dealt with by program-
mers, there are more difficult issues that are left unspecified
with pseudo-code, for example, concrete storage in the mem-
ory of the computer: this is the work of the programmer to
provide concrete data structures and to make sure that they
are adequate.

Our second contribution is to propose, as an alternative
to direct-style verification, to show a formal simulation rela-
tion between pseudo-code and assembly (Sections 4 and 5),
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so as to overcome the problems explained above. In this
way, we end up with more readable specifications, akin to
standard textbooks. We illustrate concretely this approach
with the binary extended gcd algorithm (Sect. 6, experiment
in progress), an important function in cryptography, that is
used to compute inverses modulo, as in, say, ElGamal de-
cryption. This approach of showing a formal simulation re-
lation naturally allows for hand-written assembly (this issue
is discussed in more depth with a pencil-and-paper formal-
ization in [13]), which is often necessary, e.g., to use special
instructions.

To avoid ambiguities, we display in this paper the Coq for-
malization (almost) as it is, using obvious non-ascii symbols
and a few shortcuts (e.g., variables are universally quantified
by default) to ease reading. The formalization is available
online [16].

2. MULTI-PRECISION INTEGERS
We first formalize the data structures for multi-precision

integers in assembly. We are given a type reg of registers
that are put together into a register file (hereafter, store)
of type store.t. The value held by register rx in store st is
noted JrxK_st: it is a finite-size integer that can be inter-
preted either as an unsigned integer (by the function u2Z)
or as a signed integer (by the function s2Z). Sticking to
Separation logic parlance, we call heap the memory of the
computer, ranged over by h and of type heap.t. The heap is
finite, of size β = 232 (we assume a 32-bit architecture).

2.1 Unsigned Multi-precision Integer
A multi-precision integer is encoded as an array of words

(its payload), with the least significant word first. The
length of the payload is kept in a dedicated register (Fig. 1).
We formalize the fact that the value val is implemented by

words
(least significant word first)

. . . . . .heap:

krx rkregisters:

Figure 1: An unsigned multi-precision integer

an array of length k pointed to by register rx as follows:

0 Definition var_unsign k rx val st h : Prop :=

1 u2Z J rx K _st + 4 ∗ k < β ∧ 0 ≤ val < βk ∧
2 ( rx 7→ Z2ints 32 k val ) st h .

Line 1 specifies that the array does not “wrap around” the
heap and that val can safely be encoded in base β. Line 2
is a Separation logic formula. The formulas of Separation
logic (as well as the pre/post-conditions of Hoare triples
hereafter) are shallow-encoded (as done in [14]), i.e., they
have the type Definition assert := store.t →heap.t →Prop.

Above, 7→ is the mapsto connective of Separation logic.
Here, it specifies that the register rx points to the encoding
of val (Z2ints converts an arbitrary-precision integer into a
list of finite-size integers).

2.2 Signed Multi-precision Integer
We use sign-magnitude, with a special treatment for zero,

for the data structure for signed multi-precision integers
(Fig 2). This is similar to GMP ([12, Sect. 17.1]) except that
we do not plan to do any reallocation yet (the _mp_alloc field

length
(±k)

pointer
ptr

. . . words
(least significant word first)

. . . . . .heap:

1 word 1 word k

rxregister:

Figure 2: A signed multi-precision integer

in GMP). The first word of this data structure contains the
size in words of the magnitude (as for the unsigned case, we
call the magnitude payload). It is interpreted as a signed in-
teger whose sign gives the sign of the encoded value, with the
special case that the value zero is represented by having the
size set to zero (in which case the payload is unused). The
second word is a pointer to the payload. The fact that the
value val is implemented by a signed multi-precision integer
pointed to by register rx is formalized as follows:

0 Definition var_signed k rx val st h : Prop :=
1 u2Z J rx K _st + 4 ∗ 2 < β ∧
2 ∃ l , ptr , A . length A = k ∧
3 s2Z l = Zsgn ( s2Z l ) ∗ k ∧
4 val = Zsgn ( s2Z l ) ∗ Sum k A ∧
5 Zsgn ( s2Z l ) = Zsgn val ∧
6 u2Z ptr + 4 ∗ k < β ∧
7 Zabs val < βk ∧
8 ( rx 7→ l :: ptr :: nil ? ptr 7→ A ) st h .

Zsgn is 0, 1, or −1, according to whether its argument is
zero, positive, or negative. Zabs is the absolute value. Sum k A

computes the value encoded by the first k finite-size integers
of list A (it is the converse of Z2ints). Like the unsigned case,
lines 1 and 6 avoid wrap-arounds and line 7 guarantees that
the payload can safely be encoded in base β. Lines 2 and 3
formalize the relation between the length of the payload and
the embedded length. Lines 4 and 5 formalize the relation
between the value val and its encoding A. Observe that when
the value is zero, the magnitude is unspecified, because it is
supposed to be unused (same design principle as GMP). The
Separation logic formula (line 8) has two conjuncts that cor-
respond to disjoint heap areas (this is the intuitive meaning
of the separating conjunction ?); the first conjunct contains
a pointer to the second one. Finally, note that the length k of
the magnitude has been made a parameter of the definition
to simplify further technical developments.

3. VERIFICATION OF BASIC FUNCTIONS
We explain with an example how we formally prove the

functional correctness of basic functions for signed arith-
metic. Implementations are written in SmartMIPS assem-
bly. We do not explain in detail the semantics here: used
instructions are standard ones, their semantics can be found
in [4], and we add comments in the assembly code for under-
standing. To ease reading, assembly constructs are under-
lined (instructions: lw (load word), etc.; structured control-
flow1: ifte, etc.). The null register is noted r0, while general-
purpose registers are parameters of definitions. We refer to
the whole assembly language as the type cmd.

We display below the signed-unsigned addition, that adds
in-place a signed multi-precision integer and an unsigned
multi-precision integer (of the same length). It is imple-
mented on top of unsigned functions (multi_add and multi_sub).
The algorithm first sorts out the situations in which one of
the argument is zero: when the second argument is zero,

1[14] provides certified compilation to labeled jumps.



nothing needs to be done besides clearing the overflow reg-
ister (line 3); when the first argument is zero, it is enough
to copy (function copy) the contents of the second argument
(line 11). Otherwise, when the first argument is positive, it
boils down to an unsigned multi-precision addition (line 15).
Because of the special handling of zero, the situation where
the first argument is strictly negative requires comparison
between the two arguments. Upon equality, it is enough to
set the length to zero (line 21); the (now unused) payload
is left untouched but we still have a pointer to it. Other-
wise, in-place unsigned subtraction, possibly coupled with
negation (function negate), finishes the algorithm (lines 22
and 24).

0 Definition multi_add_s_u rk rx ry a0 a1 a2 a3 a4 a5 X :=
1 multi_is_zero rk ry a0 a1 a2 ;
2 ifte ( bne a2 r0 ) (∗ y = 0 ? ∗)
3 ( addiu a3 r0 016) (∗ y = 0 ∗)
4 ( multi_add_s_u ’ rk rx ry a0 a1 a2 a3 a4 a5 X ) .
5

6 Definition multi_add_s_u ’ rk rx ry a0 a1 a2 a3 a4 a5 X :=
7 lw X 416 rx ; (∗ po in t e r to payload ∗)
8 pick_sign rx a0 a1 ;
9 ifte ( bgez a1) (∗ 0 ≤ x ? ∗)

10 ( ifte ( beq a1 r0 ) (∗ x = 0 ? ∗)
11 ( copy rk X ry a2 a3 a4 ; (∗ x = 0 ∗)
12 addiu a3 r0 016 ;
13 sw rk 016 rx )
14 ( addiu a3 r0 116 ; (∗ x 6= 0 ∗)
15 multi_add rk a3 ry X X a0 a1 a2 ;
16 mflo a3) )
17 ( multi_lt rk ry X a0 a1 a5 a2 a3 a4 ;
18 ifte ( beq a5 r0 ) (∗ x ≤ y ? ∗)
19 ( ifte ( beq a2 r0 ) (∗ x = y ? ∗)
20 ( addiu a3 r0 016 ; (∗ x = y ∗)
21 sw r0 016 rx )
22 ( multi_sub rk ry X X a0 a1 a2 a3 a4 a5 ; (∗ x < y ∗)
23 negate rx a0) )
24 ( multi_sub rk X ry X a0 a1 a5 a3 a2 a4 ) ) . (∗ x > y ∗)

For such basic functions, it is technically manageable to
perform a proof in Hoare logic, using the frame rule of Sep-
aration logic to compose the called functions. Below follows
the Hoare triple (notation: {·}·{·} ) for the functional cor-
rectness of the addition above. The nodup predicate specifies
a list of pairwise distinct elements (here, registers). The pre-
condition essentially specifies that the heap contains a signed
integer and an unsigned integer (payloads A and B) (line 5).
The most informative part of the postcondition is its last
conjunct (lines 13 and 14) that specifies that the resulting
length l’ and payload A’ are indeed the result of the addi-
tion. Note that because of potential overflow (stored in a3),
the result may not necessarily be a signed multi-precision
integer as defined in Sect. 2.

0 Lemma multi_add_s_u_triple :
1 nodup ( rk , rx , ry , a0 , a1 , a2 , a3 , a4 , a5 , X , r0 ) →
2 0 < k < 231 → (∗ not the weird number ∗)
3 { fun s h ⇒ J rx K _s = vx ∧ J ry K _s = vy ∧
4 u2Z J rk K _s = k ∧
5 ( var_signed k rx A ? var_unsign k ry B ) s h }
6 multi_add_s_u rk rx ry a0 a1 a2 a3 a4 a5 X
7 { fun s h ⇒ ∃ A ’ , l ’ , ptr , length A ’ = k ∧
8 J rx K _s = vx ∧ J ry K _s = vy ∧
9 s2Z l ’ = Zsgn ( s2Z l ’ ) ∗ k ∧

10 Zsgn ( s2Z l ’ ) = Zsgn ( A + B ) ∧
11 ( rx 7→ l ’ :: ptr :: nil ? ptr 7→ A ’ ?
12 var_unsign nk ry B ) s h ∧ u2Z ( Ja3K_ s ) ≤ 1 ∧
13 Zsgn ( s2Z l ’ ) ∗ ( Sum k A ’ + (u2Z Ja3K_ s ) ∗ βk )
14 = A + B } .

Similarly to the above function, we have formally verified the
signed-unsigned subtraction and used these two functions to
formally verify in-place signed subtraction (see [16]).

4. VERIFICATION USING SIMULATION
As seen in Sect. 3, Hoare triples for arithmetic functions

can become technically involved, and it is questionable whether
verification scales to larger functions. This is why we exper-
iment formal verification of larger functions by providing a
pseudo-code version of the verification target together with
an assembly version and by showing a formal simulation rela-
tion between both. For that purpose, we introduce a generic
definition of simulation (Sect. 4.1) that we instantiate with
a relation between arbitrary-precision and multi-precision
integers (Sect. 4.2).

4.1 Forward Simulation
We are given a type pstore for stores with variables hold-

ing arbitrary-precision integers. The type of the relations
between pstores and the states of the cmd assembly language
is defined as follows:
Definition relat := pstore →store.t →heap.t →Prop.

We are also given a pseudo-code programming language pcmd.
Let us note Some(s, h)� x_ Some(s’, h ’) the (big-step) op-
erational semantics of both the cmd assembly and the pcmd

pseudo-code languages: starting from state (s, h), execution
of the program x leads to the state (s ’, h ’) (None models er-
ror states). Knowing which operational semantics we are
referring to will be obvious from the context; in particular,
the heap is always ε (empty) in the case of pseudo-code.

Given the pseudo-code p and the assembly program c, the
simulation that preserves the relation R under initial condi-
tions P0 is defined as follows:

Definition fwd_sim ( R P0 : relat ) p c :=
∀ s st h , R s st h → P0 s st h →
∀ s ’ , Some (s , ε ) � p _ Some (s ’ , ε ) →
∃ st ’ , h ’ . Some ( st , h ) � c _ Some ( st ’ , h ’ ) ∧
R s ’ st ’ h ’ .

This is a forward simulation in the sense of [10] (it is biased
towards imperative programs and departs from the defini-
tions in the theory of automata [1]). A definition similar
to fwd_sim called “correspondence” can also be found in [9].
Once forward simulation is proved, it becomes possible to
transport formally correctness from the pseudo-code to as-
sembly, thus effectively reducing the proof of correctness of
the assembly to a simulation proof and the proof of correct-
ness of the pseudo-code (see [16]).

Reasoning with forward simulation calls for several lem-
mas, such as lemmas akin to Hoare logic weakening and
strengthening, and, more importantly composition lemmas.
For example, the following composition lemma shows that
simulation of a sequence of instructions can be broken down
to simulations of each part:

Lemma fwd_sim_seq : ∀ R p p ’ c c ’ P Q ,
rela_hoare P Q p c →
fwd_sim R P p c → fwd_sim R Q p ’ c ’ →
fwd_sim R P ( p ; p ’ ) ( c ; c ’ ) .

Definition rela_hoare ( P Q : relat ) p c :=
∀ s st h , P s st h →
∀ s ’ , Some (s , ε ) � p _ Some (s ’ , ε ) →
∀ st ’ h ’ , Some ( st , h ) � c _ Some ( st ’ , h ’ ) →

Q s ’ st ’ h ’ .



Composition lemmas typically have side-conditions. For ex-
ample, in the case of the lemma fwd_sim_seq, one needs to
prove the propagation of initial conditions; the latter is here
expressed by the side-condition rela_hoare P Q p c, using re-
lational Hoare logic [6].

We have proved similar composition lemmas for while-
loops and structured branching. They are a bit more in-
volved because requiring a definition of simulation between
boolean expressions of the pseudo-code and assembly. Also,
as can be expected, simulation of while-loops requires, as
a side-condition, an invariant about propagation of initial
conditions (see [16]).

4.2 Instantiation for Signed Arithmetic
We now define concretely the relation between, on the

one hand, a store for pseudo-code (where variables contain
arbitrary-precision integers) and a state of assembly (where
registers point to multi-precision integers encoding the same
values as the variables). For that purpose, we first introduce
a type for multi-precision integer. A multi-precision integer
is either unsigned, implemented by two registers, one for the
length and one for the pointer to the payload, or signed,
implemented by the length of the payload and a pointer to
the (header of the) data structure (we record explicitly the
size of signed integers to simplify the formalization):

Inductive mint : Type :=
unsign o f reg & reg | signed o f nat & reg .

A pseudo-code store and an assembly state are related by
var_mint x mx when the variable x contains the same value
as the one encoded by the multi-precision integer mx:

Definition var_mint x mx : relat := fun s st h ⇒
match mx with
| unsign rk rx ⇒

var_unsign (u2Z J rk K _st ) rx Jx K _s st h
| signed k rx ⇒ var_signed k rx Jx K _s st h

end .

A pseudo-code store and an assembly state are related by
state_mint d, where d is an association list, when all the
arbitrary-precision integer variables in the domain of d are
implemented by the corresponding multi-precision integers
in the codomain of d:

Definition state_mint d : relat := fun s st h ⇒
(∀ x mx , get x d = Some mx →

var_mint x mx s st ( heap_mint mx st h ) ) ∧
(∀ x y , x 6= y → ∀ mx my ,

get x d = Some mx → get y d = Some my →
heap_mint mx st h ⊥ heap_mint my st h ) .

The second conjunct of this definition ensures that multi-
precision integers are disjoint in the heap: heap_mint mx st h

cuts out exactly that part of the heap that encodes the
multi-precision integer mx. This relation between pseudo-
code variables and multi-precision integers is technically in-
volved compared to relations used in proving correctness of
compiler phases, where the gap between data on both sides
is typically smaller than here.

5. SIMULATION FOR BASIC FUNCTIONS
In order to verify larger functions using simulation, we

first need to equip basic functions, such as multi-precision
signed addition, with simulation proofs.

5.1 Approach for Simulation Proofs
We found it easier in practice to split the proof of forward

simulation into a proof of termination and a proof of partial
forward simulation as defined below:

Definition pfwd_sim ( R P0 : relat ) p c :=
∀ s st h , R s st h → P0 s st h →
∀ s ’ , Some (s , ε ) � p _ Some (s ’ , ε ) →
∀ st ’ h ’ , Some ( st , h ) � c _ Some ( st ’ , h ’ ) →
R s ’ st ’ h ’ .

Definition safe_termination ( R : relat ) ( c : cmd )
:= ∀ s st h , R s st h →
∃ s ’ . Some ( st , h ) � c _ Some s ’ .

Put together, pfwd_sim and safe_termination imply forward
simulation. These two proofs make use of the Hoare triple
of the assembly program at hand. Concretely, proofs of
safe_termination are traditional termination proofs (typi-
cally by exhibiting a variant) after which one shows that
the final state is not an error state by using the Hoare triple.
Proofs of pfwd_sim are illustrated below.

5.2 Simulation for Multi-precision Addition
Intuitively, the proof of partial forward simulation for the

addition defined in Sect. 3 makes explicit the condition under
which multi_add_s_u behaves as the addition for arbitrary-
precision integers (see Fig. 3). More precisely, the formal

x ← x + yvx vy vx + vy vy− −→

multi_add_s_u

rk rx ry a0 a1 a2 a3 a4 a5 X

vx

vyk

k

rx

rk

ry vx +
vy

vy

k
k� _

pseudo-code:

assembly:

Figure 3: Simulation for signed-unsigned addition

statement below specifies that the executions of x ←x + y

(0 ≤ y) and of multi_add_s_u rk rx ry . . . preserve the rela-
tion state_mint (x Z⇒signed L rx ]y Z⇒unsign rk ry ]d) (lines
7–8), for any association list d with no register in common
with the code (lines 3–6), provided the initial conditions
from line 9 hold. In particular, these initial conditions spec-
ify that register rk contains the length L (line 10) and rule
out potential overflows (line 12).

0 Lemma pfwd_sim_multi_add_s_u :
1 nodup (x , y ) →
2 nodup ( rk , rx , ry , a0 , a1 , a2 , a3 , a4 , a5 , X , r0 ) →
3 disj ( mints_regs ( cdom d ) )
4 (a0 :: a1 :: a2 :: a3 :: a4 :: a5 :: X :: nil ) →
5 x 6∈ dom d → signed L rx 6∈ cdom d →
6 y 6∈ dom d → unsign rk ry 6∈ cdom d →
7 pfwd_sim ( state_mint
8 ( x Z⇒ signed L rx ] y Z⇒ unsign rk ry ] d ) )
9 ( fun s st _ ⇒ J rk K _st 6= 032 ∧

10 u2Z J rk K _st < 231 ∧ L = u2Z J rk K _st ∧
11 Zabs Jx K _s < βL ∧ 0 ≤ Jy K _s < βL ∧
12 Zabs ( Jx K _s + Jy K _s ) < βL )
13 ( x ← x + y )
14 ( multi_add_s_u rk rx ry a0 a1 a2 a3 a4 a5 X ) .



6. BINARY EXTENDED GCD ALGORITHM
We apply the approach introduced in Sect. 4 to the bi-

nary extended gcd algorithm. This simulation proof makes
use of simulation proofs for basic functions such as the one
explained in Sect. 5.

6.1 Pseudo-code and Hoare Triple
The binary extended gcd algorithm is an extension of the

Euclid algorithm: it combines the extended gcd algorithm,
that computes the gcd of two integers together with the
integers that satisfy the corresponding Bézout identity, with
the binary gcd algorithm, that computes the gcd efficiently
by replacing multi-precision divisions with shifts. We take
the pseudo-code algorithm from authoritative literature ([2,
p. 646]):

Definition begcd g u v u1 u2 u3 v1 v2 v3 t1 t2 t3 :=
g ← 1 ;
prelude u v g ;
init u v u1 u2 u3 v1 v2 v3 t1 t2 t3 ;
while (t3 6= 0) (

while (t3 % 2 = 0)
halve u v t1 t2 t3 ;

reset u v u1 u2 u3 v1 v2 v3 t1 t2 t3 ;
subtract u v u1 u2 u3 v1 v2 v3 t1 t2 t3 ) .

To give an idea of the role of each function, here follows a
rough explanation (see [2] for the precise pseudo-code and
accurate explanations). prelude halves the inputs as much
as possible, recording the number of iterations in g. init

initializes the variables ui, vi, and ti. halve tries to halve
the variables ti. (By the way, Sect. 6.2 provides the code of
halve for illustrative purposes.) reset updates the variables
ui or vi using the variables ti. subtract updates the variables
ti using ui − vi. Here follows the correctness statement in
the form of a Hoare triple:

0 Lemma begcd_triple :
1 nodup (g , u , v , u1 , u2 , u3 , v1 , v2 , v3 , t1 , t2 , t3) →
2 0 < vu → 0 < vv →
3 { fun s h ⇒ uv_init vu vv u v s }
4 begcd g u v u1 u2 u3 v1 v2 v3 t1 t2 t3
5 { fun s h ⇒ Zgcd vu vv = Jg K _s ∗ Ju3K _s ∧
6 vu ∗ Ju1K _s + vv ∗ Ju2K _s = Jg K _s ∗ Ju3K _s ∧
7 uivi_bounds u v u1 v1 u2 v2 u3 v3 s ∧
8 ti_bounds u v t1 t2 t3 s } .

In the precondition, the uv_init predicate specifies that the
variables u and v are initialized with the ghost variables vu

and vv. Regarding the postcondition, it is important to ob-
serve that this lemma is not only about functional correct-
ness (i.e., the fact that this program does implement the
extended gcd—lines 5–6) but also proves that the integers
remain bounded by the program inputs. Ensuring this fact
is the role of the uivi_bounds and ti_bounds predicates. (To
be more precise, they specify that: u1,v1,u3,v3,t1 are posi-
tive and bounded by vv; u2,v2,t2 are negative and bounded
by −vv; and t3 lies between −vv and vu.)

6.2 From Pseudo-code to Assembly
The assembly code that we verify has the same control-

flow structure as the pseudo-code, thus allowing the use of
the composition rules discussed in Sect. 4.1. Since all the
variables of the binary extended gcd algorithm lie between
−vv and vu, we assume that the payload of all multi-precision
integers is stored into the same amount of words, and that
this value is stored in register rk. We illustrate the assembly
implementation with the function halve:

Definition halve u v t1 t2 t3 :=
ifte (t1 % 2 = 0 && t2 % 2 = 0) thendo
t1 ← t1 / 2 ; t2 ← t2 / 2 ; t3 ← t3 / 2
elsedo
t1 ← (t1 + v ) / 2 ; t2 ← (t2 − u ) / 2 ; t3 ← t3 / 2 .

Assembly is produced by mapping each pseudo-code instruc-
tion with a function such that there is an adequate simula-
tion between both. For example, the pseudo-code addition
is mapped to multi_add_s_u, the corresponding simulation
being the one provided in Sect. 5:

Definition multi_is_even_s_and rx ry a0 a1 a2 :=
multi_is_even_signed rx a0 a1 ;
multi_is_even_signed ry a0 a2 ;
and a0 a1 a2 . (∗ NB: b i tw i s e l o g i c a l and ∗)

Definition halve_mips
rk ru rv rt1 rt2 rt3 a0 a1 a2 a3 a4 a5 a6 :=

multi_is_even_s_and rt1 rt2 a0 a1 a2 ;
ifte ( bne a0 r0 )
(multi_div2_s rt1 a0 a1 a2 a3 a4 ;
multi_div2_s rt2 a0 a1 a2 a3 a4 ;
multi_div2_s rt3 a0 a1 a2 a3 a4)

( multi_add_s_u rk rt1 rv a0 a1 a2 a3 a4 a5 a6 ;
multi_div2_s rt1 a0 a1 a2 a3 a4 ;
multi_sub_s_u rk rt2 ru a0 a1 a2 a3 a4 a5 a6 ;
multi_div2_s rt2 a0 a1 a2 a3 a4 ;
multi_div2_s rt3 a0 a1 a2 a3 a4 ) .

6.3 Verification of the BEGCD
We are now in a position to verify the binary extended gcd

algorithm by showing a formal simulation relation. The veri-
fication goal is displayed in Fig. 4. Regarding the initial con-

Lemma begcd_simu :
nodup (g , u , v , u1 , u2 , u3 , v1 , v2 , v3 , t1 , t2 , t3) →
nodup ( rk , rg , ru , rv , ru1 , ru2 , ru3 , rv1 , rv2 , rv3 ,
rt1 , rt2 , rt3 , a0 , a1 , a2 , a3 , a4 , a5 , a6 , a7 , a8 , a9 , r0 )
→ 0 < vu → 0 < vv →
fwd_sim ( state_mint ( g Z⇒ unsign rk rg ]

u Z⇒ unsign rk ru ] v Z⇒ unsign rk rv ]
u1 Z⇒ signed L ru1 ] u2 Z⇒ signed L ru2 ]
u3 Z⇒ signed L ru3 ] v1 Z⇒ signed L rv1 ]
v2 Z⇒ signed L rv2 ] v3 Z⇒ signed L rv3 ]
t1 Z⇒ signed L rt1 ] t2 Z⇒ signed L rt2 ]
t3 Z⇒ signed L rt3) )
( fun s st h ⇒ uv_init vu vv u v s ∧

uv_bound rk st u v s L )
( begcd g u v u1 u2 u3 v1 v2 v3 t1 t2 t3)
( begcd_mips rk rg ru rv ru1 ru2 ru3 rv1 rv2 rv3

rt1 rt2 rt3 a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 ) .

Figure 4: Simulation for the binary extended gcd
algorithm

dition, uv_init has already been explained in Sect. 6.1; the
predicate uv_bound establishes the link between the pseudo-
code inputs and the length of the payload of multi-precision
integers:

0 Definition uv_bound rk st u v s L :=

1 0 < u2Z J rk K _st < 231 ∧ L = u2Z J rk K _st ∧
2 0 < Ju K _s < βL−1 ∧ 0 < Jv K _s < βL−1 .

Line 1 specifies that the length of the payload of the multi-
precision integers is stored into L words. Line 2 specifies
that the input values are strictly smaller that βL−1. The
latter condition makes it possible to guarantee that there is



no overflow during execution. Indeed, as we have explained
in Sect. 6.1, the values of variables in the pseudo-code are all
bounded by the inputs during execution (to be precise, after
each invocation of init, halve, reset and subtract), and this
fact transports to the assembly code through the state_mint

relation. Since this is a non-trivial part of the proof of cor-
rectness of begcd (consider for example potential overflow in
the subtract function), it is very satisfactory to be able to
avoid dealing with this issue directly at the assembly level
thanks to the simulation relation.

7. CURRENT LIBRARY STATUS
Except from parts of the simulation of the binary extended

gcd algorithm, all the proofs discussed in this paper have
been formalized in the Coq proof-assistant. More precisely,
we have extended [14] with assembly implementations and
correctness proofs for (1) unsigned arithmetic (zero initial-
ization, halving, doubling, array copy, parity test, equal-
ity test against zero), and (2) signed arithmetic (sign test-
ing, negation, in-place signed-unsigned addition, in-place
signed-unsigned subtraction, in-place signed subtraction).
From [14], we inherit unsigned addition (with its in-place
variant), unsigned subtraction (with in-place variants), mul-
tiplication, Montgomery multiplication/squaring/exponen-
tation, and generic unsigned comparison (“equal, less or
greater than”). We have equipped some of the operations
above with simulation proofs (precisely, unsigned zero ini-
tialization, unsigned halving and doubling, in-place signed-
unsigned addition and subtraction, generic unsigned com-
parison, as well as other, more ad-hoc, testing functions).
Other functions have been implemented in assembly but
their correctness and simulation proofs are just axiomatized.
We claim that this is just a problem of manpower because
these functions are essentially variants of operations already
verified or simulated (signed variants, variants that are not
in-place, etc.). Regarding the application to the binary ex-
tended gcd algorithm, we have completely formalized the
simulation proofs for begcd (including prelude, init, halve,
and reset), modulo the axiomatizations explained above.

8. CONCLUSION
We proposed an approach for the construction of a library

of formally verified low-level arithmetic functions. First,
we introduced a formalization of data-structures for signed
multi-precision arithmetic that we illustrated with a direct-
style Separation logic proof for a basic function using signed
integers. Second, we proposed an approach based on simu-
lation to deal with larger functions. It consists in showing a
formal simulation relation between the pseudo-code and the
assembly. This is illustrated with an assembly implementa-
tion of the binary extended gcd algorithm. As a consequence
of this approach, the pseudo-code can serve as a specification
of the implementation, as this is usually done in standard
textbooks, and as it is expected from programmers.

Formal verification of the axiomatized part of the library
is current work. Given the current scale of the whole li-
brary (around 30,000 lines of scripts), we plan to work to-
wards completion in a steady way, by providing more lem-
mas and improving the quality of automation. In the sim-
ulation proofs, we made the hypothesis that multi-precision
integers share the same length, but since we use pointers in
the data structure for signed integers, we can extend this

work to deal with varying-size integers. We plan to do so
by connection with a formal model for the C programming
language that we have been developing in the context of an-
other project, so that dynamic allocation can be provided
by C’s malloc.
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